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Potential outcomes

Exposure: A (continuous or discrete)

Potential outcomes: Y?

» Outcome if exposure A set to level a



Causal effects

Possible causal (target) parameters (choose one):

> E(Y!— Y?)
> E(YY)/E(Y?)
> E(Y = YOV =)

v

E(Y!— YOlA=1)
> F(p) — Fo (p)

Note: The target parameter might not be a parameter in the model



Linking potential outcomes to observed data

So far we have only talked about hypothetical data (outcomes that
would be observed under various exposure levels).

In observational studies, we do not get to set exposure levels.

Instead, we link potential outcomes and observed data by:
» making causal assumptions

» collecting the right kind of data to make the assumptions as
plausible as possible (design)



Observed Data

Outcome: Y

v

v

Exposure: A

Confounders: L

v

v

Observed data: {Y;, A;,L;;i=1,---  n}



Causal assumptions

— Consistency: if A= athen Y = Y?
— Positivity: p(A=alL) >0 if p(L) >0
— lgnorability: Y2 1L A|L

These 3 assumptions imply

E(Y|A=a,L)=E(Y?|A=a,L)=E(Y?L)



Causal effects

We can therefore identify various target parameters from
p(Y,A,L). For example for average causal effect:

E(YYH) — E(Y%) = E{E(Y|A=1,L)} — E{E(Y|]A=0,L)}

:/E(Y|A: 1,L)dF(L)—/E(Y|A:0, L)dF(L)

or, for quantiles,

P <y = [ [b(via=anarw



Target parameter and nuisance parameters

Suppose our target parameter v is ¢ = E(Y1!) — E(Y?).

If we know p(Y, A, L) and make causal assumptions, then we can
identify 1.

Suppose p(Y, A, L) is a distribution with parameters 6,
p(Y, A, L|O).

» 0 might be high-dimensional
» We do not care about 6 (nuisance parameters)
> We do not care about the form of the joint distribution

» But.... we need correctly specify it (in some sense)
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Parametric vs nonparametric

Suppose x1, -+ ,x, ~ Py. The parameter space of 0 is ©.

Parametric model:

>

© has finite dimension, e.g., © C R where d € N

Nonparametric model:

>

>

© has infinite dimension

So, a nonparametric model can be thought of as a large
parametric model

Typically, the number of parameters increases with the sample
size
Bayesian nonparametric: priors reflect uncertainty about

functional or distributional models (so distributions on
uncertain functions or distributions)



Examples

Density estimation:

» Parametric example: assume data N(p,0?). The
distribution is defined with just 2 parameters. Parameter space
is R x R*. Sample size does not affect number of parameters.

» Nonparametric example: assume data have distribution
> hey mkN(pik, 02). This is an infinite mixture of normal
distributions. Prior distributions can induce clustering,
reducing the dimension (number of i's and o's) for a given
sample size n to be unknown, but at most n.



Function estimation. Suppose we have data (x;, y;) and we are
interested in E(y;|x;; 6).

» Parametric example: let E(y;|x;; 0) = 0o + 01x;. The
parameter space is R?. We simply have 2 parameters to
estimate and this does not increase with n. (set of all possible
lines)

» Nonparametric example: let the parameter space be the set
of all functions (possibly with some smoothness constraints)



Overview

We will consider BNP approach for both density estimation and
function estimation.
Density estimation:

» We fill focus on mixture models (Dirichlet process mixtures)

» Clustering induced by prior distributions (Dirichlet process
prior)
» Sampling yields a Pdlya urn
» Distribution on the partitions is a Chinese restaruant process
» The weights have stick breaking representation

Function estimation (later):
» Gaussian process models

» Bayesian adaptive regression trees



Dirichlet distribution

If random variables xi, ..., x, have a Dirichlet distribution with
parameters a4, . . ., a, then the probability distribution is

1k
Oz,‘—].
B(a) _HX" ’
i=1
where B(a) is the beta function

)= (0

> Zf'(:1xi =1,%x>0,0; >0
» if k =2 it's a beta distribution
» Using MCMCpack, x< —rdirichlet(k,alpha)



Conjugate prior for Multinomial distribution

Suppose y = (y1,---,Yk) is a vector of counts, i.e., y; is the
number of observations in category 1. y follows a multinomial
distribution with parameters © = (71, ..., mk).

A conjugate prior is p(m) ~ Dir(«).

The posterior p(m|y) is proportional to

which is Dir(a+ y).



If p(7) ~ Dir(a) then E(m;) = =2—

i=1%i
» thus, a large value for a; (relative to other a's) suggests 7; is
likely to be large

If @ = -+ = ay then the Dirichlet is said to be symmetric
> the single parameter is called the concentration parameter
» all kK components of w have same marginal distribution
> a large value of a concentrates the distribution of 7; at 1/k

» values of « close to 0 lead to distribution for 7; with about
(k — 1) out of every k of simulated values being close to 0
and the others being close to 1

> rdirichlet(1,¢(.05,.05,.05,.05))
[,11 [,2] [,3] [,4]
[1,] 3.422228e-07 0.01720776 0.9818786 0.0009133317
> rdirichlet(1,c(5,5,5,5))
[,1] [,2] [,3] [,4]
[1:] 0.3930037 0.1890718 0.2650337 0.1528908



Dirichlet process prior

Suppose we want to specify some prior distribution P. For
example, uj ~ P. A fully parametric choice for P would be

N(po, ).

A non-parametric alternative is to assume P follows a Dirichlet
process. Thatis, P ~ DP(«, Py), where

> « > 0 is the concentration parameter
» Py is the base distribution

As described on the previously, « characterizes prior precision and
clustering.

The base distribution Py has to have same support as P.



A Dirichlet process is a stochastic process.

> a draw from a DP can be thought of as a draw from a
probability distribution whose domain is a random variable

» even if Py is continuous, realization of P are from a mixture
of point masses (discrete distribution), with larger values of
alpha leading to distributions that more closely approximate a
continuous distribution

We can think of Py as our best guess for the distribution of P and
« as representing confidence in that guess. If « is very large then
P is approximately equal to Py.



Marginalize over P

Let ¢1,--- , ¢k be the unique values of 01,--- ,8,, where k < n.
Let nk be the number of times ¢, appears in (01,--- ,0,).
Then,

aPo(A) + 321 nkdg, (A)
a+n

E{P(A)|01,--- ,6n} =

Thus, marginalizing (integrating out) P, results in the following
conditional probabilities:

( n+1 — ¢J]¢1,~--,¢K)—n+a,foranyj€{1 K}

p(Ont1 & {1, -+, dK)l¢1,- -+ ¢k) = ;55 for any
jE {17 aK}




Pdélya urn

Onlb1, -+ On—1 ~ — 1+az 0; 1+aPo

This is a Pdlya urn scheme! (suppose there are « black balls, ny
balls of color ¢1, ny balls of color ¢5,..., nk balls of color ¢k, in
an urn. If you draw a non-black ball, put that ball back along with
another ball of that same color. If you draw a black ball, put the
black ball back along with a ball of color randomly drawn from Py.)

It can be shown that the joint distribution of (6y,--- ,0,) is
invariant to order. In general:

0:10_; ~ P
| —1+a29 1+a0

Conclusion: DP sampling of 0's is a Pélya urn



Chinese restaurant process

The distribution on partitions induced by a DP prior is a chinese
restaurant process

Think of all of the people sitting at table with label ¢; as being in
cluster j. Suppose there are currently n — 1 people sitting at K
tables. The tables are labeled ¢1,...,¢k. There are n; people at
table ¢;, etc. There are also infinitely many empty tables.

Consider a new person who needs to decide where to sit. They will

sit at occupied table ¢; with probability —— 1+a

They will sit at a new, unoccupied table with probability —7—



CRP

Prior Probabilities (ignores data)

® ©

()
®

P(table 1)=4/(7-1+a)
P(table 2)=2/(7-1+a)

P(new table)=a/(7-1+a)

DA



CRP

P(table 1)=0.656
P(table 2)=0.328
P(new table)=0.016

Q>



CRP

If (1:10

P(table 1)=0.25
P(table 2)=0.125
P(new table)=0.625

Q>



Distribution of partitions

The partition of a DP is described by p, = (s1,--- ,sp) with s; = j
if 0; = ¢;j, the jth distinct f-value in order of appearance. As
n — oo, the partition generated by the DP has distribution CRP(«)

plrla) = s T ()



Dirichlet process mixture models

We are going to focus on models of the form:

xi|0; ~ p(xi|0;)
0P ~ P
P ~ DP(aPy).

Today we will focus on a marginal Gibbs sampler, which is a Gibbs
sampler obtained after integrating out P. In other words, it's based
on the CRP representation (Gibbs sampler based on partition).



Note that we could write this model
xi|0i ~ p(x;|6;)
0;|P ~ P
P ~ DP(aPy).

as this model

X,'|0z ~ p(X,'|9:), if S5i=2¢C
0%|P ~ P, for c € p,
Pn ™~ CRP(na Oé)

where 6% = (67, -- ,0%) are the unique values of §, and
Pn = (517'” 75n)



Marginal Gibbs sampler

The marginal Gibbs sampler based on CRP will alternate between:

» updating cluster membership given current values of
parameters

» updating parameters, given cluster membership



Update cluster membership

We do this one subject at a time. Given the current value of the
parameters 0%, «, the cluser membership of everyone except
subject /i, and the data, we draw subject i's cluster membership
from a multinomial distribution.

Denote by k=" the number of unique clusters if you exclude subject
i. Let nj_’ = (S_' :j) forj=1,--- k™'

Recall prior probability of joining existing cluster:

P(s,-:c|s*’.):7a+n;_1,c:1,--- KT

And prior probability of starting new cluster:

a

P(si # sifor allj # i) = Tita
— a



Update cluster membership

Fori=1,---,n,

nC_iK(Xi‘ez)7C = 17 T 7k_i

P(s; = c|rest) x { af K(x;|0)dPo(0), c = k=M1

where K(x;|0) is the kernel of p(x;|0)

» If Py is conjugate then [ K(x;|0)dPy(6) should be easy to
calculate



Update parameters

Given cluster members (s, - ,sp), we can sample 0* from

p(0%|rest) oc Po(07) T K(xil67).

isi=c

This is an ordinary parameter update step, where we do so within
each cluster.



Specific example

Suppose we have data xi, -, x, from some unknown continuous
distribution. We can use a DP approach to model it
nonparametrically:

xi|0; ~ N(xi|ui, o7)
pi, 07 |P ~ P
P ~ DP(aPy).

We will assume (for now) that « is known (often set to 1). For Py:

po(pilo?) = N(po, 07/ o),

po(a,-z) ~ Inv — Xz(l/o, 08).

where pg, ¢, g, and 0(2) are values that we choose.



Update parameters

For each currently observed cluster, we can then update ,LLJ’-k and

o>* from normal and Inv-x? distributions.

con;j

2 2 2
2 % 2 og + (nj - 1)51 + co+nj (XJ - /”LO)
o;" |rest ~ Inv—x~ | vo + nj,
J Vo + nj

(o] nj
37 Mo T FXJ 1
wilrest ~ N | = = ,J,j
2w T 2 02 + 02
J J J J




Update clusters

Fori=1,---,n,

ng"N(x,'\,ut., 0(2;’*), c=1,-- k7'

P(s; = -
(si = clrest) o { o [ N(xi|p, 0?)dPo(p, 0%),c = k=" +1

So draw s; from a multinomial. If a new cluster is opened up, also

need to draw yj_; ; and aif,-ﬂ from the prior



If a=1, prior

@

P(table 1)=4/(6+1)=0.57
@ Pp(table 2)=2/(6+1)=0.29
P(new table)=1/(6+1)=0.14



If a=1, posterior

u*=1, o?'=1 u*=-2, 02'=.25

P(table 1) \propto 0.57*N(-1;1,1)=.57*.05
P(table 2) \propto 0.328*N(-1; -2,0.25)=.328*.11
=.1 P(new table) \propto 0.016*ave of N(-1; mu, sigma2) over prior



Example 1: BNP approach to marginal
structural models
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Potential outcomes and causal model

Potential outcomes:

» Y?: outcome if A set to a

MSM:
E(Y?V = v;9) = ho(v; o) + hi(a, v;¢1),
where
» hg() and h1() are known functions
> g and 1)1 are unknown parameters
> 1)1 are causal parameters of interest
e.g., E(Y?|V = v;v) = voo + to1v + Y102 + Y11a x v



Data

Outcome: Y

» We only consider continuous Y
Treatment: A
Set of confounders: L = (V, W)

» V are effect modifiers of interest
» W are other confounders

{\/I'aAia \/,,VV,,I:]., ?n}

v

v

v

v



Data cont'd

Note:
» A could be continuous or discrete

» V is typically of low dimension (1 or 2 variables) and could be
continuous or discrete

> W might be high dimensional



DDP for outcome model

Dependent Dirichlet process (DDP; MacEachern (1999)):
p(y°l) = wN(y;: Ala, vih,7) + 0k(1), 0%)
k=1

» infinite mixture of normals - stick-breaking representation of
DP

» A(a,v;1,7), defined later, ensures MSM assumption holds



Gaussian process of 6

Hk(l) ~ gP(Mk(W)’ C(/; 77’10))

where
pi(w) = whi

and ith row and jth column of C(/;7,p) is

nexp (—pl|li — 1j||?) + 0.015;,

» Large n implies 6(/) is very different from linear
» Larger n penalized in loglikelihood: log|C(/;n, p)|

» p affects the degree to which the means of subjects who have
similar L will have similar 6(/)



Estimators that we compare with BNP

1. Correctly specified regression model (reg)

2. IPTW with correctly specified propensity score (IPTW)

3. IPTW with weights truncated at 2nd and 98th percentiles
(IPTWtr)

4. Augmented IPTW (IPTWaug)

5. TMLE with correctly specified propensity score and Super

Learner for outcome model (glm, step, gam, randomforest)
(TMLE)



Causal parameters and performance metrics

True causal model:
E(Y?|V = v;¢) = oo + to1v + Y10a + Y112 X v
» causal effect parameters: 19 and 11

For each simulation scenario, compare:
> bias
» empirical standard deviation (ESD)

> coverage probability



Simulation scenario: bimodal outcome

W; ~ N(0,1),j=1,---,4
V ~ Bern(0.5),
A ~ Bern{logit™(m)}
m=-03+w; — 0.5W22 —0.8w3 4+ 1.2ws — 0.2wywy + 0.5wows3 + v

Y = A(A, V;¢) + g(W) +5(B — B) + N(0,1), where B is
Bernoulli(0.5), g(W) = Wi +2Wo — W5 — 2W,

w = (107 17 17 _05)1 n—= 200



Results

Parameter Method Bias Coverage ESD
Y10: A REG 0.02 1.00 0.55
IPTW 0.01 0.98 0.81
IPTWtr 0.04 0.98 0.75
IPTWaug 0.01 0.95 0.60
TMLE 0.01 0.93 0.58
BNP 0.00 0.97 0.38
P11: AXx V. REG -0.04 1.00 0.79
IPTW -0.05 0.95 1.37
IPTWtr -0.07 0.95 1.29
IPTWaug -0.02 0.96 0.88
TMLE -0.04 0.93 0.87
BNP 0.00 0.96 0.53




Simulation scenario: near violation of positivity assumption

v

Scenario similar to Kang and Schafer (2007)

n =200

» V ~Bernoulli(0.5)

Zi, -, Zy iid N(0,1)

A from Bernoulli logit=1(—1Z; +0.5Z, — 0.2573 — 0.17,)

Y is from a normal with mean A(A, V; ) + Z/ and standard
deviation 200, where 5 = (27.4,13.7,13.7,13.7)

¥ = (210, —50, 50, 20)

v

v

v

v

v



Observed confounders

v

W1 = exp(Zl/2)

Wa = Z,/(1 + exp(Z1)) + 10
W3 = (Z1Z3/25 + 0.6)3

Wy = (Za + Zy + 20)?

v

v

v



Results

Parameter Method Coverage ESD
10: A REG -7.51 0.92 4357
IPTW  -6.17 0.93 54.43

IPTWtr  -9.59 0.94 45.40

IPTWaug -12.37 0.95 139.29

TMLE -9.34 0.90 48.52

BNP  -7.68 0.93 44.35

Y110 AX V REG 1.91 0.95 57.35
IPTW 3.36 093 75.64

IPTWtr 3.01 0.95 62.66

IPTWaug 2.97 0.96 204.56

TMLE 4.90 0.92 68.64

BNP 1.98 0.95 57.43




Study design and variables

» Geisinger Health System EHR

» New initiators of angiotensin-converting enzyme (ACE)
inhibitors or angiotensin Il receptor blockers (ARBs)

» Women, age 65+, diabetes diagnosis, initiate treatment
2001-2008

» n=1,964

» Confounders: 24 variables including race, age, BMI, BP,
history of CKD, MI, CHF, stroke, cancer, etc.

» OQutcome: all cause mortatlity



Causal model, results

Our casual model of interest is

E(Y?)) = 1o + ¢1a

» A=1if ARB, =0 if ACEI

> Y is log survival time

Results:
> o: 3.25 [2.83,3.72]
» 1: 0.17 [-0.19,0.53]



Example 2: BNP approach to causal
mediation
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MediatiOn

Q>



Causal effects

Potential outcomes: Y p, the value of the outcome that would
have been observed if an individual had been assigned to
intervention z with (possibly hypothetically) mediator M set to its
value under Z/

» Natural indirect effect E[Y1 1, — Y1,M,)
» Natural direct effect: E[Y1 m, — Yo,m]



|dentifiability

Sequential ignorability

YomM} L Z|X=x
Yom L M |Z=2zX=x,



E(Y—LMO |X = X) = E(Y—l,m | MO =1m, Z = 07X = X)dFMO|Z:07X:X(m)

E(}/l,m | Z = Oa X = X)dFMg\Z:O,X:x(m)

E(Y1,,| Z =1,X = x)dFpp)z=0x=x(m)

Il
—

E(}/l,m | M1 =m, Z = 17X = X)dF]\/[U|Z:07X:x(TTL)

E(Y | j\/fl =1m, 7 = 1,X = X)dF‘]M‘Z:()’X:X(Tn)7



BNP observed data model

(Yobs,i» Mobs,is X7)  ~ Ng(p, i, X2),
(/'l'z,iv ZZ,l') ~ Gz,
G, ~ DP(a;G,),

The base distribution G, is taken to be the conjugate
normal-inverse-Wishart distribution (NIW).

» R package: BNPmediation
(github.com/Iit777 /BNPMediation)

» Reference: Kim et al (2016) Biometrics



Example 3: BNP approach to causal
inference with missing confounders
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DP mixture of multivariate normals

Mueller et al. (1996) proposed:

(_yiaah/i) ~ N(Miazi)
,u‘l'azi ~ G
G ~ DP(aGp)

where, typically, Gy would be normal-inverse-wishart.

» problematic if many covariates

» does not easily handle discrete outcomes and covariates



Joint DP mixture model

Shahbaba and Neal (2009) proposed:

P~ DP(a, Pog X Pow)
(Hi,w,-)\P ~ P
Xi jlwi ~ p(xj|wi),
Yil X, 0i ~ p(y|x, 0;).

v

In our causal setting, X = (A, L)
p(y|x,0;) can be a GLM
covariates locally independent, so computationally friendly

v

v

v

Potentially puts too much weight on fit of X's at the cost of
y|x, which is what we care most about



Enriched DP mixture model

Wade et al. (2014) proposed:

P ~ EDP(ay, avy,, Po)
(Qi,w;)\P ~ P
Xi jlwi ~ p(xjlwi),
Yil X, 0i ~ p(y|x, 0;).

P ~ EDP(ay, o, Po) means Py ~ DP(cy, Pog) and
Pojo ~ DP(a, Poyjg) and base measures Py = Pop X Pg,6-



Gibbs sampler

1. sample s; = (sj,, Si x) given current values of parameters and
all other data

» extension of algorithm 8 of Neal (2000)
2. update wj‘ and Qf given s
» This update is generally very easy (either conjugate or
standard Bayesian calculations)
3. Update hyperparameters such as oy, and ay

4. Data augmentation step: given cluster membership and
current values of parameters, draw from posterior of L;; for
any patient / who has missing value for covariate j



S update: general

y
3
k+m
- X *

Ny Mg w* Ny)2 * W1e1 D1jkem

& 5 kpkm |1 5

[0} ] [0}

1|1 kql1 112

Proposed new
clusters

Proposed new
subclusters



Simulation 1: binary outcome, simple form

L1 ~ Bern(0.2)

Ly ~ Bern{logit~1(0.3 4+ 0.2L;)}

L3 ~ N(Ly — Ly, 1%)

Ly ~ N(1+0.5L; 4 0.2Ly — 0.3L3,2?)

A ~ Bern{logit (0.4 + L1 + Ly + L3 — 0.4L4)}

Y ~ Bern{logit*(—0.5 + 0.78A — 0.5L; — 0.3L5 + 0.5L3 — 0.5L4)}

The true causal parameters are 1, = 1.5



Results

Relative risk, ¥,

Method Bias Coverage ESD
n =250

IPTW 0.09 0.96 0.43

TMLE 0.06 0.92 0.37

Bayesian par. 0.05 0.93 0.33

BNP 0.03 0.93 0.32

BNP missing data 0.05 0.94 0.33




Simulation 2: binary outcome, complex form

L~ N(4,22)
A|L ~ Bern{logit~*(1.3 — 0.8L)}
Y|A, L ~ (p)Bern{logit*(—0.8 — 0.1L + A)}

+ (1 — p)Bern{logit}(—2 4 0.45L)},
2exp{—2(L — 4)?}

P~ 2exp{-2(L— 47} + 2exp{ 2L~ 6}

The true causal parameters are ¢, = 1.4



Results

Relative risk
Method Bias Coverage ESD
n = 1000
IPTW 0.00 0.92 0.19
TMLE 0.02 0.91 0.16
Bayesian par. 0.33 0.19 0.13
BNP 0.04 0.95 0.13
BNP missing data 0.02 0.94 0.15




Application: ART for HIV/HCV-coinfected patients

Data from Veterans Aging Cohort Study

>

Interested in ART-regiments that include nucleoside reverse
transcriptase inhibitor (NRTI)

Treatment comparison: mitochondrial toxic NRTI (mtNRTI)
versus other NRTI

Population: co-infected patients who newly initiated an
ART-regimen that include NRTIs (either mtNRTIs or other
NRTIs) from 2002 to 2009

Outcome: all cause mortality

Confounders (L): age at baseline (years), race/ethnicity, body
mass index, diabetes mellitus, alcohol dependence/abuse, drug
abuse, year of ART initiation, exposure to other antiretrovirals
associated with hepatotoxicity, CD4 count, HIV RNA, alanine
aminotransferase (ALT), aspartate aminotransferase (AST),
and fibrosis-4 (FIB-4) score.



Relative risk

Density
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Discussion

BNP approach: Use BNP models for observed data, then
use post-processing steps to obtain causal effects

Not discussed: informative priors on unidentifiable

parameters can be used to capture uncertainty about causal
assumptions

Software (R packages):

+ BNPmediation

+ DPpackage

+ BayesTree (BART)

+ GPfit (Gaussian processes)

Perelman

School of Medicine
UNIVERSITY of PENNSYLVANIA
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