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Where Am | Going?

Overview and Organization of the Course



Science and Statistics

Statistics is about science
— (Science in the broadest sense of the word)

Science is about proving things to people

— (The validity of any proof rests solely on the willingness of the
audience to believe it)

In RCT, we are trying to prove the effect of some treatment

— What do we need to consider as we strive to meet the burden of
proof with adaptive modification of a RCT design?

Does time to event data affect those issues?
— Short answer: No, UNLESS subiject to censoring
— So, true answer: Yes.



Overview: Time-to-Event

Many confirmatory phase 3 RCTs compare the distribution of time
to some event (e.g., time to death or progression free survival).

Common statistical analyses: Logrank test and/or PH regression
Just as commonly: True distributions do not satisfy PH

Providing users are aware of the nuances of those methods, such
departures need not preclude the use of those methods



CT
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Overview: Sequential, Adaptive FH

 Increasing interest in the use of sequential, adaptive RCT designs
« FDA Draft guidance on adaptive designs

— “Well understood” methods
» Fixed sample
» Group sequential
 Blinded adaptation

— “Less well understood” methods
« Adaptive sample size re-estimation
« Adaptive enrichment
» Response-adaptive randomization
« Adaptive selection of doses and/or treatments



Overview: Premise

Much of the concern with “less well understood” methods has to
do with “less well understood” aspects of survival analysis in RCT

Proportional hazards holds under strong null
— But weak null can be important (e.g., noninferiority)

Log linear hazard may be close to linear in log time over support
of censoring distribution =» approximately Weibull
— A special case of PH only when shape parameter is constant

Hazard ratio estimate can be thought of a weighted time-average
of ratio of hazard functions

— Butin Cox regression, weights depend on censoring distribution
— Andin sequential RCT, censoring distribution keeps changing



Course Organization

Overview:
— What do we know about survival analysis?
— RCT setting

Group sequential methods with time-to-event endpoints
— Evaluation of RCT designs

— Monitoring: implementation of stopping rules

Adaptive methods for sample size re-estimation with PH
— Case study: Low event rates, extreme effects

Time to event analyses in presence of time-varying effects

Special issues with adaptive RCT in time-to-event analyses



Overview

What do we know about time-to-event analyses?

Where am | going?

| present some examples where the behavior of standard
analysis methods for time-to-event data are not well understood



Time to Event

In time to event data, a common treatment effect across stages is
reasonable under some assumptions

— Strong null hypothesis (exact equality of distributions)

— Strong parametric or semi-parametric assumptions

The most common methods of analyzing time to event data will
often lead to varying treatment effect parameters across stages
— Proportional hazards regression with non proportional hazards

data
— Weak null hypotheses of equality of summary measures (e.g.,
medians, average hazard ratio)



Right Censored Data

« Incompete data: Some events have not occurred at time of data
analysis
* Notation:

Unobserved :
True times to event : {TIO,TZO,.--,T,,O}

Censoring Times : {C1 ,Cz,...,Cn}

Observed data :
Observation Times : 7. = min (Tio, C. )
1 f T =T°
Event indicators : D, = o
0O otherwise

Group membership : X,

l



Hypothetical Example: Analysis

» Choice of summary measure
— Survival at fixed point in time
— Median, other quantiles
— Mean (or restricted mean)
— Hazard ratio (or weighted average of hazard ratio over time)

« Choice of methods
— Parametric, semiparametric, nonparametric



Hypothetical Example: Setting

Consider survival with a particular treatment used in renal dialysis
patients

Extract data from registry of dialysis patients

To ensure quality, only use data after 1995
— Incident cases in 1995: Follow-up 1995 — 2002 (8 years)
— Prevalent cases in 1995: Data from 1995 - 2002

* Incident in 1994: Information about 2"d — 9t year
* Incident in 1993: Information about 3" — 10t year

* Incident in 1988: Information about 8t — 15t year



Hypothetical Example: KM Curves

Kaplan-Meier Curves for Simulated Data (n=5623)
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Who Wants To Be A Millionaire?

« Proportional hazards analysis estimates a Treatment : Control
hazard ratio of

A: 2.07 (logrank P =.0018)

B: 1.13 (logrank P =.0018)

C: 0.87 (logrank P =.0018)

D: 0.48 (logrank P =.0018)
— Lifelines:

* 50-50? Ask the audience? Call a friend?



Who Wants To Be A Millionaire?

« Proportional hazards analysis estimates a Treatment : Control
hazard ratio of

B: 1.13 (logrank P =.0018)
C: 0.87 (logrank P =.0018)

— Lifelines:
* 50-50? Ask the audience? Call a friend?



Survival Probability

Hypothetical Example: KM Curves
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Who Wants To Be A Millionaire?

Proportional hazards analysis estimates a Treatment : Control
hazard ratio of

B: 1.13 (logrank P =.0018)

The weighting using the risk sets made no scientific sense

— Statistical precision to estimate a meaningless quantity is
meaningless



Partial Likelihood Based Score
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Overview

RCT setting

Where am | going?
It is important to keep in mind the overall goal of RCTs

| briefly describe some issues that impact our decisions in the
design, monitoring, and analysis of RCTs



Overall Goal: “Drug Discovery”

* More generally

— atherapy / preventive strategy or diagnostic / prognostic
procedure

— for some disease
— in some population of patients

« A sequential, adaptive series of experiments to establish

— Safety of investigations / dose (phase 1)

— Safety of therapy (phase 2)

— Measures of efficacy (phase 2)
« Treatment, population, and outcomes

— Confirmation of efficacy (phase 3)

— Confirmation of effectiveness (phase 3, post-marketing)



Science: Treatment “Indication”

Disease

— Therapy: Putative cause vs signs / symptoms
« May involve method of diagnosis, response to therapies

— Prevention / Diagnosis: Risk classification

Population
— Therapy: Restrict by risk of AEs or actual prior experience
— Prevention / Diagnosis: Restrict by contraindications

Treatment or treatment strategy

— Formulation, administration, dose, frequency, duration, ancillary
therapies

Outcome
— Clinical vs surrogate; timeframe; method of measurement



Evidence Based Medicine

« Decisions about treatments should consider PICO
— Patient (population)
— Intervention
— Comparators
— Qutcome

« There is a need for estimates of safety, effect



Clinical Trials

« Experimentation in human volunteers

* Investigates a new treatment/preventive agent
— Safety:
 Are there adverse effects that clearly outweigh any potential
benefit?
— Efficacy:
« Can the treatment alter the disease process in a beneficial way?
— Effectiveness:

» Would adoption of the treatment as a standard affect morbidity /
mortality in the population?



Carrying Coals to Newcastle

Wiley Act (1906)

— Labeling

Food, Drug, and Cosmetics Act of 1938
— Safety

Kefauver — Harris Amendment (1962)

— Efficacy / effectiveness
« "[lf] there is a lack of substantial evidence that the drug will have the effect ...
shall issue an order refusing to approve the application. *
« “..The term 'substantial evidence' means evidence consisting of adequate and
well-controlled investigations, including clinical investigations, by experts
qualified by scientific training”

FDA Amendments Act (2007)

— Registration of RCTs, Pediatrics, Risk Evaluation and Mitigation
Strategies (REMS)




Medical Devices

Medical Devices Regulation Act of 1976

— Class I: General controls for lowest risk

— Class II: Special controls for medium risk - 510(k)

— Class lll: Pre marketing approval (PMA) for highest risk

- “...valid scientific evidence for the purpose of determining the safety or
effectiveness of a particular device ... adequate to support a determination that
there is reasonable assurance that the device is safe and effective for its
conditions of use...”

» “Valid scientific evidence is evidence from well-controlled investigations, partially
controlled studies, studies and objective trials without matched controls, well-
documented case histories conducted by qualified experts, and reports of
significant human experience with a marketed device, from which it can fairly
and responsibly be concluded by qualified experts that there is reasonable

assurance of the safety and effectiveness...”

Safe Medical Devices Act of 1990
— Tightened requirements for Class 3 devices




Clinical Trial Design

« Finding an approach that best addresses the often competing
goals: Science, Ethics, Efficiency
— Basic scientists: focus on mechanisms
— Clinical scientists: focus on overall patient health
— Ethical: focus on patients on trial, future patients
— Economic: focus on profits and/or costs

— Governmental: focus on safety of public: treatment safety,
efficacy, marketing claims

— Statistical: focus on questions answered precisely
— Operational: focus on feasibility of mounting trial



pul NV

Sequential RCT

Ethical and efficiency concerns can be addressed through
sequential sampling

During the conduct of the study, data are analyzed at periodic
intervals and reviewed by the DMC

Using interim estimates of treatment effect decide whether to
continue the trial

If continuing, decide on any modifications to
— scientific / statistical hypotheses and/or
— sampling scheme



Design: Distinctions without Differences

There Is no such thing as a “Bayesian design”

Every RCT design has a Bayesian interpretation
— (And each person may have a different such interpretation)

Every RCT design has a frequentist interpretation
— (In poorly designed trials, this may not be known exactly)

| focus on the use of both interpretations

— Phase 2: Bayesian probability space

— Phase 3: Frequentist probability space

— Entire process: Both Bayesian and frequentist optimality criteria



Application to Drug Discovery

« We consider a population of candidate drugs
 We use RCT to “diagnose” truly beneficial drugs

« Use both frequentist and Bayesian optimality criteria
— Sponsor:
« High probability of adopting a beneficial drug (frequentist power)

— Regulatory:
« Low probability of adopting ineffective drug (freq type 1 error)
« High probability that adopted drugs work  (posterior probability)

— Public Health (frequentist sample space, Bayes criteria)
« Maximize the number of good drugs adopted
« Minimize the number of ineffective drugs adopted



Frequentist vs Bayesian: Bayes Factor

« Frequentist and Bayesian inference truly complementary
— Frequentist: Design so the same data not likely from null / alt
— Bayesian: Explore updated beliefs based on a range of priors

« Bayes rule tells us that we can parameterize the positive
predictive value by the type | error and prevalence
— Maximize new information by maximizing Bayes factor

— With simple hypotheses:
power X prevalence

PPV =
power X prevalence + typel err X (1 — prevalence)

PPV power o prevalence
1-PPV  typel err 11— prevalence

posterior odds = Bayes Factor X prior odds



Adaptive Sampling: General Case

At each interim analysis, possibly modify statistical or scientific
aspects of the RCT

Primarily statistical characteristics
— Maximal statistical information (UNLESS: impact on MCID)

— Schedule of analyses (UNLESS: time-varying effects)
— Conditions for stopping (UNLESS: time-varying effects)
— Randomization ratios (UNLESS: introduce confounding)

— Statistical criteria for credible evidence

Primarily scientific characteristics

— Target patient population (inclusion, exclusion criteria)
— Treatment (dose, administration, frequency, duration)

— Clinical outcome and/or statistical summary measure



FDA Guidance on Adaptive RCT Designs

 Distinctions by role of trial
— “Adequate and well-controlled” (Kefauver-Harris wording)
— “Exploratory”

 Distinctions by adaptive methodology
— “Well understood”

» Fixed sample design

 Blinded adaptation

» Group sequential with pre-specified stopping rule

— “Less well understood”

« “Adaptive” designs with a prospectively defined opportunity to
modify specific aspects of study designs based on review of
unblinded interim data

— “Not within scope of guidance”

* Modifications to trial conduct based on unblinded interim data
that are not prospectively defined




FDA Concerns

Statistical errors: Type 1 error; power

Bias of estimates of treatment effect
— Definition of treatment effect
— Bias from multiplicity

Information available for subgroups, dose response, secondary
endpoints

Operational bias from release of interim results
— Effect on treatment of ongoing patients
— Effect on accrual to the study
— Effect on ascertainment of outcomes



Group Sequential Designs

Perform analyses when sample sizes N,. .. N,
— Can be randomly determined

At each analysis choose stopping boundaries

Compute test statistic T=T(X;. . . Xy)

— Stopif T, <a (extremely low)
— Stopif b<T;<¢ (approximate equivalence)
— Stopif  T;>d, (extremely high)

— Otherwise continue

Boundaries chosen to protect 2 of 3 operating characteristics
— Type 1 error, power
— Type 1 error, power, maximal sample size



Spectrum of Boundary Shapes

 All of the rules depicted have the same type | error and power to
detect the design alternative

|11
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RCT Design to Address Variability

« At the end of the study we perform frequentist and/or Bayesian
data analysis to assess the credibility of clinical trial results

— Estimate of the treatment effect
« Single best estimate
* Precision of estimates

— Decision for or against hypotheses
 Binary decision
« Quantification of strength of evidence



Measures of Precision

 Estimators are less variable across studies
— Standard errors are smaller

« Estimators typical of fewer hypotheses
— Confidence intervals are narrower

« Able to statistically reject false hypotheses
— /Z statistic is higher under alternatives



Notation

Potential data : Y.Y,,Y;,....
Probabilit y model : Y, ~ : (9 V)
Interim estimates : é 6?(Y1,...,YNJ)
Without sequential sampling :
Approximat e distn : éj = HANj ~ N(H, V/Nj)
Indep increments : Cov( ANj,éA?NjH )= VIN,,
Interim test statistics : Z.=7Z, = %%



Std Errors: Key to Precision

« Greater precision is achieved with smaller standard errors

Typicall y : Se(é)z \/E
n

(V related to average "statistica | informatio n" )

VN

Width of CI:  2x(crit val)x se(@)
0-6,

Test statistic : Z = =
S€(9)



Ex: Difference of Indep Means

ind Y, ~ (1,02 )i=12; j=1,....n,

n=n+n,; r=nln,

o\ —_— —_—

0= 1, — U, 0=Y, -7,

V=(r+1)[0'12/r+0'22] Se(HA):\/Z:\/O-I2



Ex: Hazard Ratios

« With noninformative censoring, proportional hazards

— Statistical information involves probability of censoring

ind censored time to event (Tl],5 )

(=12, j=1,...,n;n=n+n,; r=n,/n,

0 =log(HR) 0 = ,6A’ from PH regression

o (Ler)dsr+1) Se(é)z\/zz\/(l+r)(l/r+l)
Pr{é;jzlj n d



Time to Event Analyses

« Sample size computation usually presumes PH
— Perhaps attenuation of effect due to cross-over

— Perhaps precision gained by deattenuating HR with adjustment
for prognostic baseline variables

« Formula leads to number of events

« Accrual size based on
— Control event rate
— Hypothesized treatment effect (null vs alternative)
— Accrual time
— Follow-up after accrual ends
— (Censoring due to loss to follow-up?)



Sample Size Determination

« Based on sampling plan, statistical analysis plan, and estimates
of variability, compute

— Sample size that discriminates hypotheses with desired power,
OR

— Hypothesis that is discriminated from null with desired power
when sample size is as specified, or

OR

— Power to detect the specific alternative when sample size is as
specified



Sample Size Computation

Standardiz ed level & test (n =1): 0, detected with power [

Level of significan ce & when 6 = 6,
Design alternativ € 8 = 6,

Variabilit y V within 1sampling unit

Required sampling units : n=

(Fixed sample test:0,; = z,_,,, + 24)



When Sample Size Constrained

« Often (usually?) logistical constraints impose a maximal sample

size
— Compute power to detect specified alternative

Find £ such that 0, = \/g (6 -6,)

— Compute alternative detected with high power

6 =06, +50[ﬂ\/z
n



Increasing Precision

« Options

— Increase sample size
« Time to event: Accrue more patients

— Decrease V
 Improve reliability of measurements
— Time to event: Decrease probability of censoring
 Alter study design (e.g., cross-over)
 (Alter eligibility to decrease heterogeneity)
* (Alter clinical endpoint)

— (Decrease confidence level)



Evaluation of Designs

* Process of choosing a trial design

— Define candidate design
« Usually constrain two operating characteristics
— Type | error, power at design alternative
— Type | error, maximal sample size

— Evaluate other operating characteristics
« Different criteria of interest to different investigators

— Modify design

— lterate



Collaboration of Disciplines

Epidemiologists Hypothesis generation
Scientific Basic Scientists Mechanisms
Clinical Scientists Clinical benefit
Clinical Experts in disease / treatment Efficacy of treatment
Experts in complications Adverse experiences
. . Individual ethics
Ethical Ethicists Group ethics
Health services Cost effectiveness
Economic Sponsor management Cost of trial / Profitability
Sponsor marketers Marketing appeal
Safety
Governmental Regulators Efficacy
Statistical Biostatisticians Estimates of treatment effect

Precision of estimates

Collection of data
Study burden
Data integrity

Study coordinators

Operatlonal Data management



Which Operating Characteristics

The same regardless of the type of stopping rule

Frequentist power curve
— Type | error (null) and power (design alternative)

Sample size requirements
— Maximum, average, median, other quantiles
— Stopping probabilities

Inference at study termination (at each boundary)
— Frequentist or Bayesian (under spectrum of priors)

(Futility measures
— Conditional power, predictive power)
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Efficiency / Unconditional Power

« Tradeoffs between early stopping and loss of power
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At Design Stage

 In particular, at design stage we can know

— Conditions under which trial will continue at each analysis
« Estimates
» (Range of estimates leading to continuation)
* Inference
» (Credibility of results if trial is stopped)
« Conditional and predictive power

— Tradeoffs between early stopping and loss in unconditional power



Operating Characteristics

For any pre-specified stopping rule, however, we can compute
the correct sampling distribution with specialized software
From the computed sampling distributions we then compute

— Bias adjusted estimates

— Correct (adjusted) confidence intervals

— Correct (adjusted) P values

Candidate designs are then compared with respect to their
operating characteristics



But What If ...?7

« Possible motivations for adaptive designs

— Changing conditions in medical environment
« Approval / withdrawal of competing / ancillary treatments
« Diagnostic procedures

— New knowledge from other trials about similar treatments

— Evidence from ongoing trial
 Toxicity profile (therapeutic index)
* Interim estimates of primary efficacy / effectiveness endpoint
— Overall
— Within subgroups
« Interim alternative analyses of primary endpoints
* Interim estimates of secondary efficacy / effectiveness endpoints



Adaptive Sampling Plans

« At each interim analysis, possibly modify
— Maximal statistical information
— Schedule of analyses
— Conditions for early stopping
— Randomization ratios
— Statistical criteria for credible evidence
— Scientific and statistical hypotheses of interest



Adaptive Sampling: Examples

Response adaptive modification of sample size
— Proschan & Hunsberger (1995); Cui, Hung, & Wang (1999)

Response adaptive randomization
— Play the winner (Zelen, 1979)

Adaptive enrichment of promising subgroups
— Wang, Hung & O’Neill (2009)

Adaptive modification of endpoints, eligibility, dose, ...
— Bauer & Koéhne (1994); LD Fisher (1998)



Adaptive Sampling: Issues

How do the newer adaptive approaches relate to the constraint of
human experimentation and scientific method?

Effect of adaptive sampling on trial ethics and efficiency
— Avoiding unnecessarily exposing subjects to inferior treatments
— Avoiding unnecessarily inflating the costs (time / money) of RCT

Effect of adaptive sampling on scientific interpretation
— Exploratory vs confirmatory clinical trials

Effect of adaptive sampling on statistical credibility
— Control of type | error in frequentist analyses
— Promoting predictive value of “positive” trial results



Typical Adaptive Design

Perform analyses when sample sizes N,. .. N,
— Can be randomly determined

At each analysis choose stopping boundaries

Compute test statistic T=T(X;. . . Xy)

— Stopif T, <a (extremely low)
— Stopif b<T;<¢ (approximate equivalence)
— Stopif  T;>d, (extremely high)

— Otherwise continue

At penultimate analysis (J-7), use unblinded interim test statistic
to choose final sample size N, or to modify other aspects of RCT



Proschan & Hunsberger

« Worst case type | error of two stage design

o —1— q)(a(Z) )+ CXp (_ (aSZ) )2 /2)

worst 2
4

b

« (Can be more than two times the nominal
— a, = 1.96 gives type | error of 0.0616
— (Compare to Bonferroni results)



Adaptive Control of Type 1 Errors

* Proschan and Hunsberger (1995)

— Adaptive modification of RCT design at a single interim analysis
can more than double type 1 error unless carefully controlled

« Those authors describe adaptations to maintain experimentwise
type | error and increase conditional power

— Must prespecify a conditional error function
/ \_ A(z)d(z)dz = a.
— Often choose function from some specified test

A(z) = Prs_o(Zo > &1 (1 —a)| 71 = 2.9 = ng — n1),

— Find critical value to maintain type | error

Prs_o(Z5 > c(n3,z1) | n3(z1)) = A(21).



Incremental Statistics

« Statistic at the j-th analysis a weighted average of data accrued
between analyses

NZ =N,—N,,

>

& £ &

Statistics computed on kth mcrement : 6, Z, P,

N k= _ k=l
9].— 7. =

J

/ 2 / * *
2 N6, 2N Z
k=1 =

N, JN,



Conditional Distribution

6A’;7IN;T~N[6?, V*j
N’

( 6-6,
2 ’1
K\/V/Nj )

P IN; ~ U(0,1)



Protecting Type | Error

« LD Fisher’s variance spending method

— Arbitrary hypotheses Hoj:ej = Goj

— Incremental test statistics Z;
— Allow arbitrary weights W; specified at stage j-1

J
2 AW Z;
— k=1
J
[T
k=1

* RA Fisher’'s combination of P values (Bauer & Kohne)

J
p=T17

Z

J




Unconditional Distribution

Under the null
— SDCT: Standard normal
— Bauer & Kohne: Sum of exponentials

Under the alternative
— Unknown unless prespecified adaptations



Approaches for Testing

 If modify sample size at second stage (Cui, Hung, & Wang)

~ ~ ~
*

N, =N, (Z1 ) Z, incrementa | statistic with N ,

~ * ~. HO
Z, = /ﬂz1 + /&Z2 ~ N(0,1)
N2 N2

« Equivalently, calculate Z statistic as usual and use different
critical value

-~ N [\7* ~ % =7 %
reject Hy & 7, = |17, + |27 >b(z, N}
N2 N2 |

~

b(Zl,N;): ;\7* xi (Zl—am_zl\E)+Zl\ﬁ
2 2 i




Sufficiency Principle

It is easily shown that a minimal sufficient statistic is (Z, N) at
stopping

All methods advocated for adaptive designs are thus not based
on sufficient statistics



Topics of Special Interest

* Proportional Hazards

— Sample size re-estimation
« General case and in presence of an extreme effect

— Surrogate information

* Nonproportional hazards
— Weighted logrank statistics
— Crossing survival curves



Proportional Hazards

Sample Size Re-estimation (SSRE)

Where am | going?

Some investigators desire to modify sample size more flexibly
than allowed with GST



Example

Adaptive Increase in Sample Size when Interim Results are Promising: A
Practical Guide with Examples

Cyrus R. Mehta!2, Stuart J. Pocock?

L Cytel Corporation, > Harvard School of Public Health, 3 London School of Hygiene and Tropical Medicine

SUMMARY

This paper discusses the benefits and limitations of adaptive sample size re-estimation for phase 3 confirmatory clinical
trials. Comparisons are made with more traditional fixed sample and group sequential designs. It is seen that the real
benefit of the adaptive approach arises through the ability to invest sample size resources into the trial in stages. The
trial starts with a small up-front sample size commitment. Additional sample size resources are committed to the trial
only if promising results are obtained at an interim analysis. This strategy is shown through examples of actual trials,
one in neurology and one in cardiology, to be more advantageous than the fixed sample or group sequential approaches
in certain settings. A major factor that has generated controversy and inhibited more widespread use of these methods
has been their reliance on non-standard tests and p-values for preserving the type-1 error. If, however, the sample size is
only increased when interim results are promising, one can dispense with these non-standard methods of inference.
Therefore, in the spirit of making adaptive increases in trial size more widely appealing and readily implementable we
here define those promising circumstances in which a conventional final inference can be performed while preserving the
overall type-1 error. Methodological, regulatory and operational issues are examined. Copyright (©) 2000 John Wiley &
Sons, Ltd.



Example Modification Plan
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Comparisons Unconditional Power

Table IV. Operating Characteristics of Fixed Sample and Adaptive Designs

Value of Fixed Sample Design Plan 4 (Adaptive)
i) Power | Expected SampleSize || Power | Expected Sample Size
1.6 61% 442 65% 499
1.7 66% 442 71% 498
1.8 T1% 442 75% 497
1.9 T6% 442 T9% 494
2.0 80% 442 83% 491

All Plan 4 results are based on 100,000 simulated trials




Comparisons Conditional Power

Table V. Operating Characteristics of the Fixed Sample and Adaptive Designs, Conditional on Interim

Outcome
Probability Power Conditional on Expected
Interim of Interim Outcome Sample Size
o Outcome Interim Outcome | Fixed Adaptive Fixed Adaptive
Unfavorable 36% 30% 30% 442 442
1.6 || Promising 23% 62% 82% 442 6R7
Favorable 1% 87% 87% 442 442
Unfavorable 32% 34% 34% 442 442
1.7 || Promising 23% 67% 85% 442 6]5
Favorable 45% 89% 89% 442 442
Unfavorable 29% 38% 38% 442 442
1.8 || Promising 23% 70% 88% 442 682
Favorable 49% 91% 91% 442 442
Unfavorable 26% 43% 43% 442 442
1.9 || Promising 22% 74% 920% 442 679
Favorable 52% 93% 93% 442 442
Unfavorable 23% 47% 47% 442 442
2.0 || Promising 21% 7% 92% 442 678
Favorable 56% 95% 95% 442 442
All results are based on 100,000 simulated trials




Adaptation to Gain Efficiency?

« (Consider adaptation merely to repower study

— “We observed a result that was not as good as we had
anticipated”

« All GST are within family of adaptive designs
— Don’t we have to be at least as efficient?

« Issues
— Unspecified adaptations
— Comparing apples to apples



Apples with Apples

Can adapting beat a GST with the same number of analyses?
— Fixed sample design: N=1
— Most efficient symmetric GST with two analyses
« N=0.5,1.18
« ASN = 0.6854
— Most efficient adaptive design with two possible N
« N=0.5and either 1.06 or 1.24
« ASN = 0.6831 ( 0.34% more efficient)
— “Most efficient” adaptive design with four possible N
« N =0.5and either 1.01,1.10, 1.17, or 1.31
« ASN = 0.6825 ( 0.42% more efficient)

Table 1: Average and Maximal Sample Sizes of Adaptive Designs in Setting 1

Number of Continnation Regions
1 2 3 4 5 6 7 8

ASN 0.6854 0.6831 0.6828 0.6825 0.6824 0.6824 0.6824 0.6824
% Reduction Ref 0.34% 0.38% 0.42% 0.43% 0.43% 0.44% 0.44%
Mazimal N 1.18 1.24 1.24 1.26 1.26 1.26 1.26 1.28



Apples with Apples (continued)

« GST with more analyses?
— Fixed sample design: N=1
— Most efficient symmetric GST with two analyses
* N=0.5,1.18
« ASN = 0.6854
— GST with same three analyses
* N=0.5,1.06 and 1.24
« ASN = 0.6666 ( 2.80% more efficient)
— GST with same five analyses
* N=0.5,1.01,1.10,1.17, or 1.31
« ASN = 0.6576 ( 4.20% more efficient)



Comments re Conditional Power

Many propose adaptations based on conditional /predictive power

Neither have good foundational motivation
— Frequentists should use Neyman-Pearson paradigm and consider
optimal unconditional power across alternatives

« And conditional/predictive power is not a good indicator in loss of
unconditional power

— Bayesians should use posterior distributions for decisions

Difficulty understanding conditional / predictive power scales can
lead to bad choices for designs



Comparisons of Designs

The example used here was a longitudinal study, rather than time
to event, though the same issues obtain

Statistical power

Sample size accrued

— With time to event, often all subjects have been accrued when
half the statistical information is not yet available

Calendar time

— Number of events is more a surrogate for savings in time
monitoring subjects and marketing time lost



Alternative Approaches

Table 1: Comparison of RCT Designs for Example 1

Hypothesized Treatment Effect

Design d=0 6=1.5 0=1.6 60=1.7 d=1.8 0=1.9 =20
Power
Fxd{42 2.5% 55.6% 61.1% 66.3% 71.3% 75.9% 80.0%
Fxd690 2.5% 74.8% 80.0% 84.5% 88.3% 91.4% 93.9%
GST694 25% 74 8% R0.0% 84 6% |88 4% 91 4% 93 9%
Adapt 2.5% 60.4% 65.8% 70.8% 75.4% 79.6% 83.4%
Frd}92 2.5% 60.2% 65.8% 71.0% 75.9% 80.2% 84.1%
Fut492 2.5% 59.8% 65.4% 70.6% 75.4% 79.8% 83.7%
OBF492 2.5% 59.6% 65.2% 70.4% 75.3% 79.6% 83.5%
Expected Number Accrued
Fxd4}42 442 442 442 442 442 442 442
Frd690 690 690 690 690 690 690 690
GST694 694 681 678 675 671 66T 662
Adapt 464 496 495 494 492 490 488
Frd}92 492 492 492 492 492 492 492
Fut492 468 488 489 490 490 490 491
OBF492 467 485 485 485 485 484 484




Alternative Approaches

Table 1: Comparison of RCT Designs for Example 1

Hypothesized Treatment Effect

Design 0=0 60=1.5 60=1.6 60=1.7 60=138 0=19 =10
Expected Number Completed
Fxd{42 442 442 442 442 442 442 442
Frd690 690 690 690 690 690 690 690
GST69 693 668 663 657 649 641 632
Adapt 464 496 495 494 492 490 488
Fxd}92 492 492 492 492 492 492 492
Fut492 353 472 475 478 481 483 485
OBF492 392 455 455 454 452 449 445
Expected Calendar Time (months)
Fxd{42 18.8 18.8 18.8 18.8 18.8 18.8 18.8
Frd690 25.9 25.9 25.9 25.9 25.9 25.9 25.9
GST694 26.0 25.3 - | 24.9 24.7 24.5 24.2
Adapt 19.4 20.3 20.3 20.3 20.2 20.1 20.1
Frd}92 20.2 20.2 20.2 20.2 20.2 20.2 20.2
Fut492 16.2 19.6 19.7 19.8 19.9 19.9 20.0
OBF492 16.1 19.1 19.1 19.1 19.0 19.0 18.8




Alternative Approaches

The authors plan for adaptation could increase sample size by
100%

Using their adaptive plan, the probability of continuing until a 25%
iIncrease in maximal sample size

— .064 under null hypothesis
— .162 if treatment effect is new target of 1.6
— .142 if treatment effect is old target of 2.0

By way of contrast

— A fixed sample test with 11% increase in sample size has same
power

— A group sequential test with 11% increase in maximal sample
size has same power and better ASN



Apparent Problem

The authors chose extremely inefficient thresholds for conditional
power

— Adaptation region 0.365 < CP_,, < 0.8

— From optimal test, 0.049 < CP_, < 0.8 is optimal

Of course, we do not always choose the most efficient designs

— O’Brien-Fleming designs are markedly inefficient for primary
endpoint, but do allow adequate sample size for safety and
secondary endpoints

But more careful evaluation can allow us to choose adaptations
that satisfy desired operating characteristics



The Cost of Planning Not to Plan

« Hypothesis testing of a null with fully adaptive trials
— Statistics: type | error is controlled
— Game theory: chance of “winning” with completely ineffective
therapy is controlled
— Science:
 Discrimination of clinically relevant hypothesis may be impaired
« May be ncertainty as to what the treatment has effect on

* Frequentist estimation: (Levin, Emerson, Emerson, 2012)

— lIdeally pre-specify the adaptive rule
« GST methods can be extended to adaptive sampling density
— When fully adaptive, Brannath, Mehta, Posch (2009) have
proposed a very clever method that works reasonably well.



Proportional Hazards

SSRE with Extreme Treatment Effects

Where am | going?

Design of a RCT is based on a variety of assumptions that may
not obtain in practice

Investigators then may have an interest in adjusting the RCT
design to better address the actual conditions



Motivation

Consider the design of an RCT that investigates prevention
strategies in HIV / AIDS

Our primary clinical endpoint is sero-conversion to HIV positive

We will randomize individuals 1:1 experimental treatment to
control



Recall

In the presence of time to event endpoint that is subject to
censoring, the most commonly used analyses are the logrank test
and the proportional hazards regression model (Cox regression)

When using PH regression with alternatives that satisfy the PH
assumption, statistical information is proportional to the number of
events
— We can separately consider number accrued and calendar time
of ending study

Sample size calculations thus return the number of events that
are necessary to obtain desired power
— There are multiple ways that we can obtain that number of events
as a function of
* Number and timing of accrued subjects
» Length of follow-up after start of study



Motivation

« Highly effective treatment and possibly low event rate

« HPTNO052: 2011 scientific breakthrough of the year

— Early vs Delayed ART is effective treatment in the prevention of
HIV-1 transmission

— Design: 188 events anticipated
» based on (Placebo: 13.2% vs Treatment: 8.3%)

— Blinded analysis: Total of 28 events
— Unblinded analysis: 27 from the delayed ART arm
— HR: 0.04 95% C1 0.01 - 0.27



Motivation

« Highly effective treatment and possibly low event rate

« Partners PrEP: 2012
— Three arm double-blind trial of daily oral tenofovir (TDF) and
emtricitabine/tenofovir (FTC/TDF)
* 1:1:1 randomization of 4578 serodiscordant couples
— Study halted 18 months earlier than planned due to demonstrated
effectiveness in reduction of HIV-1 transmission
« Of 78 infections, 18 in tenofovir, 13 in Truvada, 47 in control
« Reduction in risk of infection 62% (95% CIl 34-78%) in tenofovir,
73% (95% Cl 49-85%); p < 0.0001 vs control
— Special note: Placebo event rate was 1.99 per 100 PY rather than
planned 2.75 per 100 PY



Issues

* |n both of these trials the number of events observed was much
lower than had been anticipated

« A priori, there are two reasons observed event rates could be
lower than anticipated

— Lower event rate in the control arm that had been guessed

— Highly effective treatment leads to very few events in the
experimental treatment

 In retrospect, both of these trials had both of these problems



Possible Solutions

* Well-understood methods

— Wrong baseline event rate
« Extend planned follow-up time
« Live with lower power at planned calendar time EOS
« Adaptive sample size re-estimation based on blinded results

— Tradeoffs between accrual size and follow-up

— Highly effective therapy

» Group sequential design

 Less understood methods

— Adaptive sample size re-estimation based on blinded results
« Differentially revise maximum number of events and/or
accrual/follow-up based on interim estimates of treatment effect



Extending Time of Follow-Up

Under “information time” monitoring, this presents no statistical
iIssues when proportional hazards holds

— And “information time” monitoring is the usual standard in
prespecifying RCT design in the time to event setting, and we
would be supposed to do this

Sometimes, however, we are only willing to believe PH
assumption over some shorter time of follow-up

— National Lung Screening Trial

— Vaccine trials where need for boosters is not known

Always, calendar time is ultimately more costly than number of
patients
— Emerson SC, et al. considers tradeoffs between time and number
of patients



Accepting Lower Power

If the prespecified RCT design defined the maximal statistical
information according to calendar time, there is no statistical
Issue

Under “information time” monitoring, this represents an

unplanned change in the maximal statistical information

— When this decision is made without knowledge of the unblinded
treatment effect, regulatory agencies will usually allow the
reporting of a “conditional analysis”

— But the sponsor will need to be able to convincingly establish that
it was still blinded to treatment effect

Ethics of performing a grossly underpowered study must be
considered
» The predictive value of a “positive” study is greatly reduced



Blinded Adaptation of Sample Size

 If the prespecified RCT design defined the maximal statistical
information according to number of events, then we must be
talking about blinded adaptation of accrual size

— Under PH distribution with PH analysis, no statistical issue

« Under “calendar time” monitoring, this represents an unplanned
change in the maximal statistical information
— When this decision is made without knowledge of the unblinded

treatment effect, regulatory agencies will usually allow the
reporting of a “conditional analysis”

— But the sponsor will need to be able to convincingly establish that
it was still blinded to treatment effect

— This is likely only credible if you were delaying end of study



Group Sequential Design

Instead of a fixed sample design, pre-specify a group sequential
design with, say, 10 possible analyses
— Example: level 0.025, 90% power to detect HR=0.6

segDesign (prob.model = "hazard", alt.hyp = 0.6, nbr.an = 10, power = 0.9)
PROBABILITY MODEL and HYPOTHESES:
Theta is hazard ratio (Treatment : Comparison)
One—-sided hypothesis test of a lesser alternative:
Null hypothesis : Theta >= 1.0 (size = 0.025)
Alternative hypothesis : Theta <= 0.6 (power = 0.900)

(Emerson & Fleming (1989) symmetric test)
STOPPING BOUNDARIES: Sample Mean scale
Efficacy Futility

Time 1 (NEv= 17.47) 0.0454 11.8598
Time 2 (NEv= 34.95) 0.2132 2.5280
Time 3 (NEv= 52.42) 0.3568 1.5101
Time 4 (NEv= 69.90) 0.4617 1.1672
Time 5 (NEv= 87.37) 0.5389 1.0000
Time 6 (NEv= 104.85) 0.5974 0.9021
Time 7 (NEv= 122.32) 0.6430 0.8381
Time 8 (NEv= 139.79) 0.6795 0.7931
Time 9 (NEv= 157.27) 0.7093 0.7597
Time 10 (NEv= 174.74) 0.7341 0.7341



Group Sequential Design

« Stopping boundaries, stopping probabilities
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Group Sequential Design

Using this example, we see that if the true HR was 0.4 or less, we
are virtually assured of stopping at the 4" analysis or earlier

While the maximal number of events was 175, the 4t analysis
occurs with 70 events.

Suppose, a slow accrual of events is due solely to a highly
effective treatment

— Placebo has the planned event rate, Experimental treatment has
extremely low event rate

Relatively frequent monitoring will cause early termination long
before the maximal event size needs to be observed

We examine how calendar time might be affected



Calendar Time: Half Event Rate

« Stopping probabilities under planned event rate

9 Interim analysls; 90% Power; HR 0.634
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Incorporating Lower Event Rates

We have not totally addressed problems that might arise with
lower baseline event rates in the control group

— If the treatment effect is not extreme, then the GSD might dictate
that we proceed to the maximal sample size

One approach is to build in an “escape clause” in the pre-
specification of the RCT design

— “The study will definitely terminate when we have 412 events or
at 78 months after start of RCT, whichever comes first.”



Calendar Time: Half Event Rate

« If control group event rate is halved
— Power is affected relatively little

9 Interlm analysls; 20°% Power; HR 0.634
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The Escape Clause

« Prior to pre-specified maximal calendar time, perform group
sequential test as usual

Calendar Time (Interim analysis at 48 months)
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The Escape Clause

When the maximum calendar time is attained, modify the GST
according to a constrained boundary approach / error spending

function

Calendar Time (Escape Clause at 78 months)
39 66 78

HRmm = 0.5; Rate=2/4
HRena =0.734 | Zeypa = —2.456

Futility

Z statistic

Hazard Ratio

® Observed (unblindef
® Future Observed

0.35
Efficacy4 Constrained
0.11 Lod Co_m_i'rtional
) © Ornginal
T T T T T T
88 110 132 154 176 198 220
Number of Events

Terminate for efficacy at 78 months



Unblinded Adaptation

« With unblinded adaptation, we can try to discriminate between
— Strong treatment effect =» choose lower maximal event size
— Low control event rate =» accrue more information

« We will have to decide whether to do adaptation prior to stopping
accrual or whether to restart accrual
— Early adaptation =» Less precise estimates of treatment effect
— Late adaptation =» Have to restart accrual



What if Unblinded?

When the maximum calendar time is attained, have to adjust the
critical value according to the conditional error (CHW) or similar

Calendar Time (Unblinding at 48 + Escape Clause at 78)
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Terminate for at 78 months (More conservative critical value)



Simulations

HR=0.5; A/4 HR=0.6343; A /2
Continue Restart Continue Restart

Pres Cond Pres Cond Pres Cond Pres Cond
1750 68.69 - 68.60 - 67.55 - B67.55 -
3500 00.08 - 80.27 - 88.40 - T70.47 -
Fully E".'tlinvduedi 00.08 BO.72 80.27 76.88 87.61 B7.60 79.47 79.51
Avg Rate (BD?’B} 86.33 B5.74 T8.27 73.91 84.63 84.59 T7.55 T7.36
Rate Diff {BG‘%] 88.09 B86.52 B80.27 7¥5.25 86.21 B5.69 79.31 T78.84
HR (80%) 87.55 86.31 80.10 75.07 86.10 85.58 70.35 78.77

» GSD (fully blinded procedures) almost efficient to the best
prespecified adaptive design in context of Aruth < APlanned

» However, when integrity of the trial may be compromised and
adjustments have to be used (CHW), we lose power

» The inefficient weighting scheme of CHW results in substantial loss
of power particularly with late adaptations.



Final Comments

« The group sequential design definitely protects us from the
extreme treatment effect

* In general, the group sequential design protected us from
problems so long as the event rate was at least 25% of the
planned rate

« There was definitely a price to pay when using the adaptive
design
— If the sponsor has access to unblinded results, adjustment for the
adaptive analysis must be made
— There is no allowance for the “escape clause” approach
— Even more difficulty if non PH is possible



Proportional Hazards

Availability of Surrogate Data

Where am | going?
Methods for preserving type 1 errors presume an accurate
representation of the statistical information available at the
adaptive analysis

With time to event data (as well as other longitudinal
endpoints), however, we may have information on surrogate
prognostic endpoints.
To the extent that those surrogate endpoints inform the
adaptation of the clinical trial, we may not be adequately
preserving the type 1 error



Special Issues

« A basic premise of adaptive methods is that we can control the
type 1 error, even when we have re-designed the trial based on
interim estimates of the treatment effect

« Two special scenarios that we need to examine more closely
— Do the interim statistics used in adjusting critical values truly
contain all the information we had at our disposal?
— Have we quantified the information growth correctly when using
those statistics?



Approaches for Testing

 If modify sample size at second stage (Cui, Hung, & Wang)

~ ~ ~
*

N, =N, (Z1 ) Z, incrementa | statistic with N ,

~ * ~. HO
Z, = /ﬂz1 + /&Z2 ~ N(0,1)
N2 N2

« Equivalently, calculate Z statistic as usual and use different
critical value

-~ N [\7* ~ % =7 %
reject Hy & 7, = |17, + |27 >b(z, N}
N2 N2 |

~

b(Zl,N;): ;\7* xi (Zl—am_zl\E)+Zl\ﬁ
2 2 i




Data at j-th Analysis: Immediate Outcome

Subjects accrued at different stages are independent
Statistics as weighted average of data accrued between analyses

At kth mterim analysis Incrementa | Cumulative
Sample size (stat info) N, N,=N,+-+N,
Baseline data X: Xk 2(21*’---’2:)
1° outcome data ak* Y, K= (ﬁ*’--'j:)
2° outcome data qk* Wk = (Wl ’W:)
Using NZ,XZ,Y::
SR
Estimated treatment effect &, =6, (N D ¢ Z,f:) 6, = %
Normalized Z statistic Z, zZ == T

Fixed sample P value P



Conditional Distn: Immediate OQutcomes

- Sample size N;"and parameter 6, can be adaptively chosen based
on data from prior stages 1,...,j-7

— (Most often we choose 6, = 6 with immediate data)

9]. | N ~N£9J., N"fj j
J
5 o Conditiona 1 distributi ons
Z.IN, ~N|—= o =, 1 are totally independen t
V(6N .
JIEE under the null hypothesis

H

P'IN;~U(0,1)



Estimands by Stage: Time to Event

In time to event data, a common treatment effect across stages is
reasonable under some assumptions

— Strong null hypothesis (exact equality of distributions)

— Strong parametric or semi-parametric assumptions

The most common methods of analyzing time to event data will
often lead to varying treatment effect parameters across stages
— Proportional hazards regression with non proportional hazards

data
— Weak null hypotheses of equality of summary measures (e.g.,
medians, average hazard ratio)
« E.g., noninferiority trials



survival Probability

Impact on Noninferiority Trials

Weak null hypothesis is of greatest interest
— Standard superior to placebo
— Comparator (on average) equivalent to placebo

10

— Placebo
— Standard

—_— Comparator
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Conditional Distn: Immediate OQutcomes

- Sample size N;"and parameter 6, can be adaptively chosen based
on data from prior stages 1,...,j-7

— (Most often we choose 6, = 6 with immediate data)

9]. | N ~N£9J., N"fj j
J
5 o Conditiona 1 distributi ons
Z.IN, ~N|—= o =, 1 are totally independen t
V(6N .
JIEE under the null hypothesis

H

P'IN;~U(0,1)



Protecting Type | Error

« Test based on weighted averages of incremental test statistics
— Allow arbitrary weights W, specified by stage j-1

Z Wk ZZ [J]Hoj
Z=" ~  N(0,1)
2 W,
k=1
YW, o (-B) A
7 =4 ~  N(0,1)




Complications: Longitudinal Outcomes

« Bauer and Posch (2004) noted that in the presence of incomplete
data, partially observed outcome data may be informative of the
later contributions to test statistics

— E.g., tumor progression and overall survival

« This can be a large problem if we allow adaptation to a much
smaller sample size
— Data quite often becomes available between database lock and a
DSMB meetin



Complications: Longitudinal Outcomes

+ We need to make distinctions between
— Independent subjects accrued at different stages

— Statistical information about the primary outcome available at
different analyses

« Owing to delayed observations, contributions to the primary test
statistic at the k-th stage may come from subjects accrued at prior
stages

— Baseline and secondary outcome data available at prior analyses
on those subject may inform the value of future data



Data at j-th Analysis: Delayed Outcome

« Subjects accrued at different stages are independent
« Some data is “missing”

At kth mterim analysis Incrementa 1 Cumulative
Sample size (stat info) N, N,=N,+---+N,
Baseline data X: Xk :()?1*,...,)2:)
1° outcome data (msng, observed) Y™, A

2° outcome data W: Wk = (v‘_}lv‘_}k)

k

Estimated treatment effect 6, =6, (N X Z,ﬁ*o,fkﬁfl) 6, :_jle
k

® sk
A
J J

Normalized Z statistic Z, z, =4 -
k

k
2 4N

Fixed sample P value P,



Major Problem: Delayed Outcome

»  When sample size N, and parameter 6, adaptively chosen based
on data from prior stages 1,...,j-1, some aspect of the “future”
contributions may already be known

At kth imterim analysis Incrementa | Cumulative
. * * iy e %0 ~r M
Sample size N :Nk(Nk—l’Xk—l’Wk—l’Yk—l’Yk—z?) Ny
> N;'fé”f
. AT AT * * ~2%0 oM A i=1
Estimated treatment effect 6, =6, (N XY, ,Yk_l) 6, = ’N—k

Impact : (One statistici an's mean is another statistici an's variance)

corr(Y," W) #0orcorr(Y," ,X)#0 = 6, IN, notindep of &, IN;,,

é,f | N, is potentiall y biased for 6, and not approximat ely normal



Potential Solutions

« Jenkins, Stone & Jennison (2010)
— Only use data available at the k-th stage analysis

* Irle & Schaefer (2012)

— Prespecify how the full k-th stage data will eventually contribute to
the estimate of 6,

« Magirr, Jaki, Koenig & Posch (2014, arXiv.org)

— Assume worst case of full knowledge of future data and sponsor
selection of most favorable P value



Comments: Burden of Proof Dilemma

There is a contradiction of standard practices when viewing the
incomplete data
— We would never accept the secondary outcomes as validated
surrogates
— But we feel that we must allow for the possibility that the

secondary outcomes were perfectly predictive of the eventual
data

We are in some sense preferring mini-max optimality criteria over
a Bayes estimator



Comments: Impact on RCT Design

The candidate approaches will protect the type 1 error, but the
impact on power (and PPV) is as yet unclear

Weighted statistics are not based on minimal sufficient statistics

— But greatest loss in efficiency comes from late occurring adaptive
analyses with large increases in maximal statistical information

— Time to event will not generally have this

The adaptation is based on imprecise estimates of the estimates
that will eventually contribute to inference

We may have to eventually either
— lgnore some observed data (JS&S, 1&S), or
— Adjust for worst case multiple comparisons



Nonproportional Hazards

Weighted Logrank Statistics

Where am | going?

Early phase clinical trials sometimes show treatment effects
that are more pronounced early or more pronounced late

Weighted versions of the logrank statistic have been proposed
to accentuate those portions of the survival curve that are most
plausibly different



Weighted Logrank Statistics

« Choose additional weights to detect anticipated effects

n,

W(B)= w3, o2,

Ot

ind

n, =N, xPr(T' >t,Cens>t)= NS, (¢)xPr(Cens > t)
G”” Family of weighted logrank statistics :

w(t)=[8.()f 1= 8.0)f




What if No Adjustment?

Many methods for adaptive designs seem to suggest that there is
no need to adjust for the adaptive analysis if there were no
changes to the study design

However, changes to the censoring distribution definitely affect
— Distribution-free interpretation of the treatment effect parameter
— Statistical precision of the estimated treatment effect
— Type 1 error when testing a weak null (e.g., noninferiority)

Furthermore, “less understood” analysis models prone to inflation
of type 1 error when testing a strong null

— Information growth with weighted log rank tests is not always
proportional to the number of events



“Intent to Cheat” Zone

At interim analysis, choose range of interim estimates that lead to
increased accrual of patients

How bad can we inflate type 1 error when holding number of
events constant?

Logrank test under strong null: Not at all

Weighted logrank tests: Up to relative increase of 20%
— Sequela of true information growth

 Information growth not linear in number of events
— Power largely unaffected, so PPV decreases
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Percentage of Sig Trials

5

4

Function of definition of the adaptation zone

Inflation of Type 1 Error

— Varies according to weighted log rank test
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Comments re WLRE

Hence, unblinded access to trial results can allow an investigator
to inflate the type 1 error

This might not be noticeable to a naive audience if the number of
events stays constant

Proper handling of information growth can fix this
— However, description of the information growth is often difficult
with weighted log rank statistics



Nonproportional Hazards

Crossing Survival Curves

Where am | going?

Recently some authors have proposed sequential tests to be
used in the presence of crossing survival curves

This example illustrates many of the difficulties inherent in
applying time to event analyses



A Further Example

BioMmETRICS 64, T33-T40 DOI: 10.1111/j.1541-0420.2007.00975.x
September 2008

Comparing Treatments in the Presence of Crossing Survival Curves:
An Application to Bone Marrow Transplantation

Brent R. Logan,” John P. Klein, and Mei-Jie Zhang

Division of Biostatistics, Medical College of Wisconsin, 8701 Watertown Plank Road,
Milwaukee, Wisconsin 53226, U.S.A.

*email: blogan@mew.edu

SuMMARY. In some clinical studies comparing treatments in terms of their survival curves, researchers
may anticipate that the survival curves will cross at some point, leading to interest in a long-term survival
comparison. However, simple comparison of the survival curves at a fixed point may be inefficient, and use
of a weighted log-rank test may be overly sensitive to early differences in survival. We formulate the problem
as one of testing for differences in survival curves after a prespecified time point, and propose a variety of
techniques for testing this hypothesis. We study these methods using simulation and illustrate them on a
study comparing survival for autologous and allogeneic bone marrow transplants.

Key worps: Censored data; Crossing hazard functions; Generalized linear models; Log-rank test; Pseudo-
value approach; Weibull distribution; Weighted Kaplan-Meier statistic.



Logan, et al.: Motivation
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Figure 1. Kaplan Meier estimate of DFS for follicular lym-
phoma example, by stem cell source.



Logan, et al.: Comparisons

Logrank starting from time 0
Weighted logrank test (rho=0, gamma=1) from time 0
Survival at a single time point after time ¢,
Logrank starting from time ¢,
Weighted area between survival curves (restricted mean)
— Most weight after time t,
Pseudovalues after time ¢,
Combination tests (linear and quadratic)
— Compare survival at time {,
— Compare hazard ratio after time t,



Logan, et al.: Simulations

Comparing Treatments with Crossing Survival Curves
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Figure 2. Survival curves for treatment (S1) and control (S0) groups used in simulations. Curves for the null hypoth
simulations are shown in (a) for each of the four scenarios, and curves for the alternative hypothesis simulations are show
(b)—(f) for the five scenarios.



Logan, et al.: Results

Table 2
Average rejection rates for 11 tests adjusted using ANOVA for
censoring pattern. Rejection rates given by scenario using
model (12). The last two rows refer to the log-rank (LR) test
and weighted log-rank ( WLR) tests starting at time 0. t; = 24.

Scenario

Method Equation E F G H I

Zeorn(24) (1) 624 153 21.1 47 218
ZciL(48) (1) 70.1 329 65.1 215 6.8
Zcn(72) (1) 71.2 445 851 46.1 259
Zwkwm(to) (2) "5 8 350 663 203 6.0
Zir(to) (4) 30.7 365 854 717 826
Zors(to) (5) TAT 439 841 434 236
Zspp(to) (6) 76.9 402 748 206 107
x> (to) (7) 67.2 36.7 83.1 61.1 810
Log rank 78.0 289 470 8.6 222

W el%hted log rank 64.7 49.7 938 70,0 64.6




Logan, et al.: Critique

In considering the combination tests, crossing survival curves
might have

— No difference at time t, (perhaps we are looking for equivalence)
— Higher hazard after time t,

Presumably, the authors are interested in the curve that is higher

at longer times post treatment

— The authors did not describe how to use their test in a one-sided
setting

PROBLEM: The authors do not seem to be considering the
difference between crossing survival curves and crossing hazard
functions
— Higher hazard over some period of time does not imply lower
survival curves



Logan, et al.: Critique

 Additional scenarios that are of interest
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Logan, et al.: Critique
« How might a naive investigator use this test?

— If the observed survival curves cross and the hazard is
significantly higher after that point, the presumption might be that
we have significant evidence that the group with higher hazard at
later times has worse survival at those times

« “But it would be wrong” (Richard Nixon, March 21, 1973)

« We can create a scenario in which
— Survival curves are truly stochastically ordered S,(t) > Sg(t) V>0

— The probability of observing estimated curves that cross at f, is
arbitrarily close to 50%

— The probability of obtaining statistically significant higher hazards
for group A after t,is arbitrarily close to 100%

— Thus, the one-sided type 1 error is arbitrarily close to 50%



Relevance to Today

Even experts in survival analysis sometimes lose track of the way
that time to event analyses behave, relative to our true goals
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Final Comments

There is still much for us to understand about the implementation
of adaptive designs

Most often the “less well understood” part is how they interact
with particular data analysis methods

— In particular, the analysis of censored time to event data has
many scientific and statistical issues

How much detail about accrual patterns, etc. do we want to have
to examine for each RCT?

How much do we truly gain from the adaptive designs?

— (Wouldn't it be nice if statistical researchers started evaluating
their new methods in a manner similar to evaluation of new
drugs?)



Bottom Line

« There is no substitute for planning a study in advance
— At Phase 2, adaptive designs are clearly useful to better control
parameters leading to Phase 3
* Most importantly, learn to take “NO” for an answer

— At Phase 3, it is less clear whether much is gained from
unblinded adaptation

» And scientific / statistical credibility can suffer

« “Opportunity is missed by most people because it is dressed
in overalls and looks like work.” -- Thomas Edison

 In clinical science, it is the steady, incremental steps that are
likely to have the greatest impact.



Really Bottom Line

“You better think (think)
about what you're
trying to do...”

-Aretha Franklin, “Think”



