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Complexity of Safety Data
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Need for Graphs

Safety data present many challenges with regard to analysis and
interpretation:

— Clinical trials generally not sufficient to detect safety signals

— Safety data are multidimensional and interrelated in nature and some key
safety concerns may not be unknown prior to trial

— Pathological features of diseases lead to heterogeneous subpopulations and
data with non-normal distributions

Using tabular formats for safety data results in large volumes of
output

* Descriptive summary tabular outputs and individual patient data are
rarely analytical

There is great benefit to use visual methods to accompany or
use with tabular formats or replace tabular formats altogether



Need for Graphs

Harrell (2005)

* Graphs, Not Tables!
* Have pity on statistical and medical reviewers
* Difficult to see patterns in tables
» Substituting graphs for tables increases efficiency of review

Wittes (1996)

A plethora of tables and graphs that describe safety may bury
some true signal in a cacophony of numbers

Vlachos Graphics are an underutilized resource in safety

(2015)

McKain et al Traditional case reviews and TLs not sufficient for safety

(2015) surveillance principles — use graphs

Regulatory ICH-E3, FDA Safety Review Guidance - recommendations for using

Guidance

visuals




Graphs Principles

* Duke (2014), Duke et al (2015) - Good What Makes a Good Visualization?
graphing principles and good graphic T
design

— Graphs for safety data must also
adhere to good graphing principles
and good design for graph
construction

— There must be a goal, a story, ‘
information to be delivered and a

. . . . ful 4
visual form to make visualization saizalion

successful

— These aspects are especially in the
context of safety monitoring in
order to help identify safety signals
early using visual forms

DavidMcCondiess taken from new book find out more
" isBooutdret Knowledge is Beauttul biLly/KB_Books

Source: http://www.informationisbeautiful.net/2015/workshops-
are-beautiful-learn-our-dataviz-process/



http://www.informationisbeautiful.net/2015/workshops-are-beautiful-learn-our-dataviz-process/

Asking the Right Question

* |n order to effectively use visual analytics in safety
monitoring, it is a good idea to begin with some
guestions with regards to safety data under
consideration



Asking the Right Question

 Examples of some questions one may ask:
— Which AEs are elevated in treatment versus control?
— What is the constellation of AEs that come with the drug?
— |s there any evidence of a dose-response-relationship?
— |s the potential AE of interest increasing over time?
— |s there a difference in the time to the first event across
treatment groups?
— Which AEs are elevated in patient subgroups?
— What are the risk factors of the AE?
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The most appropriate graph type depends on the clinical question and data available



Some Considerations and Graph Choices

Main stream graphs in the analysis of safety data

Distribution of ASAT by Time and Treatment

Distribution of Maximum Liver Function Test Values by Treatment

Cumulative Distribution of Time to First AE
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Some Considerations and Graph Choices

Main stream graphs in the analysis of safety data
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Some Considerations and Graph Choices

Main Stream Graphs in the Analysis of Safety Data

atisr 5152 White fale Age: 48 Crug A Peak TBL vs Peak ALT
a4 {.e-""e__e_n 1960 patients on Drug X, 1962 on Drug C
3 et 1000
5 n.r-“#%g cholestasis range Hy's Law range
14 H—M"
e
F a Drug X
20 9
3 . - : . _ 100 o Drug C oh ~
P Patient 5543 Whits Fernale Age: 48 Drug E & A
[ Mo Aa N
5 3 o a
A o /5
: B//B-r—e\ Fﬁ roACA ap e
2 o - =K Y
e £ :\37 / § a Pl . .
- e H— & = — 10 O,
= . - = A
) : ‘_*1__‘_& ; a— s33331%e: o, A
N ATQD 8 A A
Fay
T T T T T T T T T T T T FaVa¥ {% A
50 a a0 100 150 200 -50 a 80 100 150 200 o 6o o
Days normal range 3 Temple's Corollary range
[——ifT ——=—— 54T —%—— ALiFH —&——BILTOT Study Daws | 0.1 "
For ALAT, ASAT and ALKPH, the Clinical Goncern Level is 2 ULN; 01 1.0 10.0 100.0
For BILTOT, the CCL is 1.6 ULN: whera ULN iz the Uppar Level of Normal Range Peak ALT, xXULRR
Subject ID = 12345
Adverse Events for Patient Id = xex-xo0 25 — e 200
24Feb13 OSder13 14mMar1d 23Marl3 01Apr13 10Apr13 19Apr13 2BApr1d 07Mayl3 16hiay13 25Mey13 03n13 12013
L L ] ] I 1 ] ] L I ] ] 1
Rl Vil g =163
prATs A
tPRLdoToN ETE CERaTE. R e
e
HeaeohE
sFRLemo ETE DERMTE .
DIINESS £ <
DLZZMESS g | 1 0o, B
e DU ——— ] & &
DIZZRESS 3 =
EFRLIQUTION EITE DERMATTE:
gy ——— ]
DEZMES A I so
T T T T T T T T T T T T T T T T T T L) T T T
202 f b 14 13 22 26 30 34 23 42 46 50 54 BB 62 66 0 T4 7B 42 Bd

Study Days

[Severity :  m— O

WOCERATE I SE'ERE |

240




Some Considerations and Graph Choices

* Not so main stream graphs in the analysis of safety data

(%) Comparison of On=Therapy Serious Adverse Events By Treatment
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Figure 10. A Recursive Partition Tree for AE Occurrence Prediction
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Some Considerations and Graph Choices

* Borrow ideas from other areas
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Enhancing Visual Analytics and Safety Monitoring
 Example: KM Plot — highlight details

Paper PO10
Clinical Adverse Events Data Analysis and Visualization

Shi-Tao Yeh, GlaxoSmithKline, King of Prussia, PA.
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Enhancing Visual Analytics and Safety Monitoring

* Enhance - make the graphs more useful in some
way

- Using other graphics outputs by borrowing new and
informative visualization and tools, e.g., from visual
analytics of big data, e.g., D3.js:
https://github.com/d3/d3/wiki/Gallery

- Incorporating Bayesian ideas in graphs, where
applicable

- Using readily available open source resources that are
freely available


https://github.com/d3/d3/wiki/Gallery

Enhancing Visual Analytics and Safety Monitoring

* Interactivity — Allow user to interact with the graphic - Examples

Most Frequent On-Therapy Adverse Events Sorted by Risk Difference

Proportion Risk Difference with 0.95 CI
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Enhancements

*  https://www.rdocumentation.org/packages/HH/vers
ions/3.1-34/topics/AEdotplot

* https://becca-krouse.shinyapps.io/aetableapp/

e https://rhoinc.github.io/viz-library/examples/0008-
safetyExplorer-default/ae-table/

T T T T T T T T
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Less Risk More Risk
#* Treatment (N=216) 4A Control (N=431)



https://becca-krouse.shinyapps.io/aetableapp/
https://becca-krouse.shinyapps.io/aetableapp/
https://rhoinc.github.io/viz-library/examples/0008-safetyExplorer-default/ae-table/

Incorporating Bayesian Thought

* Bayesian approaches

— Provides a single, coherent framework in which diverse
elements of the data can be modeled

— Can handle multiplicity issue
— Can be used in the modeling and prediction
— Incorporates prior information

— Does not rely on asymptotic properties in dealing with rare
events

“Safety assessment is one area where frequentist strategies
have been less applicable. Perhaps Bayesian approaches in
this area have more promise.” (Pharmaceutical Report, 2002)
— G.Chi, H.M. Hung, R. O*Neill



Incorporating Bayesian Thought

 Example: Confidence Interval vs. Credible Interval

— Confidence interval is a frequentist term meaning that with a large
number of repeated samples, N% of times, the true value of the
parameter will fall within the range of LCL — UCL

— Credible Interval is a Bayesian term, can also be called 'Bayesian
Posterior Interval'.

* A Bayesian credible interval incorporates information from the
prior distribution into the estimate, while confidence intervals are
based solely on the data.

* A N% credible interval for the parameter t is LCL— UCL means
that the posterior probability that it lies in the interval from LCL —
UCL is O.N.



Incorporating Bayesian Thought

 Example — Rare events setting

— Meta-Analysis setting for an AE of special interest — Bayesian approach to the rescue!

Table 1. CV Rare Adverse Events: Conventional Approach

Events Exposure pt- Event rates /elaU/Risk
years
Study | Drug placebo| Drug placebo| Drug 95%CL  |placebo  95%CL ER l 95% CL Figure 1. Display of Data: Bayesian vs Conventional Approaches \/
1 0 1 59.5 353 00 | K )| 283 ( 4.0 ,2011) ( , ) . . )
2 6 2 100.9 36.1 59.5 (26.7,132.4) 554 (139, 2215)| 1.07 (0.22, 532) Bayesmn Ana|y5|5 Conventional Approach
3 2 1 31.1 25.7 64.3 (16.1,257.1) 389 ( 55 ,276.2) 165 (0.15,18.23)
4 7 o] 118.1 48.6 59.3 (283, 124.3) 00 ( B ) ( , )
5 0 ] 102.8 73.4 0.0 ( ’ ) 00 ( B ) ( ; )
6 0 1 53.0 18.1 0.0 ( : )| 55.2 ( 7.8 ,392.2) ( ; )
7 o] o] 47.8 5.0 0.0 ( B ) 00 ( B ) ( ) )
8 0 0 | 1213 347 00 | , )| 00 , ) ( , ) —_—l -_—t
9 3 3 128.9 1209 233 (75, 722) 248 ( 80, 769 )| 0.94 (019, 4.65) -_-—
10 1 0 90.9 19.5 1.0 ( 15, 781 ) 00 ¢ ) ( )
11 1 0 524 209 19.1 (2.7 ,1355) 00 ( s ) ( , )
12 20 3 948.6 37.2 211 (136, 32.7 )| 80.6 ( 260,250.1) 0.26 (0.08, 0.88 )
Total 40 11 1855.3 475.4 0.92 (044, 192 )

Overall relative risk estimated by the MH approach

—_— —_—
Table 2. CV Rare Adverse Events: Bayesian Approach
Events Exposure pt- Event rates Bayes Relative Risk 5 I = T
- - - -
Drug placebo| Drug placebo |Bayes rate 95% ClI Bayes rate 95% ClI RR 95% Cl r T T T T T T T y T T
0.001 0.01 0.10 1.0 10 100 0.01 0.10 1.0 10 100
0 1 59.5 353 11.6 (043 , 62.0) 47.5 (6.86 , 157.8) (0008, 3.16) — -
6 2 1009 361 66.1 (27.89,129.4) 741 (17.14, 200.1) (0.238, 4.42)
2 1 311 25.7 86.0 (19.89, 232.3) 65.3 (9.42 , 216.8) (0.199, 11.40)
7 0 1181 486 649 (29.24,1221) 143 (052 , 759) 0.702 , 129.83 )
0 0 1028 734 67 (025 , 359) 94 (034 , 503) 27.85 )
0 1 53.0 18.1 13.1 (048 , 69.6) 92.7 (13.38 , 307.8)
0 0 47.8 5.0 145 (053 , 77.2)| 1386 (506 , 737.8)
0 0 1213 347 57 (021 , 304) 200 (073 , 106.3)
3 3 128.9 120.9 28.5 (846 , 68.0) 30.4 (9.01 , 725)
1 0 90.9 19.5 185 (266 , 61.3)| 355 (1.30 , 189.2) 052 (0.040, 16.84) . :
1 0 52.4 20.9 32.0 (4.62 ,106.3) 33.2 (1.21 , 176.5) 096 (0.075, 31.31) ICase StUdy' Meta-AnalySIS Of Rare Adverse Eventsl
20 3 9486  37.2 218 (13.70, 326)| 987 (2930, 2357) 022 (0082, 0.79)
40 11 1855.3 475.4 0.94 (0.480, 1.81)

Source: https://www.kjcstatistics.com/wp-content/uploads/2016/07/KJC Meta-Analysis-for-Rare-Adverse-Events.pdf



https://www.kjcstatistics.com/wp-content/uploads/2016/07/KJC_Meta-Analysis-for-Rare-Adverse-Events.pdf

Incorporating Bayesian Thought

* Bayesian modeling is a natural choice to incorporate the
complex hierarchical structure of the AE data

* Hierarchical mixture models by Berry & Berry(2004)

— Three-level hierarchical mixed model
* The most basic level is type of AE.

* The second level is body system, each of which contains a number of types of
possibly related Aes

* The highest level is the collection of all body systems.

e Our analysis allows for borrowing across body systems, but there is greater
potential-depending on the actual data-for borrowing within each body system.

— Current traditional approach of flagging routinely collected AEs based
on unadjusted p-values or Cls can result in excessive false positive
signals

— Simulation showed that the FWERs/FDRs for Bayes model results are
much lower



Incorporating Bayesian Thoughts

« Example — Volcano Plot using P-value (frequentist) versus use of OR (Bayesian) (Xia, Ma,
Carlin 2011)

— Bayesian inference on volcano plot
— AE,; is flagged if
* Pr( 6, >d*| Data) > p, where 6y,is log-OR in Binomial models and log-RR in Poisson

models
* d* and p are pre-specified constants
Frequentist Using Fishers Exact test Bayesian Version Using P(OR > 1)
) = x Ecchymosis X -
& « " Sinusis ® i Sinusitis ®
R * Herpeg Simplex 1 Fatgue® T @
E . = E*':"-“"a“g"'e é ngasiéugi:np\exi Ecchymosis X
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Figure 1 Volcano plot of risk differences versus unadjusted Fisher’s exact test p-values. Figure 2 Volcano plot of posterior estimates from binomial hierarchical model with mixture prior.




Visual Tool Selection

* There are many tools (commercial and free) available
that can be used in visual analytics in safety monitoring

Older Tools <

Newer Tools <




Visual Analytics and Safety Monitoring Efforts

— Some collaborative commendable efforts, e.g.,

* CTSPedia
- http://www.ctspedia.org/do/view/CTSpedia/AllGraphicalEntries

e A Picture is Worth a Thousand Tables
- http://www.elmo.ch/doc/life-science-graphics/

©2012

A Picture is Worth a Thousand

A Picture Tables
is Worth a

Anderas Krause
Mucharl 0'onnell Foiors

Thousand Tables

Graphics in Life Sciences

Free >

Preview Editors: Krause, Andreas, OConnell, Michael (Eds.)



http://www.ctspedia.org/do/view/CTSpedia/AllGraphicalEntries
http://www.elmo.ch/doc/life-science-graphics/

Concluding Remarks

Visual analytics can help in safety monitoring and safety data analysis

Utilizing visualization tools can help exploration and substantially improve
information gain for safety monitoring activities

Consider the important principles of graph construction in safety
monitoring

The visual type and tool used depend on the questions under
consideration in the safety monitoring activity

Various visual enhancements tools available for the end-user allowing for
efficient safety monitoring

Bayesian modeling is a natural choice to incorporate the complex
hierarchical structure of the AE data

Embrace new ideas



Time to Embrace New Ideas!

too busy to try new ideas.
buffer-media-uploads.s3.amazonaws.com

It's easy to get stuck in your ways.. Don't be
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