The Technical
Incerto

Statistical
Consequences

of Fat Tails

REAL WORLD PREASYMPTOTICS,
EPISTEMOLOGY, AND APPLICATIONS

Papers and Commentary

Nassim Nicholas Taleb




P
o

N ==

e o <

SN

S = <
INCERTO %‘\ \\ TALEB
NN =




CENTRAL LIMIT — BERRY-ESSEEN

A

Fuhgetaboudit

Lévy-Stable a<2
L1

Supercubic a< 3
Subexponential

CRAMER

CONDITION
Gaussian from Lattice Approximation
Thin - Tailed from Convergence to Gaussian
Bernoulli COMPACT

SUPPORT

Degenerate

LAW OF LARGE NUMBERS (WEAK) CONVERGENCE ISSUES

Figure 2.3: The tableau of Fat tails, along the various classifications for convergence purposes (i.e., convergence
to the law of large numbers, etc.) and gravity of inferential problems. Power Laws are in white, the rest in

yellow. See Embrechts et al [61].
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Fattest tails [ranking]

Pandemics
Wars
Cultural phenomena
Inflation
Technology companies, Size of cities
Earthquakes (energy)
Financial Returns



A- If the variable is "two-tailed", that is, its domain of support D= (-c0,00), and

where p,s(x) ry plx,o+6)+p(x,0—0)
1. There exist a "high peak" inner tunnel, A= (a3, a3) for which the é-perturbed
o of the probability distribution p®(x)>p(x) if x € (az,a3)
2. There exists outer tunnels, the "tails", for which p‘(x)z p(x) if x € (—o0, a7)
or x € (ag,00)

“Peak”
(a2, a3)

1
{a1,82,a3,04} = qp — 2

“Shoulders™
(ay, @),
(a3, ay)

Right tail

Left tail

Figure 4.4: Where do the tails start? Fatter and fatter fails through perturbation of the scale param-
eter o for a Gaussian, made more stochastic (instead of being fixed). Some parts of the probability
distribution gain in density, others lose. Intermediate events are less likely, tails events and moderate
deviations are more likely. We can spot the crossovers ay through ay. The "tails” proper start at as on

the right and ayon the left.




. Figure 2.2: [so-densities for
two independent Gaussian
| distributions. The line shows

x +y =4.1. Visibly the maxi-
mal probability is for x = y =
2.05.




Figure 2.3: Iso-densities for
two independent Fat tailed
distributions (in the power
law class). The line shows
| x+y = 36. Visibly the max-
imal probability is for either

lx=36—€ory =36—¢,
with € going to 0 as the sum
x +y becomes larger, with
the iso-densities looking more
| and more like a cross.
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I The killers

Deaths per day, Ebola-affected countries*

Latest
& Ebola!®
Lassa fever? O

1ubercul.os15

Diarrhoea

HIV/AIDS

*Guinea, Liberia, Nigeria and Sierra Leone
Dec 2013-Aug 11th 2014 *West Africa

Sources: WHO; US Centres for Disease
Control and Prevention; The Economist



Dr. Phil appears on Laura Ingraham and says we don’t shut the country
down for automobile deaths, cigarette related deaths, and swimming
pool deaths

» DR PHIL MCGRAW | HOST OF "DR PHIL" -’INGRAHN
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DR PHIL REVEALS HEALTH RISKS OF COVID-19 SHUTDOWN | _commcte

0:09 | 3.3M views .. 98% OF FEEDING AMERICA'S FOOD BANKS ARE SEEING AN INCREASE IN DEM
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Fig. 1. A high variance lognormal distribution: 85% of observations fall below the mean; half the observations fall below 13% of the mean. The
lognormal has milder tails than the Pareto which has been shown to represent pandemics.
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Fig. 2. A Pareto distribution with a tail similar to that of the pandemics. It makes no sense to forecast a single point. The “mean” is so far away
you almost never observe it. You need to forecast things other than the mean. And most of the density is where there is noise.




Black Swan

(2007)

LEARNING FROM MOTHER NATURE, THE OLDEST AND THE WISEST 317

prove how globalization takes us into Extremistan: the notion of species
density. Simply, larger environments are more scalable than smaller
ones—allowing the biggest to get even bigger, at the expense of the small-
est, through the mechanism of preferential attachment we saw in Chapter
14. We have evidence that small islands have many more species per
square meter than larger ones, and, of course, than continents. As we
travel more on this planet, epidemics will be more acute—we will have a
germ population dominated by a few numbers, and the successful killer
will spread vastly more effectively. Cultural life will be dominated by
fewer persons: we have fewer books per reader in English than in Italian
(this includes bad books). Companies will be more uneven in size. And
fads will be more acute. So will runs on the banks, of course.

Once again, I am not saying that we need to stop globalization and
prevent travel. We just need to be aware of the side effects, the trade-
offs—and few people are. I see the risks of a very strange acute virus
spreading throughout the planet.



Preasymptotics for
Summands

* There is no such thing as infinite
summands in the real world

* n “large” but not asymptotic is not
necessarily in the perceived
distributional class
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I A non-negative continuous random variable X has a fat-tailed distribution,
if its survival function S(z) = P(X > z) is regularly varying, formally

S(z) = L(z)x—%, where L(z) is a slowly varying function, for which
L(tx

limgz — 0o (@) — 1 for t > 0 [9], [10], [11]. The parameter « is known
as the tail parameter, and it governs the fatness of the tail (the smaller o the
fatter the tail) and the existence of moments (E[XP] < oo if and only if
a > p).




Table 2.1: Corresponding ny, or how many observations to get a drop in the error around the mean for
an equivalent a-stable distribution (the measure is discussed in more details in Chapter 7). The Gaussian
case is the « = 2. For the case with equivalent tails to the 80/20 one needs at least 10" more data than
the Gaussian.

Svm:

Consequence 1 Fughedaboudit - -
The law of large numbers, when it works, works too slowly in the real world. 2 | 6.09x10'2  2.8x10°  1.86x 101

574,634 895952 1.8 x 10°

This is more shocking than you think as it cancels most statistical estimators. See
Figure 2.4 in this chapter for an illustration. The subject is treated in Chapter 7 and »
distributions are classified accordingly. 3 567 613 737

5,027 6,002 8,632

171 186

77 79
44 44
30 30




E|Sp=X1+X2+...+Xp|

10 -

Cauchy (k=1)
Pareto 1.14
Cubic Student T

Gaussian (k=0)

Degrees of
Fat Tailedness



Behavior of sums before the limit

Definition 1 (the x metric). Let X,,..... X, be i.id. random variables with finite mean, that is E(X) < +oco. Let S, =
X1+ X2 +...+ X, be a partic m. Let Mi(n) = E(|S,, — E(S,)|) be the expected mean absolute deviation from the mean
for n summands. Define the "rate" of convergence for n additional summands starting with ng:

L
PR S, ... I . R T
Kng,n = min {m,.,‘u “Ming) (n.)) SNy = 1._...,}.

Ky, is indicative of both the rate of convergence under the law of large number,
and for x, — 0, for rate of convergence of summands to the Gaussian under the
central limit, as illustrated in Figure 7.2.
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Max / Sum ratio
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Max to Sum ratio for S&P500 daily returns

A single data-point rejects any clear convergence for the 3rd or 4th moments
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Stable Dist Equiv

A. Equivalence for stable distributions
For all ng and n > 1 in the Stable & class with & > 1:

K(ng,n) = 2—-aq,

simply from the property that .
M(n) = n=M(1)



WITTGENSTEIN’S RULER: WAS IT REALLY A "10 SIGMA EVENT"?

=] N THE SUMMER OF 1998, the hedge fund called "Long Term Capital
Management" (LTCM) proved to have a very short life; it went
bust from some deviations in the markets -those "of an unex-
pected nature”. The loss was a yuuuge deal because two of the
partners received the Swedish Riksbank Prize, marketed as the
"Nobel" in economics. More significantly, the fund harbored a large number of
finance professors; LTCM had imitators among professors (at least sixty finance
PhDs blew up during that period from trades similar to LTCM’s, and owing
to risk management methods that were identical). At least two of the partners
made the statement that it was a "10 sigma" event (10 standard deviations),
hence they should be absolved of all accusations of incompetence (I was first
hand witness of two such statements).

Let us apply what the author calls "Wittgenstein’s ruler": are you using the ruler
to measure the table or using the table to measure the ruler?

Assume to simplify there are only two alternatives: a Gaussian distribution
and a Power Law one. For the Gaussian, the "event" we define as the survival
function of 10 standard deviations is 1 in 1.31 x 1023, For the Power law of the
same scale, a student T distribution with tail exponent 2, the survival function
is 1in 203.

What is the probability of the data being Gaussian conditional on a 10 sigma
event, compared to that alternative?

We_start Yith Bayes’ rule. P(A|B) = P(A,),'(’é? 2) Replace P(B) = P(A)P(B|A) +
P(A)P(B|A) and apply to our case.
P(Gaussian|Event) =

P(Gaussian) P(Event|Gaussian)
(1 — P(Gaussian))P(Event|NonGaussian) + P(Gaussian) P(Event|Gaussian)

P(Gaussian) P(Gaussian|Event)

0.5 2x 102
0.999 2x10°18
0.9999 2x10717
0.99999 2 x 10716
0.999999 2x10°15
1 1

Moral: If there is a tiny probability, < 10719 that the data might not be Gaussian,
one can firmly reject Gaussianity in favor of the fat tailed distribution. The
heuristic is to reject Gaussianity in the presence of any event > 4 or > 5 STDs
-we will see throughout the book why patches such as conditional variance are
inadequate and can be downright fraudulent.”
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Figure 2.13: The Masquerade Problem (or Central Asymmetry in Inference). To the left, a degen-
erate random variable taking seemingly constant values, with a histogram producing a Dirac stick. One
cannot rule out nondegeneracy. But the right plot exhibits more than one realization. Here one can
rule out degeneracy. This central asymmetry can be generalized and put some rigor into statements like
“failure to reject” as the notion of what is rejected needs to be refined. We produce rules in Chapter 22.

dist] -*— "True"
dist2 distribution
dist3

dist4 \ Distributions

dist5

dist6 that cannot be
dist? ruled out
dist8
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ruled out
Observed Generating
Distribution Distributions
Observable —————— THE VEIL ———— Nonobservable

Figure 2.14: "The probabilistic veil”. Taleb and Pilpel [228] cover the point from an epistemological
standpoint with the "veil” thought experiment by which an observer is supplied with data (generated by
sonteone with "perfect statistical information”, that is, producing it from a generator of time series). The
observer, not knowing the generating process, and basing his information on data and data only, would
have to come up with an estimate of the statistical properties (probabilities, mean, variance, value-at-risk,
etc.). Clearly, the observer having incomplete information about the generator, and no reliable theory
about what the data corresponds to, will always make mistakes, but these mistakes have a certain pattern.
This is the central problem of risk management.



Consequence 8

The gap between disconfirmatory and confirmatory empiricism is wider than in situa-
tions covered by common statistics i.e., the difference between absence of evidence and
evidence of absence becomes larger.



Consequence 2

The mean of the distribution will rarely correspond to the sample mean; it will have a
persistent small sample effect (downward or wpward) particularly when the distribution
is skewed (or one-tailed).

This is another problem of sample insufficiency. In fact, there is no very fat tailed- one
tailed distribution in which the population mean can be properly estimated directly
from the sample mean —rare events determine the mean, and these, being rare, take a
lot of data to show up'®. Consider that some power laws (like the one described as
the "80/20" in common parlance have g2 percent of the observations falling below the
true mean). For the sample average to be informative, we need orders of magnitude
more data than we do (people in economics still do not understand this, though
traders have an intuitive grasp of the point). The problem is discussed briefly further
down in 2.7, and more formally in the "shadow mean" chapters, Chapters 13 and 14.
Further, we will introduce the notion of hidden properties are in 2.7. Clearly by the
same toke, variance will be likely to be underestimatwd.



Q.2 THE INVISIBLE TAIL FOR A POWER LAW

Consider K, the maximum of a sample of 7 independent identically distributed
variables in the power law class; K, = max (X1, X, ..., X»). Let ¢(.) be the density
of the underlying distribution. We can decompose the moments in two parts, with
the "hidden" moment above Kj, as shown in Fig 9.6:
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Figure 2.26: Shadow Mean at work: Below: Inverse Turkey Problem —T The unseen rare event is positive.
When you look at a positively skewed (antifragile) time series and make (nonparametric) inferences about
the unseen, you miss the good stuff an underestimate the benefits. Above: The opposite problem. The
filled area corresponds to what we do not tend to see in small samples, from insufficiency of data points.
Interestingly the shaded area increases with model error.

Table 2.4: Shadow mean, sample mean and their ratio for different minimum thresholds. In bold the
wvalues for the 145k threshold. Rescaled data. From Cirillo and Taleb [46]

Thresh.x10° | Shadowx 10" | Samplex107 | Ratio
50 1.9511 1.2753 1.5299
100 2.3709 1.5171 1.5628
145 3.0735 1.7710 1.7354
300 3.6766 2.2639 1.6240
500 4.7659 2.8776 1.6561
600 5.5573 3.2034 1.7348




Consequence 5

Robust statistics is not robust and the empirical distribution is not empirical.

Crash Beliefs From Investor Surveys

William N. Goetzmann Dasol Kim Robert I. Shiller
Yale School of Management, Yale Weatherhead School of Yale University
University Management, Case Western

Reserve University

Draft: March 19,2016
Please do not quote without permission

Abstract: Historical data suggest that the base rate for a severe, single-day
stock market crash is relatively low. Surveys of individual and institutional
investors, conducted regularly over a 26 year period in the United States,
show that they assess the probability to be much higher. We examine the
factors that influence investor responses and test the role of media
influence, We find evidence consistent with an availability bias, Recent
market declines and adverse market events made salient by the financial
press are associated with higher subjective crash probabilities, Non-
market-related, rare disasters are also associated with higher subjective
crash probabilities.

Keywords: Crash Beliefs, Availability Bias, Investor Surveys

JEL: GOO, G11, G23, E03, GO2

Figure 8.2: The base rate fal-
lacy, revisited —or, rather
in the other direction. The
"base rate” is an empirical
evaluation that bases itself on
the worst past observations,
an error identified in [212]
as the fallacy identified by
the Roman poet Lucrecius in
De rerum natura of thinking
the tallest future mountain
equals the tallest on has previ-
ously seen. Quoted without
permission after warning the
author.



Consequence 3

Standard deviations and variance are not useable.
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Figure 3.8: A simulation of
the Relative Efficiency ratio
of Standard deviation over
Mean deviation when inject-
ing a jump size /(1+a) x o,
as a multiple of ¢ the stan-
dard deviation.

Figure 3.9: Mean deviation
vs standard deviation for a fi-
nite variance power law. The
result is expected (MD is the
thinner distribution), compli-
cated by the fact that stan-
dard deviation has an infi-
nite variance since the square
of a Paretan random variable
with exponent « is Paretan
with an exponent of ta. In
this example the mean devia-
tion of standard deviation is
5 times higher.

Figure 3.10: For a Gaussian,
there is small difference be-
tween MD and STD.



Consequence 4

Beta, Sharpe Ratio and other common hackneyed financial metrics are uninformative.

Table D.1: Maxinum contribution to the fourth moment from a single daily observation

Security Max Q Years.
Silver 0.94 46.
SP500 0.79 56.
CrudeQOil 0.79 26.
Short Sterling 0.75 17.
Heating Oil 0.74 31.
Nikkei 0.72 23.
FTSE 0.54 25.
JGB 0.48 24.
Eurodollar Depo 1M 0.31 19.
Sugar #11 0.3 48.
Yen 0.27 38.
Bovespa 0.27 16.
Eurodollar Depo 3M 0.25 28.
CcT 0.25 48.

DAX 0.2 18.



Consequence 6

Linear least-square regression doesn’t work (failure of the Gauss-Markov theorem).
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Figure 2.4: In the presence of fat tails, we can fit markedly different regression lines to the same story (the
Gauss-Markov theorem doesn’t apply anymore). Left: a reqular (naive) regression. Right: a regression line
that tries to accommodate the large deviation —a "hedge ratio” so to speak, one that protects the agent from
a large deviation, but mistracks small ones. Missing the largest deviation can be fatal. Note that the sample
doesn’t include the critical observation, but it has been guessed using "shadow mean” methods.
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And of course, for infinite variance:

lim E(R?) =0.

E(€2)—+00

When € is T-distributed with & degrees of freedom, clearly €2 will follow an FRatio
distribution (1, ) —a power law with exponent .
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Figure 5.11:  An infinite
variance case that shows a
high R* in sample; but it
ultimately has a value of

0. Remember that R? is
stochastic. ~ The problem
greatly resembles that of P
values in Chapter 17 ow-
ing to the complication of a
metadistribution in [0, 1]




Consequence 9

Principal component analysis (PCA) and factor analysis are likely to produce spurious
factors and loads.

o

Figure 2.24: Spurious PCAs Under Fat Tails: A Monte Carlo experiment that shows how spurious
correlations and covariances are more acute under fat tails. Principal Components ranked by variance
for 30 Gaussian uncorrelated variables, n=100 (above) and 1000 data points, and principal components
ranked by variance for 30 Stable Distributed ( with tail o = % , symmetry B =1, centrality p = 0, scale
o = 1) (below). Both are "uncorrelated” identically distributed variables. We can see the "flatter” PCA
structure with the Gaussian as n increases (the difference between PCAs shrinks). Such flattening does
not occur in reasonable time under fatter tails.




Consequence 7

Maximum likelihood methods can work well for some parameters of the distribution
(good news).






