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Where Am I Going?

Overview and Organization of the Course
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Science and Statistics

• Statistics is about science

– (Science in the broadest sense of the word)

• Science is about proving things to people

– (The validity of any proof rests solely on the willingness of the 

audience to believe it)

• In RCT, we are trying to prove the effect of some treatment

– What do we need to consider as we strive to meet the burden of 

proof with adaptive modification of a RCT design?

• Does time to event data affect those issues?

– Short answer: No, UNLESS subject to censoring

– So, true answer: Yes.
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Overview: Time-to-Event

• Many confirmatory phase 3 RCTs compare the distribution of time 

to some event (e.g., time to death or progression free survival). 

• Common statistical analyses: Logrank test and/or PH regression 

• Just as commonly: True distributions do not satisfy PH

• Providing users are aware of the nuances of those methods, such 

departures need not preclude the use of those methods



55

Overview: Sequential, Adaptive RCT

• Increasing interest in the use of sequential, adaptive RCT designs

• FDA Draft guidance on adaptive designs

– “Well understood” methods

• Fixed sample

• Group sequential 

• Blinded adaptation

– “Less well understood” methods

• Adaptive sample size re-estimation

• Adaptive enrichment

• Response-adaptive randomization

• Adaptive selection of doses and/or treatments
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Overview: Premise

• Much of the concern with “less well understood” methods has to 

do with “less well understood” aspects of survival analysis in RCT

• Proportional hazards holds under strong null

– But weak null can be important (e.g., noninferiority)

• Log linear hazard may be close to linear in log time over support 

of censoring distribution � approximately Weibull

– A special case of PH only when shape parameter is constant

• Hazard ratio estimate can be thought of a weighted time-average 

of ratio of hazard functions

– But in Cox regression, weights depend on censoring distribution

– And in sequential RCT, censoring distribution keeps changing
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Course Organization

• Overview: 

– What do we know about survival analysis?

– RCT setting

• Group sequential methods with time-to-event endpoints

– Evaluation of RCT designs

– Monitoring: implementation of stopping rules

• Adaptive methods for sample size re-estimation with PH

– Case study: Low event rates, extreme effects

• Time to event analyses in presence of time-varying effects

• Special issues with adaptive RCT in time-to-event analyses
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Overview

What do we know about time-to-event analyses?

Where am I going?

I present some examples where the behavior of standard 

analysis methods for time-to-event data are not well understood
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Time to Event

• In time to event data, a common treatment effect across stages is 

reasonable under some assumptions

– Strong null hypothesis (exact equality of distributions)

– Strong parametric or semi-parametric assumptions

• The most common methods of analyzing time to event data will 

often lead to varying treatment effect parameters across stages

– Proportional hazards regression with non proportional hazards 

data

– Weak null hypotheses of equality of summary measures (e.g., 

medians, average hazard ratio)
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Right Censored Data

• Incompete data: Some events have not occurred at time of data 

analysis

• Notation:
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Hypothetical Example: Analysis

• Choice of summary measure

– Survival at fixed point in time

– Median, other quantiles

– Mean (or restricted mean)

– Hazard ratio (or weighted average of hazard ratio over time)

• Choice of methods

– Parametric, semiparametric, nonparametric
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Hypothetical Example: Setting

• Consider survival with a particular treatment used in renal dialysis 

patients

• Extract data from registry of dialysis patients

• To ensure quality, only use data after 1995

– Incident cases in 1995: Follow-up 1995 – 2002 (8 years)

– Prevalent cases in 1995: Data from 1995 - 2002

• Incident in 1994: Information about 2nd – 9th year

• Incident in 1993: Information about 3rd – 10th year

• …

• Incident in 1988: Information about 8th – 15th year
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Hypothetical Example: KM Curves
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Who Wants To Be A Millionaire?

• Proportional hazards analysis estimates a Treatment : Control

hazard ratio of

A:      2.07   (logrank P = .0018)

B:      1.13   (logrank P = .0018)

C:      0.87   (logrank P = .0018)

D:      0.48   (logrank P = .0018)

– Lifelines: 

• 50-50? Ask the audience? Call a friend?
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Who Wants To Be A Millionaire?

• Proportional hazards analysis estimates a Treatment : Control

hazard ratio of

B:      1.13   (logrank P = .0018)

C:      0.87   (logrank P = .0018)

– Lifelines: 

• 50-50? Ask the audience? Call a friend?
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Hypothetical Example: KM Curves
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Who Wants To Be A Millionaire?

Proportional hazards analysis estimates a Treatment : Control

hazard ratio of

B:      1.13   (logrank P = .0018)

The weighting using the risk sets made no scientific sense

– Statistical precision to estimate a meaningless quantity is 

meaningless
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Partial Likelihood Based Score

• Logrank statistic
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Overview

RCT setting

Where am I going?

It is important to keep in mind the overall goal of RCTs

I briefly describe some issues that impact our decisions in the 

design, monitoring, and analysis of RCTs
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Overall Goal: “Drug Discovery”

• More generally 

– a therapy / preventive strategy or diagnostic / prognostic 

procedure

– for some disease

– in some population of patients

• A sequential, adaptive series of experiments to establish

– Safety of investigations / dose                (phase 1)

– Safety of therapy                                     (phase 2)

– Measures of efficacy                               (phase 2)

• Treatment, population, and outcomes

– Confirmation of efficacy                          (phase 3)

– Confirmation of effectiveness                 (phase 3, post-marketing)
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Science: Treatment “Indication”

• Disease

– Therapy: Putative cause vs signs / symptoms

• May involve method of diagnosis, response to therapies

– Prevention / Diagnosis: Risk classification

• Population

– Therapy: Restrict by risk of AEs or actual prior experience

– Prevention / Diagnosis: Restrict by contraindications

• Treatment or treatment strategy

– Formulation, administration, dose, frequency, duration, ancillary 

therapies

• Outcome

– Clinical vs surrogate; timeframe; method of measurement
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Evidence Based Medicine

• Decisions about treatments should consider PICO

– Patient (population)

– Intervention

– Comparators

– Outcome

• There is a need for estimates of safety, effect
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Clinical Trials

• Experimentation in human volunteers

• Investigates a new treatment/preventive agent

– Safety: 

• Are there adverse effects that clearly outweigh any potential 

benefit?

– Efficacy: 

• Can the treatment alter the disease process in a beneficial way?

– Effectiveness: 

• Would adoption of the treatment as a standard affect morbidity / 

mortality in the population?
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Carrying Coals to Newcastle

• Wiley Act (1906)

– Labeling

• Food, Drug, and Cosmetics Act of 1938

– Safety

• Kefauver – Harris Amendment (1962)

– Efficacy / effectiveness
• " [If] there is a lack of substantial evidence that the drug will have the effect ... 

shall issue an order refusing to approve the application. “

• “...The term 'substantial evidence' means evidence consisting of adequate and 

well-controlled investigations, including clinical investigations, by experts 

qualified by scientific training”

• FDA Amendments Act (2007)

– Registration of RCTs, Pediatrics, Risk Evaluation and Mitigation 

Strategies (REMS)
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Medical Devices

• Medical Devices Regulation Act of 1976

– Class I: General controls for lowest risk

– Class II: Special controls for medium risk - 510(k)

– Class III: Pre marketing approval (PMA) for highest risk
• “…valid scientific evidence for the purpose of determining the safety or 

effectiveness of a particular device … adequate to support a determination that 

there is reasonable assurance that the device is safe and effective for its 

conditions of use…”

• “Valid scientific evidence is evidence from well-controlled investigations, partially 

controlled studies, studies and objective trials without matched controls, well-

documented case histories conducted by qualified experts, and reports of 

significant human experience with a marketed device, from which it can fairly 

and responsibly be concluded by qualified experts that there is reasonable 

assurance of the safety and effectiveness…”

• Safe Medical Devices Act of 1990

– Tightened requirements for Class 3 devices
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Clinical Trial Design

• Finding an approach that best addresses the often competing 

goals: Science, Ethics, Efficiency

– Basic scientists: focus on mechanisms

– Clinical scientists: focus on overall patient health

– Ethical: focus on patients on trial, future patients

– Economic: focus on profits and/or costs

– Governmental: focus on safety of public: treatment safety, 

efficacy, marketing claims

– Statistical: focus on questions answered precisely 

– Operational: focus on feasibility of mounting trial
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Sequential RCT

• Ethical and efficiency concerns can be addressed through 

sequential sampling

• During the conduct of the study, data are analyzed at periodic 

intervals and reviewed by the DMC

• Using interim estimates of treatment effect decide whether to 

continue the trial

• If continuing, decide on any modifications to 

– scientific / statistical hypotheses and/or

– sampling scheme
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Design: Distinctions without Differences

• There is no such thing as a “Bayesian design”

• Every RCT design has a Bayesian interpretation

– (And each person may have a different such interpretation)

• Every RCT design has a frequentist interpretation

– (In poorly designed trials, this may not be known exactly)

• I focus on the use of both interpretations

– Phase 2: Bayesian probability space

– Phase 3: Frequentist probability space

– Entire process: Both Bayesian and frequentist optimality criteria
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Application to Drug Discovery

• We consider a population of candidate drugs

• We use RCT to “diagnose” truly beneficial drugs

• Use both frequentist and Bayesian optimality criteria

– Sponsor: 

• High probability of adopting a beneficial drug  (frequentist power)

– Regulatory:

• Low probability of adopting ineffective drug       (freq type 1 error)

• High probability that adopted drugs work     (posterior probability)

– Public Health                   (frequentist sample space, Bayes criteria)

• Maximize the number of good drugs adopted

• Minimize the number of ineffective drugs adopted
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Frequentist vs Bayesian: Bayes Factor

• Frequentist and Bayesian inference truly complementary

– Frequentist: Design so the same data not likely from null / alt

– Bayesian: Explore updated beliefs based on a range of priors

• Bayes rule tells us that we can parameterize the positive 

predictive value by the type I error and prevalence

– Maximize new information by maximizing Bayes factor

– With simple hypotheses:
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Adaptive Sampling: General Case

• At each interim analysis, possibly modify statistical or scientific 

aspects of the RCT

• Primarily statistical characteristics 

– Maximal statistical information  (UNLESS: impact on MCID)

– Schedule of analyses               (UNLESS: time-varying effects)

– Conditions for stopping            (UNLESS: time-varying effects)

– Randomization ratios                (UNLESS: introduce confounding)

– Statistical criteria for credible evidence

• Primarily scientific characteristics

– Target patient population (inclusion, exclusion criteria)

– Treatment (dose, administration, frequency, duration)

– Clinical outcome and/or statistical summary measure
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FDA Guidance on Adaptive RCT Designs

• Distinctions by role of trial

– “Adequate and well-controlled” (Kefauver-Harris wording)

– “Exploratory”

• Distinctions by adaptive methodology

– “Well understood”

• Fixed sample design

• Blinded adaptation

• Group sequential with pre-specified stopping rule

– “Less well understood”

• “Adaptive” designs with a prospectively defined opportunity to 

modify specific aspects of study designs based on review of 

unblinded interim data

– “Not within scope of guidance”

• Modifications to trial conduct based on unblinded interim data 

that are not prospectively defined
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FDA Concerns

• Statistical errors: Type 1 error; power

• Bias of estimates of treatment effect

– Definition of treatment effect

– Bias from multiplicity

• Information available for subgroups, dose response, secondary 

endpoints

• Operational bias from release of interim results

– Effect on treatment of ongoing patients

– Effect on accrual to the study

– Effect on ascertainment of outcomes
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Group Sequential Designs

• Perform analyses when sample sizes N1. . . NJ

– Can be randomly determined

• At each analysis choose stopping boundaries

– aj < bj < cj < dj

• Compute test statistic Tj=T(X1. . . XNj)

– Stop if      Tj < aj (extremely low)

– Stop if   bj < Tj < cj (approximate equivalence)

– Stop if      Tj > dj (extremely high)

– Otherwise continue 

• Boundaries chosen to protect 2 of 3 operating characteristics

– Type 1 error, power

– Type 1 error, power, maximal sample size
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Spectrum of Boundary Shapes

• All of the rules depicted have the same type I error and power to 

detect the design alternative
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RCT Design to Address Variability

• At the end of the study we perform frequentist and/or Bayesian 

data analysis to assess the credibility of clinical trial results

– Estimate of the treatment effect

• Single best estimate

• Precision of estimates

– Decision for or against hypotheses

• Binary decision

• Quantification of strength of evidence
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Measures of Precision

• Estimators are less variable across studies

– Standard errors are smaller

• Estimators typical of fewer hypotheses

– Confidence intervals are narrower

• Able to statistically reject false hypotheses

– Z statistic is higher under alternatives
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Notation
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Std Errors: Key to Precision

• Greater precision is achieved with smaller standard errors
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Ex: Difference of Indep Means
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Ex: Hazard Ratios

• With noninformative censoring, proportional hazards

– Statistical information involves probability of censoring
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Time to Event Analyses

• Sample size computation usually presumes PH

– Perhaps attenuation of effect due to cross-over

– Perhaps precision gained by deattenuating HR with adjustment 

for prognostic baseline variables

• Formula leads to number of events

• Accrual size based on

– Control event rate

– Hypothesized treatment effect (null vs alternative)

– Accrual time

– Follow-up after accrual ends

– (Censoring due to loss to follow-up?)
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Sample Size Determination

• Based on sampling plan, statistical analysis plan, and estimates 

of variability, compute

– Sample size that discriminates hypotheses with desired power, 

OR

– Hypothesis that is discriminated from null with desired power 

when sample size is as specified, or

OR

– Power to detect the specific alternative when sample size is as 

specified
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Sample Size Computation
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When Sample Size Constrained

• Often (usually?) logistical constraints impose a maximal sample 

size

– Compute power to detect specified alternative

– Compute alternative detected with high power
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Increasing Precision

• Options

– Increase sample size

• Time to event: Accrue more patients

– Decrease V

• Improve reliability of measurements

– Time to event: Decrease probability of censoring

• Alter study design (e.g., cross-over)

• (Alter eligibility to decrease heterogeneity)

• (Alter clinical endpoint)

– (Decrease confidence level)
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Evaluation of Designs

• Process of choosing a trial design

– Define candidate design

• Usually constrain two operating characteristics

– Type I error, power at design alternative

– Type I error, maximal sample size

– Evaluate other operating characteristics

• Different criteria of interest to different investigators

– Modify design

– Iterate
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Collaboration of Disciplines

Discipline Collaborators Issues

Scientific
Epidemiologists

Basic Scientists

Clinical Scientists

Hypothesis generation

Mechanisms

Clinical benefit

Clinical
Experts in disease / treatment

Experts in complications

Efficacy of treatment

Adverse experiences

Ethical Ethicists
Individual ethics

Group ethics

Economic
Health services

Sponsor management

Sponsor marketers

Cost effectiveness

Cost of trial / Profitability

Marketing appeal

Governmental Regulators
Safety

Efficacy

Statistical Biostatisticians
Estimates of treatment effect

Precision of estimates

Operational
Study coordinators

Data management

Collection of data 

Study burden

Data integrity
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Which Operating Characteristics

• The same regardless of the type of stopping rule 

• Frequentist power curve

– Type I error (null) and power (design alternative)

• Sample size requirements

– Maximum, average, median, other quantiles

– Stopping probabilities

• Inference at study termination (at each boundary)

– Frequentist  or Bayesian (under spectrum of priors)

• (Futility measures

– Conditional power, predictive power)
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Efficiency / Unconditional Power

• Tradeoffs between early stopping and loss of power

Boundaries                      Loss of Power             Avg Sample Size 
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At Design Stage

• In particular, at design stage we can know 

– Conditions under which trial will continue at each analysis

• Estimates

» (Range of estimates leading to continuation)

• Inference

» (Credibility of results if trial is stopped) 

• Conditional and predictive power

– Tradeoffs between early stopping and loss in unconditional power
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Operating Characteristics

• For any pre-specified stopping rule, however, we can compute 

the correct sampling distribution with specialized software

• From the computed sampling distributions we then compute

– Bias adjusted estimates

– Correct (adjusted) confidence intervals

– Correct (adjusted) P values

• Candidate designs are then compared with respect to their 

operating characteristics
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But What If …?

• Possible motivations for adaptive designs

– Changing conditions in medical environment

• Approval / withdrawal of competing / ancillary treatments

• Diagnostic procedures

– New knowledge from other trials about similar treatments

– Evidence from ongoing trial

• Toxicity profile (therapeutic index)

• Interim estimates of primary efficacy / effectiveness endpoint

– Overall

– Within subgroups

• Interim alternative analyses of primary endpoints

• Interim estimates of secondary efficacy / effectiveness endpoints
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Adaptive Sampling Plans

• At each interim analysis, possibly modify

– Maximal statistical information

– Schedule of analyses

– Conditions for early stopping

– Randomization ratios

– Statistical criteria for credible evidence

– Scientific and statistical hypotheses of interest
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Adaptive Sampling: Examples

• Response adaptive modification of sample size

– Proschan & Hunsberger (1995); Cui, Hung,  & Wang (1999)

• Response adaptive randomization

– Play the winner (Zelen, 1979)

• Adaptive enrichment of promising subgroups

– Wang, Hung & O’Neill (2009)

• Adaptive modification of endpoints, eligibility, dose, …

– Bauer & Köhne (1994); LD Fisher (1998)



5656

Adaptive Sampling: Issues

• How do the newer adaptive approaches relate to the constraint of 

human experimentation and scientific method?

• Effect of adaptive sampling on trial ethics and efficiency

– Avoiding unnecessarily exposing subjects to inferior treatments

– Avoiding unnecessarily inflating the costs (time / money) of RCT

• Effect of adaptive sampling on scientific interpretation

– Exploratory vs confirmatory clinical trials

• Effect of adaptive sampling on statistical credibility

– Control of type I error in frequentist analyses

– Promoting predictive value of “positive” trial results
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Typical Adaptive Design

• Perform analyses when sample sizes N1. . . NJ

– Can be randomly determined

• At each analysis choose stopping boundaries

– aj < bj < cj < dj

• Compute test statistic Tj=T(X1. . . XNj)

– Stop if      Tj < aj (extremely low)

– Stop if   bj < Tj < cj (approximate equivalence)

– Stop if      Tj > dj (extremely high)

– Otherwise continue 

• At penultimate analysis (J-1), use unblinded interim test statistic 

to choose final sample size NJ or to modify other aspects of RCT
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Proschan & Hunsberger

• Worst case type I error of two stage design

• Can be more than two times the nominal

– a2 = 1.96 gives type I error of 0.0616

– (Compare to Bonferroni results)
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Adaptive Control of Type 1 Errors

• Proschan and Hunsberger (1995)

– Adaptive modification of RCT design at a single interim analysis 

can more than double type 1 error unless carefully controlled

• Those authors describe adaptations to maintain experimentwise 

type I error and increase conditional power

– Must prespecify a conditional error function

– Often choose function from some specified test

– Find critical value to maintain type I error
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Incremental Statistics

• Statistic at the j-th analysis a weighted average of data accrued 

between analyses
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Conditional Distribution
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Protecting Type I Error

• LD Fisher’s variance spending method

– Arbitrary hypotheses H0j:θj = θ0j

– Incremental test statistics Zj
*

– Allow arbitrary weights Wj specified at stage j-1

• RA Fisher’s combination of P values (Bauer & Köhne)
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Unconditional Distribution

• Under the null

– SDCT: Standard normal

– Bauer & Kohne: Sum of exponentials

• Under the alternative

– Unknown unless prespecified adaptations
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Approaches for Testing

• If modify sample size at second stage (Cui, Hung, & Wang)

• Equivalently, calculate Z statistic as usual and use different 

critical value
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Sufficiency Principle

• It is easily shown that a minimal sufficient statistic is (Z, N) at 

stopping

• All methods advocated for adaptive designs are thus not based 

on sufficient statistics
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Topics of Special Interest

• Proportional Hazards

– Sample size re-estimation

• General case and in presence of an extreme effect

– Surrogate information

• Nonproportional hazards

– Weighted logrank statistics

– Crossing survival curves
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Proportional Hazards

Sample Size Re-estimation (SSRE)

Where am I going?

Some investigators desire to modify sample size more flexibly 

than allowed with GST
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Example

• http://www.cytel.com/pdfs/Mehta_Pocock_PromisingZone_StatsinMed_9.11.10.pdf
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Example Modification Plan
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Comparisons Unconditional Power
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Comparisons Conditional Power
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Adaptation to Gain Efficiency?

• Consider adaptation merely to repower study

– “We observed a result that was not as good as we had 

anticipated”

• All GST are within family of adaptive designs

– Don’t we have to be at least as efficient?

• Issues

– Unspecified adaptations

– Comparing apples to apples
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Apples with Apples

• Can adapting beat a GST with the same number of analyses?

– Fixed sample design: N=1

– Most efficient symmetric GST with two analyses

• N = 0.5, 1.18

• ASN = 0.6854

– Most efficient adaptive design with two possible N

• N = 0.5 and either 1.06 or 1.24

• ASN = 0.6831 ( 0.34% more efficient)

– “Most efficient” adaptive design with four possible N

• N = 0.5 and either 1.01, 1.10, 1.17, or 1.31

• ASN = 0.6825 ( 0.42% more efficient)
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Apples with Apples (continued)

• GST with more analyses?

– Fixed sample design: N=1

– Most efficient symmetric GST with two analyses

• N = 0.5, 1.18

• ASN = 0.6854

– GST with same three analyses

• N = 0.5,1.06 and 1.24

• ASN = 0.6666 ( 2.80% more efficient)

– GST with same five analyses

• N = 0.5, 1.01, 1.10, 1.17, or 1.31

• ASN = 0.6576 ( 4.20% more efficient)
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Comments re Conditional Power

• Many propose adaptations based on conditional /predictive power

• Neither have good foundational motivation

– Frequentists should use Neyman-Pearson paradigm and consider 

optimal unconditional power across alternatives

• And conditional/predictive power is not a good indicator in loss of 

unconditional power

– Bayesians should use posterior distributions for decisions

• Difficulty understanding conditional / predictive power scales can 

lead to bad choices for designs
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Comparisons of Designs

• The example used here was a longitudinal study, rather than time 

to event, though the same issues obtain

• Statistical power

• Sample size accrued

– With time to event, often all subjects have been accrued when 

half the statistical information is not yet available

• Calendar time

– Number of events is more a surrogate for savings in time 

monitoring subjects and marketing time lost
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Alternative Approaches
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Alternative Approaches
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Alternative Approaches

• The authors plan for adaptation could increase sample size by 

100%

• Using their adaptive plan, the probability of continuing until a 25% 

increase in maximal sample size

– .064 under null hypothesis

– .162 if treatment effect is new target of 1.6

– .142 if treatment effect is old target of 2.0

• By way of contrast

– A fixed sample test with 11% increase in sample size has same 

power

– A group sequential test with 11% increase in maximal sample 

size has same power and better ASN
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Apparent Problem

• The authors chose extremely inefficient thresholds for conditional 

power

– Adaptation region 0.365 < CPest < 0.8

– From optimal test, 0.049 < CPest < 0.8  is optimal 

• Of course, we do not always choose the most efficient designs

– O’Brien-Fleming designs are markedly inefficient for primary 

endpoint, but do allow adequate sample size for safety and 

secondary endpoints

• But more careful evaluation can allow us to choose adaptations 

that satisfy desired operating characteristics
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The Cost of Planning Not to Plan

• Hypothesis testing of a null with fully adaptive trials

– Statistics: type I error is controlled

– Game theory: chance of “winning” with completely ineffective 

therapy is controlled

– Science:

• Discrimination of clinically relevant hypothesis may be impaired

• May be ncertainty as to what the treatment has effect on

• Frequentist estimation: (Levin, Emerson, Emerson, 2012)

– Ideally pre-specify the adaptive rule

• GST methods can be extended to adaptive sampling density

– When fully adaptive, Brannath, Mehta, Posch (2009) have 

proposed a very clever method that works reasonably well.
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Proportional Hazards

SSRE with Extreme Treatment Effects

Where am I going?

Design of a RCT is based on a variety of assumptions that may 

not obtain in practice

Investigators then may have an interest in adjusting the RCT 

design to better address the actual conditions
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Motivation

• Consider the design of an RCT that investigates prevention 

strategies in HIV / AIDS

• Our primary clinical endpoint is sero-conversion to HIV positive

• We will randomize individuals 1:1 experimental treatment to 

control
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Recall

• In the presence of time to event endpoint that is subject to 

censoring, the most commonly used analyses are the logrank test 

and the proportional hazards regression model (Cox regression)

• When using PH regression with alternatives that satisfy the PH 

assumption, statistical information is proportional to the number of 

events

– We can separately consider number accrued and calendar time 

of ending study

• Sample size calculations thus return the number of events that 

are necessary to obtain desired power

– There are multiple ways that we can obtain that number of events 

as a function of

• Number and timing of accrued subjects

• Length of follow-up after start of study
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Motivation

• Highly effective treatment and possibly low event rate

• HPTN052: 2011 scientific breakthrough of the year

– Early vs Delayed ART is effective treatment in the prevention of 

HIV-1 transmission

– Design: 188 events anticipated 

• based on (Placebo: 13.2% vs Treatment: 8.3%)

– Blinded analysis: Total of 28 events

– Unblinded analysis: 27 from the delayed ART arm

– HR: 0.04 95% CI 0.01 - 0.27
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Motivation

• Highly effective treatment and possibly low event rate

• Partners PrEP: 2012

– Three arm double-blind trial of daily oral tenofovir (TDF) and 

emtricitabine/tenofovir (FTC/TDF)

• 1:1:1 randomization of 4578 serodiscordant couples

– Study halted 18 months earlier than planned due to demonstrated  

effectiveness in reduction of HIV-1 transmission

• Of 78 infections, 18 in tenofovir, 13 in Truvada, 47 in control

• Reduction in risk of infection 62% (95% CI 34-78%) in tenofovir, 

73% (95% CI 49-85%); p < 0.0001 vs control

– Special note: Placebo event rate was 1.99 per 100 PY rather than 

planned 2.75 per 100 PY
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Issues

• In both of these trials the number of events observed was much 

lower than had been anticipated

• A priori, there are two reasons observed event rates could be 

lower than anticipated

– Lower event rate in the control arm that had been guessed

– Highly effective treatment leads to very few events in the 

experimental treatment

• In retrospect, both of these trials had both of these problems
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Possible Solutions

• Well-understood methods

– Wrong baseline event rate

• Extend planned follow-up time

• Live with lower power at planned calendar time EOS

• Adaptive sample size re-estimation based on blinded results

– Tradeoffs between accrual size and follow-up

– Highly effective therapy

• Group sequential design

• Less understood methods

– Adaptive sample size re-estimation based on blinded results

• Differentially revise maximum number of events and/or 

accrual/follow-up based on interim estimates of treatment effect
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Extending Time of Follow-Up

• Under “information time” monitoring, this presents no statistical 

issues when proportional hazards holds

– And “information time” monitoring is the usual standard in 

prespecifying RCT design in the time to event setting, and we 

would be supposed to do this

• Sometimes, however, we are only willing to believe PH 

assumption over some shorter time of follow-up

– National Lung Screening Trial

– Vaccine trials where need for boosters is not known

• Always, calendar time is ultimately more costly than number of 

patients

– Emerson SC, et al. considers tradeoffs between time and number 

of patients
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Accepting Lower Power

• If the prespecified RCT design defined the maximal statistical 

information according to calendar time, there is no statistical 

issue

• Under “information time” monitoring, this represents an 

unplanned change in the maximal statistical information

– When this decision is made without knowledge of the unblinded 

treatment effect, regulatory agencies will usually allow the 

reporting of a “conditional analysis”

– But the sponsor will need to be able to convincingly establish that 

it was still blinded to treatment effect

• Ethics of performing a grossly underpowered study must be 

considered

• The predictive value of a “positive” study is greatly reduced
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Blinded Adaptation of Sample Size

• If the prespecified RCT design defined the maximal statistical 

information according to number of events, then we must be 

talking about blinded adaptation of accrual size

– Under PH distribution with PH analysis, no statistical issue

• Under “calendar time” monitoring, this represents an unplanned 

change in the maximal statistical information

– When this decision is made without knowledge of the unblinded 

treatment effect, regulatory agencies will usually allow the 

reporting of a “conditional analysis”

– But the sponsor will need to be able to convincingly establish that 

it was still blinded to treatment effect

– This is likely only credible if you were delaying end of study
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Group Sequential Design

• Instead of a fixed sample design, pre-specify a group sequential 

design with, say, 10 possible analyses

– Example: level 0.025, 90% power to detect HR=0.6
seqDesign(prob.model = "hazard", alt.hyp = 0.6, nbr.an = 10, power = 0.9)

PROBABILITY MODEL and HYPOTHESES:

Theta is hazard ratio (Treatment : Comparison) 

One-sided hypothesis test of a lesser alternative: 

Null hypothesis : Theta >= 1.0    (size  = 0.025)

Alternative hypothesis : Theta <= 0.6    (power = 0.900)

(Emerson & Fleming (1989) symmetric test) 

STOPPING BOUNDARIES: Sample Mean scale 

Efficacy Futility

Time  1 (NEv=  17.47)   0.0454  11.8598

Time  2 (NEv=  34.95)   0.2132   2.5280

Time  3 (NEv=  52.42)   0.3568   1.5101

Time  4 (NEv=  69.90)   0.4617   1.1672

Time  5 (NEv=  87.37)   0.5389   1.0000

Time  6 (NEv= 104.85)   0.5974   0.9021

Time  7 (NEv= 122.32)   0.6430   0.8381

Time  8 (NEv= 139.79)   0.6795   0.7931

Time  9 (NEv= 157.27)   0.7093   0.7597

Time 10 (NEv= 174.74)   0.7341   0.7341
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Group Sequential Design

• Stopping boundaries, stopping probabilities
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Group Sequential Design

• Using this example, we see that if the true HR was 0.4 or less, we 

are virtually assured of stopping at the 4th analysis or earlier

• While the maximal number of events was 175, the 4th analysis 

occurs with 70 events.

• Suppose, a slow accrual of events is due solely to a highly 

effective treatment

– Placebo has the planned event rate, Experimental treatment has 

extremely low event rate

• Relatively frequent monitoring will cause early termination long 

before the maximal event size needs to be observed

• We examine how calendar time might be affected



9595

Calendar Time: Half Event Rate

• Stopping probabilities under planned event rate
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Incorporating Lower Event Rates

• We have not totally addressed problems that might arise with 

lower baseline event rates in the control group

– If the treatment effect is not extreme, then the GSD might dictate 

that we proceed to the maximal sample size

• One approach is to build in an “escape clause” in the pre-

specification of the RCT design

– “The study will definitely terminate when we have 412 events or 

at 78 months after start of RCT, whichever comes first.”
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Calendar Time: Half Event Rate

• If control group event rate is halved

– Power is affected relatively little
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The Escape Clause

• Prior to pre-specified maximal calendar time, perform group 

sequential test as usual
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The Escape Clause

• When the maximum calendar time is attained, modify the GST 

according to a constrained boundary approach / error spending 

function
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Unblinded Adaptation

• With unblinded adaptation, we can try to discriminate between

– Strong treatment effect � choose lower maximal event size

– Low control event rate � accrue more information

• We will have to decide whether to do adaptation prior to stopping 

accrual or whether to restart accrual

– Early adaptation � Less precise estimates of treatment effect

– Late adaptation � Have to restart accrual
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What if Unblinded?

• When the maximum calendar time is attained, have to adjust the 

critical value according to the conditional error (CHW) or similar
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Simulations
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Final Comments

• The group sequential design definitely protects us from the 

extreme treatment effect

• In general, the group sequential design protected us from 

problems so long as the event rate was at least 25% of the 

planned rate

• There was definitely a price to pay when using the adaptive 

design

– If the sponsor has access to unblinded results, adjustment for the 

adaptive analysis must be made

– There is no allowance for the “escape clause” approach

– Even more difficulty if non PH is possible
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Proportional Hazards

Availability of Surrogate Data

Where am I going?

Methods for preserving type 1 errors presume an accurate 

representation of the statistical information available at the 

adaptive analysis

With time to event data (as well as other longitudinal 

endpoints), however, we may have information on surrogate 

prognostic endpoints.

To the extent that those surrogate endpoints inform the 

adaptation of the clinical trial, we may not be adequately 

preserving the type 1 error
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Special Issues

• A basic premise of adaptive methods is that we can control the 

type 1 error, even when we have re-designed the trial based on 

interim estimates of the treatment effect

• Two special scenarios that we need to examine more closely

– Do the interim statistics used in adjusting critical values truly 

contain all the information we had at our disposal?

– Have we quantified the information growth correctly when using 

those statistics?
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Approaches for Testing

• If modify sample size at second stage (Cui, Hung, & Wang)

• Equivalently, calculate Z statistic as usual and use different 

critical value
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Data at j-th Analysis: Immediate Outcome

• Subjects accrued at different stages are independent

• Statistics as weighted average of data accrued between analyses
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Conditional Distn: Immediate Outcomes

• Sample size Nj
* and parameter θj can be adaptively chosen based 

on data from prior stages 1,…,j-1

– (Most often we choose θj = θ with immediate data)
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Estimands by Stage: Time to Event

• In time to event data, a common treatment effect across stages is 

reasonable under some assumptions

– Strong null hypothesis (exact equality of distributions)

– Strong parametric or semi-parametric assumptions

• The most common methods of analyzing time to event data will 

often lead to varying treatment effect parameters across stages

– Proportional hazards regression with non proportional hazards 

data

– Weak null hypotheses of equality of summary measures (e.g., 

medians, average hazard ratio)

• E.g., noninferiority trials
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Impact on Noninferiority Trials

• Weak null hypothesis is of greatest interest

– Standard superior to placebo

– Comparator (on average) equivalent to placebo



111111

Conditional Distn: Immediate Outcomes

• Sample size Nj
* and parameter θj can be adaptively chosen based 

on data from prior stages 1,…,j-1

– (Most often we choose θj = θ with immediate data)
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Protecting Type I Error

• Test based on weighted averages of incremental test statistics

– Allow arbitrary weights Wj specified by stage j-1
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Complications: Longitudinal Outcomes

• Bauer and Posch (2004) noted that in the presence of incomplete 

data, partially observed outcome data may be informative of the 

later contributions to test statistics

– E.g., tumor progression and overall survival

• This can be a large problem if we allow adaptation to a much 

smaller sample size

– Data quite often becomes available between database lock and a 

DSMB meetin
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Complications: Longitudinal Outcomes

• We need to make distinctions between

– Independent subjects accrued at different stages

– Statistical information about the primary outcome available at 

different analyses

• Owing to delayed observations, contributions to the primary test 

statistic at the k-th stage may come from subjects accrued at prior 

stages

– Baseline and secondary outcome data available at prior analyses 

on those subject may inform the value of future data
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Data at j-th Analysis: Delayed Outcome

• Subjects accrued at different stages are independent

• Some data is “missing”
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Major Problem: Delayed Outcome

• When sample size Nj
* and parameter θj adaptively chosen based 

on data from prior stages 1,…,j-1, some aspect of the “future” 

contributions may already be known
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Potential Solutions

• Jenkins, Stone & Jennison (2010)

– Only use data available at the k-th stage analysis

• Irle & Schaefer (2012)

– Prespecify how the full k-th stage data will eventually contribute to 

the estimate of θk

• Magirr, Jaki, Koenig & Posch  (2014, arXiv.org)

– Assume worst case of full knowledge of future data and sponsor 

selection of most favorable P value



118118

Comments: Burden of Proof Dilemma

• There is a contradiction of standard practices when viewing the 

incomplete data 

– We would never accept the secondary outcomes as validated 

surrogates

– But we feel that we must allow for the possibility that the 

secondary outcomes were perfectly predictive of the eventual 

data

• We are in some sense preferring mini-max optimality criteria over 

a Bayes estimator
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Comments: Impact on RCT Design

• The candidate approaches will protect the type 1 error, but the 

impact on power (and PPV) is as yet unclear

• Weighted statistics are not based on minimal sufficient statistics

– But greatest loss in efficiency comes from late occurring adaptive 

analyses with large increases in maximal statistical information

– Time to event will not generally have this

• The adaptation is based on imprecise estimates of the estimates 

that will eventually contribute to inference

• We may have to eventually either

– Ignore some observed data (JS&S, I&S), or

– Adjust for worst case multiple comparisons



120120

Nonproportional Hazards

Weighted Logrank Statistics

Where am I going?

Early phase clinical trials sometimes show treatment effects 

that are more pronounced early or more pronounced late

Weighted versions of the logrank statistic have been proposed 

to accentuate those portions of the survival curve that are most 

plausibly different
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Weighted Logrank Statistics

• Choose additional weights to detect anticipated effects
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What if No Adjustment?

• Many methods for adaptive designs seem to suggest that there is 

no need to adjust for the adaptive analysis if there were no 

changes to the study design

• However, changes to the censoring distribution definitely affect

– Distribution-free interpretation of the treatment effect parameter

– Statistical precision of the estimated treatment effect

– Type 1 error when testing a weak null (e.g., noninferiority)

• Furthermore, “less understood” analysis models prone to inflation 

of type 1 error when testing a strong null

– Information growth with weighted log rank tests is not always 

proportional to the number of events



123123

“Intent to Cheat” Zone

• At interim analysis, choose range of interim estimates that lead to 

increased accrual of patients

• How bad can we inflate type 1 error when holding number of 

events constant?

• Logrank test under strong null: Not at all

• Weighted logrank tests: Up to relative increase of 20%

– Sequela of true information growth 

• Information growth not linear in number of events

– Power largely unaffected, so PPV decreases
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Information Growth with Adaptation
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Inflation of Type 1 Error

• Function of definition of the adaptation zone

– Varies according to weighted log rank test
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Comments re WLR

• Hence, unblinded access to trial results can allow an investigator 

to inflate the type 1 error

• This might not be noticeable to a naïve audience if the number of 

events stays constant

• Proper handling of information growth can fix this

– However, description of the information growth is often difficult 

with weighted log rank statistics
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Nonproportional Hazards

Crossing Survival Curves

Where am I going?

Recently some authors have proposed sequential tests to be 

used in the presence of crossing survival curves

This example illustrates many of the difficulties inherent in 

applying time to event analyses
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A Further Example
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Logan, et al.: Motivation
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Logan, et al.: Comparisons

• Logrank starting from time 0

• Weighted logrank test (rho=0, gamma=1) from time 0

• Survival at a single time point after time t0
• Logrank starting from time t0
• Weighted area between survival curves (restricted mean)

– Most weight after time t0
• Pseudovalues after time t0
• Combination tests (linear and quadratic)

– Compare survival at time t0
– Compare hazard ratio after time t0
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Logan, et al.: Simulations
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Logan, et al.: Results
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Logan, et al.: Critique

• In considering the combination tests, crossing survival curves 

might have

– No difference at time t0 (perhaps we are looking for equivalence)

– Higher hazard after time  t0

• Presumably, the authors are interested in the curve that is higher 

at longer times post treatment

– The authors did not describe how to use their test in a one-sided 

setting

• PROBLEM: The authors do not seem to be considering the 

difference between crossing survival curves and crossing hazard 

functions

– Higher hazard over some period of time does not imply lower 

survival curves
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Logan, et al.: Critique

• Additional scenarios that are of interest



135135

Logan, et al.: Critique

• How might a naïve investigator use this test?

– If the observed survival curves cross and the hazard is 

significantly higher after that point, the presumption might be that 

we have significant evidence that the group with higher hazard at 

later times has worse survival at those times

• “But it would be wrong” (Richard Nixon, March 21, 1973)

• We can create a scenario in which

– Survival curves are truly stochastically ordered SA(t) > SB(t)∀t>0

– The probability of observing estimated curves that cross at t0 is 

arbitrarily close to 50%

– The probability of obtaining statistically significant higher hazards 

for group A after t0 is arbitrarily close to 100% 

– Thus, the one-sided type 1 error is arbitrarily close to 50%
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Relevance to Today

• Even experts in survival analysis sometimes lose track of the way 

that time to event analyses behave, relative to our true goals
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Final Comments

• There is still much for us to understand about the implementation 

of adaptive designs

• Most often the “less well understood” part is how they interact 

with particular data analysis methods

– In particular, the analysis of censored time to event data has 

many scientific and statistical issues

• How much detail about accrual patterns, etc. do we want to have 

to examine for each RCT?

• How much do we truly gain from the adaptive designs?

– (Wouldn’t it be nice if statistical researchers started evaluating 

their new methods in a manner similar to evaluation of new 

drugs?)
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Bottom Line

• There is no substitute for planning a study in advance

– At Phase 2, adaptive designs are clearly useful to better control 

parameters leading to Phase 3

• Most importantly, learn to take “NO” for an answer

– At Phase 3, it is less clear whether much is gained from 

unblinded adaptation

• And scientific / statistical credibility can suffer

• “Opportunity is missed by most people because it is dressed 

in overalls and looks like work.” -- Thomas Edison

• In clinical science, it is the steady, incremental steps that are 

likely to have the greatest impact. 
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Really Bottom Line

“You better think (think) 

about what you’re 

trying to do…”

-Aretha Franklin, “Think”


