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Observational data and the g-formula



Potential outcomes

Exposure: A (continuous or discrete)

Potential outcomes: Y a

I Outcome if exposure A set to level a



Causal effects

Possible causal (target) parameters (choose one):

I E (Y 1 − Y 0)

I E (Y 1)/E (Y 0)

I E (Y 1 − Y 0|V = v)

I E (Y 1 − Y 0|A = 1)

I F−11 (p)− F−10 (p)

Note: The target parameter might not be a parameter in the model



Linking potential outcomes to observed data

So far we have only talked about hypothetical data (outcomes that
would be observed under various exposure levels).

In observational studies, we do not get to set exposure levels.

Instead, we link potential outcomes and observed data by:

I making causal assumptions

I collecting the right kind of data to make the assumptions as
plausible as possible (design)



Observed Data

I Outcome: Y

I Exposure: A

I Confounders: L

I Observed data: {Yi ,Ai , Li ; i = 1, · · · , n}



Causal assumptions

→ Consistency: if A = a then Y = Y a

→ Positivity: p(A = a|L) > 0 if p(L) > 0

→ Ignorability: Y a⊥⊥A|L

These 3 assumptions imply

E (Y |A = a, L) = E (Y a|A = a, L) = E (Y a|L)



Causal effects

We can therefore identify various target parameters from
p(Y ,A, L). For example for average causal effect:

E (Y 1)− E (Y 0) = E{E (Y |A = 1, L)} − E{E (Y |A = 0, L)}

=

∫
E (Y |A = 1, L)dF (L)−

∫
E (Y |A = 0, L)dF (L)

or, for quantiles,

P(Y a ≤ y) =

∫ y

−∞

∫
p(Y |A = a, L)dF (L)



Target parameter and nuisance parameters

Suppose our target parameter ψ is ψ = E (Y 1)− E (Y 0).

If we know p(Y ,A, L) and make causal assumptions, then we can
identify ψ.

Suppose p(Y ,A, L) is a distribution with parameters θ,
p(Y ,A, L|θ).

I θ might be high-dimensional

I We do not care about θ (nuisance parameters)

I We do not care about the form of the joint distribution

I But.... we need correctly specify it (in some sense)



Introduction to Bayesian nonparametrics



Parametric vs nonparametric

Suppose x1, · · · , xn ∼ Pθ. The parameter space of θ is Θ.

Parametric model:

I Θ has finite dimension, e.g., Θ ⊂ Rd where d ∈ N

Nonparametric model:

I Θ has infinite dimension

I So, a nonparametric model can be thought of as a large
parametric model

I Typically, the number of parameters increases with the sample
size

I Bayesian nonparametric: priors reflect uncertainty about
functional or distributional models (so distributions on
uncertain functions or distributions)



Examples

Density estimation:

I Parametric example: assume data N(µ, σ2). The
distribution is defined with just 2 parameters. Parameter space
is R×R+. Sample size does not affect number of parameters.

I Nonparametric example: assume data have distribution∑∞
k=1 πkN(µk , σ

2
k). This is an infinite mixture of normal

distributions. Prior distributions can induce clustering,
reducing the dimension (number of µ’s and σ’s) for a given
sample size n to be unknown, but at most n.



Function estimation. Suppose we have data (xi , yi ) and we are
interested in E (yi |xi ; θ).

I Parametric example: let E (yi |xi ; θ) = θ0 + θ1xi . The
parameter space is R2. We simply have 2 parameters to
estimate and this does not increase with n. (set of all possible
lines)

I Nonparametric example: let the parameter space be the set
of all functions (possibly with some smoothness constraints)



Overview

We will consider BNP approach for both density estimation and
function estimation.
Density estimation:

I We fill focus on mixture models (Dirichlet process mixtures)
I Clustering induced by prior distributions (Dirichlet process

prior)
I Sampling yields a Pólya urn
I Distribution on the partitions is a Chinese restaruant process
I The weights have stick breaking representation

Function estimation (later):

I Gaussian process models

I Bayesian adaptive regression trees



Dirichlet distribution

If random variables x1, . . . , xk have a Dirichlet distribution with
parameters α1, . . . , αk , then the probability distribution is

1

B(α)

k∏
i=1

xαi−1
i ,

where B(α) is the beta function

B(α) =

∏
i Γ(αi )

Γ(
∑

i αi )
.

I
∑k

i=1 xi = 1; xi > 0;αj > 0

I if k = 2 it’s a beta distribution

I Using MCMCpack, x< −rdirichlet(k,alpha)



Conjugate prior for Multinomial distribution

Suppose y = (y1, . . . , yk) is a vector of counts, i.e., y1 is the
number of observations in category 1. y follows a multinomial
distribution with parameters π = (π1, . . . , πk).

A conjugate prior is p(π) ∼ Dir(α).

The posterior p(π|y) is proportional to{
k∏

i=1

πyii

}{
k∏

i=1

παi−1
i

}

which is Dir(α + y).



If p(π) ∼ Dir(α) then E(πi ) = αi∑k
i=1 αi

I thus, a large value for αi (relative to other α’s) suggests πi is
likely to be large

If α1 = · · · = αk then the Dirichlet is said to be symmetric

I the single parameter is called the concentration parameter

I all k components of π have same marginal distribution

I a large value of α concentrates the distribution of πj at 1/k

I values of α close to 0 lead to distribution for πj with about
(k − 1) out of every k of simulated values being close to 0
and the others being close to 1



Dirichlet process prior

Suppose we want to specify some prior distribution P. For
example, µi ∼ P. A fully parametric choice for P would be
N(µ0, τ).

A non-parametric alternative is to assume P follows a Dirichlet
process. That is, P ∼ DP(α,P0), where

I α > 0 is the concentration parameter

I P0 is the base distribution

As described on the previously, α characterizes prior precision and
clustering.

The base distribution P0 has to have same support as P.



A Dirichlet process is a stochastic process.

I a draw from a DP can be thought of as a draw from a
probability distribution whose domain is a random variable

I even if P0 is continuous, realization of P are from a mixture
of point masses (discrete distribution), with larger values of
alpha leading to distributions that more closely approximate a
continuous distribution

We can think of P0 as our best guess for the distribution of P and
α as representing confidence in that guess. If α is very large then
P is approximately equal to P0.



Marginalize over P

Let φ1, · · · , φK be the unique values of θ1, · · · , θn, where k ≤ n.
Let nk be the number of times φk appears in (θ1, · · · , θn).
Then,

E{P(A)|θ1, · · · , θn} =
αP0(A) +

∑K
k=1 nkδφk

(A)

α + n

Thus, marginalizing (integrating out) P, results in the following
conditional probabilities:

p(θn+1 = φj |φ1, · · · , φK ) =
nj

n+α , for any j ∈ {1, · · · ,K}

p(θn+1 6∈ {φ1, · · · , φK )|φ1, · · · , φK ) = α
n+α , for any

j ∈ {1, · · · ,K}



Pólya urn

θn|θ1, · · · , θn−1 ∼
1

n − 1 + α

∑
j 6=i

δθj +
α

n − 1 + α
P0

This is a Pólya urn scheme! (suppose there are α black balls, n1
balls of color φ1, n2 balls of color φ2,. . ., nK balls of color φK , in
an urn. If you draw a non-black ball, put that ball back along with
another ball of that same color. If you draw a black ball, put the
black ball back along with a ball of color randomly drawn from P0.)

It can be shown that the joint distribution of (θ1, · · · , θn) is
invariant to order. In general:

θi |θ−i ∼
1

n − 1 + α

∑
j 6=i

δθj +
α

n − 1 + α
P0

Conclusion: DP sampling of θ’s is a Pólya urn



Chinese restaurant process

The distribution on partitions induced by a DP prior is a chinese
restaurant process

Think of all of the people sitting at table with label φj as being in
cluster j . Suppose there are currently n − 1 people sitting at K
tables. The tables are labeled φ1, . . . , φK . There are nj people at
table φj , etc. There are also infinitely many empty tables.

Consider a new person who needs to decide where to sit. They will
sit at occupied table φj with probability

nj
n−1+α

They will sit at a new, unoccupied table with probability α
n−1+α



CRP

1	 2	

P(table	1)=4/(7-1+α)	
P(table	2)=2/(7-1+α)	
P(new	table)=α/(7-1+α)	

🙂
🙂 🙂

🙂

🙂 🙂

🙂

Prior	Probabili,es	(ignores	data)	



CRP

1	 2	

P(table	1)=0.656	
P(table	2)=0.328	
P(new	table)=0.016	

🙂
🙂 🙂

🙂

🙂 🙂

🙂

If	α=0.1	



CRP

1	 2	

P(table	1)=0.25	
P(table	2)=0.125	
P(new	table)=0.625	

🙂
🙂 🙂

🙂

🙂 🙂

🙂

If	α=10	



Distribution of partitions

The partition of a DP is described by ρn = (s1, · · · , sn) with si = j
if θi = φj , the jth distinct θ-value in order of appearance. As
n→∞, the partition generated by the DP has distribution CRP(α)

p(ρn|α) =
Γ(α)

Γ(α + n)
αK

K∏
j=1

Γ(nj)



Dirichlet process mixture models

We are going to focus on models of the form:

xi |θi ∼ p(xi |θi )
θi |P ∼ P

P ∼ DP(αP0).

Today we will focus on a marginal Gibbs sampler, which is a Gibbs
sampler obtained after integrating out P. In other words, it’s based
on the CRP representation (Gibbs sampler based on partition).



Note that we could write this model

xi |θi ∼ p(xi |θi )
θi |P ∼ P

P ∼ DP(αP0).

as this model

xi |θ∗c ∼ p(xi |θ∗c), if si = c

θ∗c |P ∼ P, for c ∈ ρn
ρn ∼ CRP(n, α)

where θ∗ = (θ∗1, · · · , θ∗K ) are the unique values of θ, and
ρn = (s1, · · · , sn)



Marginal Gibbs sampler

The marginal Gibbs sampler based on CRP will alternate between:

I updating cluster membership given current values of
parameters

I updating parameters, given cluster membership



Update cluster membership

We do this one subject at a time. Given the current value of the
parameters θ∗, α, the cluser membership of everyone except
subject i , and the data, we draw subject i ’s cluster membership
from a multinomial distribution.

Denote by k−i the number of unique clusters if you exclude subject
i . Let n−i

j = (s−i = j) for j = 1, · · · , k−i

Recall prior probability of joining existing cluster:

P(si = c |s−i ) =
n−i
c

α + n − 1
, c = 1, · · · ,K−i

And prior probability of starting new cluster:

P(si 6= sj for allj 6= i) =
α

n − 1 + α



Update cluster membership

For i = 1, · · · , n,

P(si = c|rest) ∝
{

n−i
c K (xi |θ∗c), c = 1, · · · , k−i

α
∫
K (xi |θ)dP0(θ), c = k−i + 1

where K (xi |θ) is the kernel of p(xi |θ)

I If P0 is conjugate then
∫
K (xi |θ)dP0(θ) should be easy to

calculate



Update parameters

Given cluster members (s1, · · · , sn), we can sample θ∗ from

p(θ∗c |rest) ∝ P0(θ∗c)
∏

i :si=c

K (xi |θ∗c).

This is an ordinary parameter update step, where we do so within
each cluster.



Specific example

Suppose we have data x1, · · · , xn from some unknown continuous
distribution. We can use a DP approach to model it
nonparametrically:

xi |θi ∼ N(xi |µi , σ2i )

µi , σ
2
i |P ∼ P

P ∼ DP(αP0).

We will assume (for now) that α is known (often set to 1). For P0:

p0(µi |σ2i ) = N(µ0, σ
2
i /c0),

p0(σ2i ) ∼ Inv − χ2(ν0, σ
2
0).

where µ0, c0, ν0, and σ20 are values that we choose.



Update parameters

For each currently observed cluster, we can then update µ∗j and

σ2,∗j from normal and Inv-χ2 distributions.

σ2,∗j |rest ∼ Inv−χ2

(
ν0 + nj ,

ν0σ
2
0 + (nj − 1)s2j +

c0nj
c0+nj

(x j − µ0)2

ν0 + nj

)

µ∗j |rest ∼ N

 c0
σ2,∗
j

µ0 +
nj

σ2,∗
j

x j

c0
σ2,∗
j

+
nj

σ2,∗
j

,
1

c0
σ2,∗
j

+
nj

σ2,∗
j





Update clusters

For i = 1, · · · , n,

P(si = c |rest) ∝
{

n−i
c N(xi |µ∗c , σ

2,∗
c ), c = 1, · · · , k−i

α
∫
N(xi |µ, σ2)dP0(µ, σ2), c = k−i + 1

So draw si from a multinomial. If a new cluster is opened up, also
need to draw µ∗

k−i+1
and σ2,∗

k−i+1
from the prior



1	 2	

P(table	1)=4/(6+1)=0.57	
P(table	2)=2/(6+1)=0.29	
P(new	table)=1/(6+1)=0.14	

🙂
🙂 🙂

🙂

🙂 🙂

🙂

If	α=1,	prior	



1	 2	

P(table	1)	\propto	0.57*N(-1;1,1)=.57*.05	
P(table	2)	\propto	0.328*N(-1;	-2,0.25)=.328*.11	
P(new	table)	\propto	0.016*ave	of	N(-1;	mu,	sigma2)	over	prior	

🙂
🙂 🙂

🙂

🙂 🙂

🙂

If	α=1,	posterior	

µ*=1,	σ2,*=1	 µ*=-2,	σ2,*=.25	

X=-1	



Example 1: BNP approach to marginal 
structural models



Potential outcomes and causal model

Potential outcomes:

I Y a: outcome if A set to a

MSM:
E (Y a|V = v ;ψ) = h0(v ;ψ0) + h1(a, v ;ψ1),

where

I h0() and h1() are known functions

I ψ0 and ψ1 are unknown parameters

I ψ1 are causal parameters of interest

e.g., E (Y a|V = v ;ψ) = ψ00 + ψ01v + ψ10a + ψ11a× v



Data

I Outcome: Y
I We only consider continuous Y

I Treatment: A
I Set of confounders: L = (V ,W )

I V are effect modifiers of interest
I W are other confounders

I {Yi ,Ai ,Vi ,Wi ; i = 1, · · · , n}



Data cont’d

Note:

I A could be continuous or discrete

I V is typically of low dimension (1 or 2 variables) and could be
continuous or discrete

I W might be high dimensional



DDP for outcome model

Dependent Dirichlet process (DDP; MacEachern (1999)):

p(ya|l) =
∞∑

k=1

γkN(y ; ∆(a, v ;ψ, γ) + θk(l), σ2)

I infinite mixture of normals - stick-breaking representation of
DP

I ∆(a, v ;ψ, γ), defined later, ensures MSM assumption holds



Gaussian process of θ

θk(l) ∼ GP(µk(w),C (l ; η, ρ))

where
µk(w) = wβk

and ith row and jth column of C (l ; η, ρ) is

η exp
(
−ρ||li − lj ||2

)
+ 0.01δij ,

I Large η implies θ(l) is very different from linear

I Larger η penalized in loglikelihood: log|C (l ; η, ρ)|
I ρ affects the degree to which the means of subjects who have

similar L will have similar θ(l)



Estimators that we compare with BNP

1. Correctly specified regression model (reg)

2. IPTW with correctly specified propensity score (IPTW)

3. IPTW with weights truncated at 2nd and 98th percentiles
(IPTWtr)

4. Augmented IPTW (IPTWaug)

5. TMLE with correctly specified propensity score and Super
Learner for outcome model (glm, step, gam, randomforest)
(TMLE)



Causal parameters and performance metrics

True causal model:
E(Y a|V = v ;ψ) = ψ00 + ψ01v + ψ10a + ψ11a× v

I causal effect parameters: ψ10 and ψ11

For each simulation scenario, compare:

I bias

I empirical standard deviation (ESD)

I coverage probability



Simulation scenario: bimodal outcome

Wj ∼ N(0, 1), j = 1, · · · , 4
V ∼ Bern(0.5),

A ∼ Bern{logit−1(m)}
m = −0.3 +w1− 0.5w2

2 − 0.8w3 + 1.2w4− 0.2w1w4 + 0.5w2w3 + v

Y = ∆(A,V ;ψ) + g(W ) + 5(B − B) + N(0, 1), where B is
Bernoulli(0.5), g(W ) = W1 + 2W2 −W3 − 2W4

ψ = (10, 1, 1,−0.5), n = 200



Results

Parameter Method Bias Coverage ESD

ψ10: A REG 0.02 1.00 0.55
IPTW 0.01 0.98 0.81
IPTWtr 0.04 0.98 0.75
IPTWaug 0.01 0.95 0.60
TMLE 0.01 0.93 0.58
BNP 0.00 0.97 0.38

ψ11: A× V REG -0.04 1.00 0.79
IPTW -0.05 0.95 1.37

. IPTWtr -0.07 0.95 1.29
IPTWaug -0.02 0.96 0.88
TMLE -0.04 0.93 0.87
BNP 0.00 0.96 0.53



Simulation scenario: near violation of positivity assumption

I Scenario similar to Kang and Schafer (2007)

I n = 200

I V ∼Bernoulli(0.5)

I Z1, · · · ,Z4 iid N(0, 1)

I A from Bernoulli logit−1(−1Z1 + 0.5Z2 − 0.25Z3 − 0.1Z4)

I Y is from a normal with mean ∆(A,V ;ψ) + Zβ and standard
deviation 200, where β = (27.4, 13.7, 13.7, 13.7)

I ψ = (210,−50, 50, 20)



Observed confounders

I W1 = exp(Z1/2)

I W2 = Z2/(1 + exp(Z1)) + 10

I W3 = (Z1Z3/25 + 0.6)3

I W4 = (Z2 + Z4 + 20)2



Results

Parameter Method Coverage ESD

ψ10: A REG -7.51 0.92 43.57
IPTW -6.17 0.93 54.43

IPTWtr -9.59 0.94 45.40
IPTWaug -12.37 0.95 139.29

TMLE -9.34 0.90 48.52
BNP -7.68 0.93 44.35

ψ11: A× V REG 1.91 0.95 57.35
IPTW 3.36 0.93 75.64

IPTWtr 3.01 0.95 62.66
IPTWaug 2.97 0.96 204.56

TMLE 4.90 0.92 68.64
BNP 1.98 0.95 57.43



Study design and variables

I Geisinger Health System EHR

I New initiators of angiotensin-converting enzyme (ACE)
inhibitors or angiotensin II receptor blockers (ARBs)

I Women, age 65+, diabetes diagnosis, initiate treatment
2001-2008

I n = 1, 964

I Confounders: 24 variables including race, age, BMI, BP,
history of CKD, MI, CHF, stroke, cancer, etc.

I Outcome: all cause mortatlity



Causal model, results

Our casual model of interest is

E (Y a|ψ) = ψ0 + ψ1a

I A = 1 if ARB, = 0 if ACEI

I Y is log survival time

Results:

I ψ0: 3.25 [2.83, 3.72]

I ψ1: 0.17 [−0.19, 0.53]



Example 2: BNP approach to causal 
mediation



Mediation

2 Biometrics

However, in the last three papers, the causal effects are defined
within principal strata, so-called principal causal effects, and
are different from what we estimate, the natural direct and
indirect effects. In addition, Bayesian nonparametric models
have not been used in context of estimating natural direct
and indirect effects.

For estimation and identification, we approach the problem
in two parts. The first part is a flexible model for the observed
data. For this, we specify a Bayesian nonparametric model
(BNP), in particular, a multivariate Dirichlet process mixture
of normals; this will provide flexibility of modeling as well
as computational ease. However, other choices are possible.
We are careful to specify models so that the total effect is
invariant to the uncheckable assumptions, as the total effect
is estimable for randomized interventions.

The second part is a set of uncheckable assumptions that
provide identification of the causal effects of interest. For
this, we propose two different sets of assumptions. The first
is (the standard) sequential ignorability (Imai et al., 2010).
The second is a modification of the assumptions in Daniels
et al. (2012) which are weakened here by conditioning on
baseline covariates. Both of these assumptions have sensitiv-
ity parameters for which uncertainty about the (uncheckable
from data) assumptions can be characterized via prior dis-
tributions. Also, we can infer covariate-specific causal effects,
which may help researchers to understand the effect of the
intervention among populations having different characteris-
tics. Any set of identifying assumptions can be used in this
framework.

Our approach differs from existing approaches by the way
in which we completely separate the observed data model
from uncheckable identifying assumptions. For example,
VanderWeele (2010) reviews assumptions for the identifica-
tion of natural direct and indirect effects and states that
if those assumptions hold and (semi-) parametric regression
models are correctly specified (which are part of uncheckable
assumptions), then the natural direct and indirect effects are
estimable. In our approach, we distinguish the observed data
model from the uncheckable identifying assumptions. For the
former we minimize parametric modeling assumptions; for the
latter we allow informative priors to account for uncertainty
about (necessary) uncheckable assumptions. Our approach is
also different from Daniels et al. (2012) in that we accommo-
date all types of outcome, mediator, and covariate variables
via flexible, general BNP models while their approach is con-
fined to the binary outcomes without covariates.

We apply our method to the STRIDE data (Marcus et al.,
2007) which is a randomized clinical trial to evaluate the
effect of (print- and telephone-based) interventions on physi-
cal activity. This study contains several measures of processes
of change obtained from questionnaires. Our focus is on
behavioral process as a potential mediator that can affect
physical activity. The primary outcome is the amount of
weekly moderate to vigorous physical activity minutes at 12
months. We assess the causal effects for different values of age
and body mass index (BMI).

The remainder of the article is organized as follows. In
Section 2, we define the causal effects of interest conditional
on baseline covariates and propose a Bayesian nonparamet-
ric model for the observed data. Section 3 outlines two sets

Figure 1. The horizontal line from Z to Y captures the
direct effect and the lines from Z to M and M to Y captures
the indirect effect. And dashed line emitting from X implies
conditioning on covariate values.

of assumptions, each sufficient for identification. Section 4
summarizes posterior computation. In Section 5, we outline
strategies for sensitivity analysis. In Section 6, we conduct
simulation studies to assess performance of the BNP model.
In Section 7, we use our approach to estimate the causal effects
in the STRIDE data.

2. Notation and Definition of Causal Effects and
Specification of the Observed Data Model

We define a (q − 2) vector of baseline covariates, X which
are completely observed. The binary treatment is denoted
as Z. We define the potential mediator Mz as the value of
the mediator if the subject receives intervention Z = z. Then,
observed mediators are defined as Mobs = ZM1 + (1 − Z)M0.
The potential outcome Yz,Mz′ denotes the value of the outcome
that Y under intervention Z = z with mediator M set to the
value that would be observed under Z = z′. Only one potential
outcome can be observed, Yobs = ZY1,M1 + (1 − Z)Y0,M0 .

We define natural direct and indirect effects condi-
tional on baseline covariates X = x as NIE(x) = E(Y1,M1 −
Y1,M0 | x) and NDE(x) = E(Y1,M0 − Y0,M0 | x). The natural
indirect effect, NIE(x), quantifies the effect of the intervention
through the mediator for a fixed value of covariates X = x.
NIE(x) corresponds to the arrows that flow from Z to M to
Y in Figure 1.

The natural direct effect, NDE(x), quantifies the effect of
the intervention on the outcome by setting the mediator M

to its natural value M0 (the value of the mediator in the
absence of the intervention) given a fixed value of the baseline
covariates X; this corresponds to the horizontal arrow from Z

to Y in Figure 1. The total effect is the sum of two effects
TE(x) = NIE(x) + NDE(x) = E(Y1,M1 − Y0,M0 | x). After inte-
grating out the baseline covariates, we obtain the marginal
causal effects NIE, NDE, and TE.

In what follows, we first provide details on BNP models for
the observed data (Section 2.1). Then, in Section 3, we provide
two different sets of assumptions to identify the causal effects
of interest given the observed data distribution.

2.1. A Bayesian Nonparametric Model for the Observed
Data

The observed data models can be specified nonpara-
metrically. Here, we specify Dirichlet process mixtures
(DPM) of multivariate normals (Escobar and West, 1995;
Muller et al., 1996; Jara et al., 2011) for the q-
dimensional joint distribution of observed data Yobs,



Causal effects

Potential outcomes: Yz,Mz′ the value of the outcome that would
have been observed if an individual had been assigned to
intervention z with (possibly hypothetically) mediator M set to its
value under z ′

I Natural indirect effect E [Y1,M1 − Y1,M0 ]

I Natural direct effect: E [Y1,M0 − Y0,M0 ]



Identifiability

Sequential ignorability

{Yz ′,m,Mz} ⊥ Z |X = x

Yz ′,m ⊥ Mz |Z = z ,X = x ,



3. Identification from Imai et al. (2010)

To introduce a method for sensitivity to the second step of sequnetial ignorability, we provide

identification results from Imai et al. (2010),

E(Y1,M0 | X = x) =

∫
E(Y1,m | M0 = m, Z = 0, X = x)dFM0|Z=0,X=x(m)

=

∫
E(Y1,m | Z = 0, X = x)dFM0|Z=0,X=x(m) (2)

=

∫
E(Y1,m | Z = 1, X = x)dFM0|Z=0,X=x(m) (3)

=

∫
E(Y1,m | M1 = m, Z = 1, X = x)dFM0|Z=0,X=x(m) (4)

=

∫
E(Y | M1 = m, Z = 1, X = x)dFM |Z=0,X=x(m),

where both (2) and (4) follow from the second step of sequential ignorability. Equality (3) follows

from the first step of sequential ignorability.

4. Relationship between the Sequential Ignorability Assump-
tion and the Mediator Induction Equivalence Assumption

Neither set of assumptions directly imply the other. However, they are closely related to each other.

The sequential ignorability assumption is used to estimate E(Y1,M0) as follows (Imai et al. 2010)

E(Y1,M0) =

∫ ∫
E(Y1,m|M0 = m,Z = 0, X = x)dFM0|Z=0,X=x(m)dFX(x)

=

∫ ∫
E(Y1,m|Z = 0, X = x)dFM0|Z=0,X=x(m)dFX(x)

=

∫ ∫
E(Y1,m|Z = 1, X = x)dFM0|Z=0,X=x(m)dFX(x)

=

∫ ∫
E(Y1,m|M1 = m,Z = 1, X = x)dFM0|Z=0,X=x(m)dFX(x)

=

∫ ∫
E(Y |M1 = m,Z = 1, X = x)dFM |Z=0,X=x(m)dFX(x)
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BNP observed data model

(Y z
obs,i ,M

z
obs,i ,X

z
i ) ∼ Nq(µz,i ,Σz,i ),

(µz,i ,Σz,i ) ∼ Gz ,

Gz ∼ DP(αzGz),

The base distribution Gz is taken to be the conjugate
normal-inverse-Wishart distribution (NIW).

I R package: BNPmediation
(github.com/lit777/BNPMediation)

I Reference: Kim et al (2016) Biometrics



Example 3: BNP approach to causal 
inference with missing confounders



DP mixture of multivariate normals

Mueller et al. (1996) proposed:

(yi , ai , li ) ∼ N(µi ,Σi )

µi ,Σi ∼ G

G ∼ DP(αG0)

where, typically, G0 would be normal-inverse-wishart.

I problematic if many covariates

I does not easily handle discrete outcomes and covariates



Joint DP mixture model

Shahbaba and Neal (2009) proposed:

P ∼ DP(α,P0θ × P0ω)

(θi , ωi )|P ∼ P

Xi ,j |ωi ∼ p(xj |ωi ),

Yi |Xi , θi ∼ p(y |x , θi ).

I In our causal setting, X = (A, L)

I p(y |x , θi ) can be a GLM

I covariates locally independent, so computationally friendly

I Potentially puts too much weight on fit of X ’s at the cost of
y |x , which is what we care most about



Enriched DP mixture model

Wade et al. (2014) proposed:

P ∼ EDP(αθ, αω,P0)

(θi , ωi )|P ∼ P

Xi ,j |ωi ∼ p(xj |ωi ),

Yi |Xi , θi ∼ p(y |x , θi ).
P ∼ EDP(αθ, αω,P0) means Pθ ∼ DP(αθ,P0θ) and
Pω|θ ∼ DP(αω,P0ω|θ) and base measures P0 = P0θ × P0ω|θ.



Gibbs sampler

1. sample si = (si ,y , si ,x) given current values of parameters and
all other data

I extension of algorithm 8 of Neal (2000)

2. update ω∗j and θ∗j given s

I This update is generally very easy (either conjugate or
standard Bayesian calculations)

3. Update hyperparameters such as αω and αθ

4. Data augmentation step: given cluster membership and
current values of parameters, draw from posterior of Lij for
any patient i who has missing value for covariate j



S update: general
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Simulation 1: binary outcome, simple form

L1 ∼ Bern(0.2)

L2 ∼ Bern{logit−1(0.3 + 0.2L1)}
L3 ∼ N(L1 − L2, 1

2)

L4 ∼ N(1 + 0.5L1 + 0.2L2 − 0.3L3, 2
2)

A ∼ Bern{logit−1(−0.4 + L1 + L2 + L3 − 0.4L4)}
Y ∼ Bern{logit−1(−0.5 + 0.78A− 0.5L1 − 0.3L2 + 0.5L3 − 0.5L4)}

The true causal parameters are ψrr = 1.5



Results

Relative risk, ψrr

Method Bias Coverage ESD

n = 250
IPTW 0.09 0.96 0.43
TMLE 0.06 0.92 0.37
Bayesian par. 0.05 0.93 0.33
BNP 0.03 0.93 0.32

BNP missing data 0.05 0.94 0.33



Simulation 2: binary outcome, complex form

L ∼ N(4, 22)

A|L ∼ Bern{logit−1(1.3− 0.8L)}

Y |A, L ∼ (p)Bern{logit−1(−0.8− 0.1L + A)}
+ (1− p)Bern{logit−1(−2 + 0.45L)},

p =
2 exp{−2(L− 4)2}

2 exp{−2(L− 4)2}+ 2 exp{−2(L− 6)2}

The true causal parameters are ψrr = 1.4



Results

Relative risk
Method Bias Coverage ESD

n = 1000
IPTW 0.00 0.92 0.19
TMLE 0.02 0.91 0.16
Bayesian par. 0.33 0.19 0.13
BNP 0.04 0.95 0.13

BNP missing data 0.02 0.94 0.15



Application: ART for HIV/HCV-coinfected patients

Data from Veterans Aging Cohort Study

I Interested in ART-regiments that include nucleoside reverse
transcriptase inhibitor (NRTI)

I Treatment comparison: mitochondrial toxic NRTI (mtNRTI)
versus other NRTI

I Population: co-infected patients who newly initiated an
ART-regimen that include NRTIs (either mtNRTIs or other
NRTIs) from 2002 to 2009

I Outcome: all cause mortality

I Confounders (L): age at baseline (years), race/ethnicity, body
mass index, diabetes mellitus, alcohol dependence/abuse, drug
abuse, year of ART initiation, exposure to other antiretrovirals
associated with hepatotoxicity, CD4 count, HIV RNA, alanine
aminotransferase (ALT), aspartate aminotransferase (AST),
and fibrosis-4 (FIB-4) score.



Figure S1: Trace plot and posterior density plot of the causal effect in the
HIV/HCV cohort study example.
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Discussion
BNP approach: Use BNP models for observed data, then 
use post-processing steps to obtain causal effects

Not discussed: informative priors on unidentifiable 
parameters can be used to capture uncertainty about causal 
assumptions

Software (R packages):
w BNPmediation
w DPpackage
w BayesTree (BART)
w GPfit (Gaussian processes)



Thanks!
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