## Infinite Parameter Estimates in Toxicology Studies

## John E. Kolassa ${ }^{1}$ and Juan Zhang

Rutgers, the State University of New Jersey and Allergan Pharmaceuticals

$$
\text { June 17, } 2019
$$

## Motivating Example

Lee [2017] presents data on Hg concentrations of 133 fish from 20 different species.
Examine effect of nearby wetlands on Hg levels in the 44 largemouth bass.

- 2 fish had Hg levels below detection level.
- Treat values below detection limit as left censored at limit.
- Reverse scale, to make more conventional right censoring.
- Covariates:
- per cent wetlands,
- High Methyl Hg,
- High Acid Volatile Sulfide,
- High Loss on Ignition.

What is the effect of wetlands, controlling for other variables?

## Problematic Results

Results of a Proportional Hazards regression in R:

| Variable | Estimate | SE | p |
| :---: | :---: | :---: | :---: |
| PctWetland | -0.01041 | 0.01437 | 0.46885 |
| SedAVSH | -9.97778 | 40.05593 | 0.80329 |
| SedLOIH | 9.76029 | 40.05606 | 0.80749 |
| SedMeHgH | -0.37186 | 0.53300 | 0.48538 |
| AVSH:SedMeHgH | 7.06932 | 40.07296 | 0.85997 |
| LOIH:SedMeHgH | -4.93531 | 40.08296 | 0.90201 |

- Problem: Proportional hazards algorithm fails to converge
- Partial Likelihood appears monotone in a linear combination of interaction variables.


## Naive Results

| Result without interactions: <br> Variable |  |  |  |
| :---: | :---: | :---: | :---: |
| Estimate | SE | p |  |
| PctWetland | -0.00383 | 0.00899 | 0.67019 |
| SedAVSH | -3.05523 | 0.85291 | 0.00003 |
| SedLOIH | 3.68796 | 0.97336 | 0.00015 |
| SedMeHgH | 0.58095 | 0.34993 | 0.09688 |

## Outline

(1) Motivation
(2) Review of Maximum Likelihood
(3) Proportional hazards regression

4 Logistic regresssion
(5) A known solution in a less simple context

6 Our Solution
(7) Summary
(8) Appendix

## Maximum Likelihood

Standard analysis for an exponential family regression model (GLM):

- Independent observations
- $P_{\boldsymbol{\beta}}\left[Y^{j}=y^{j}\right]=\exp \left(\boldsymbol{\beta}^{\top} \boldsymbol{x}_{j} y^{j}-\psi(\boldsymbol{\beta})-g\left(y^{j}\right)\right)$
- $\boldsymbol{x}_{j}=\left(x_{j}^{1}, \ldots, x_{j}^{d}\right)^{\top}$
- $\boldsymbol{U}=\boldsymbol{X}^{\top} \boldsymbol{Y}$
- $\boldsymbol{X}$ is the $M \times d$ matrix with rows $\boldsymbol{x}_{j}$.
- $\boldsymbol{U}=\boldsymbol{X}^{\top} \boldsymbol{Y}$ is the sum of the particular covariate times the response.
- $L(\boldsymbol{\beta})=\prod_{j} P_{\boldsymbol{\beta}}\left[Y^{j}=y^{j}\right]$
- $\ell(\boldsymbol{\beta})=\log (L(\boldsymbol{\beta}))$
- $\hat{\boldsymbol{\beta}}$ maximizes $\ell(\boldsymbol{\beta})=\sum_{j}\left[\boldsymbol{\beta}^{\top} \boldsymbol{x}_{j} y_{j}-\psi(\boldsymbol{\beta})\right]=\boldsymbol{\beta}^{\top} \boldsymbol{U}-n \psi(\boldsymbol{\beta})$


## Inference for Finite Estimators

Test $H: \beta_{j}=\beta_{j}^{\circ}$ vs. $K: \beta_{j} \neq \beta_{j}^{\circ}$.

- Want to do this using a reference distribution that does not depend on $\beta^{-1}=\left(\beta^{1}, \ldots, \beta^{j-1}, \beta^{j+1}, \ldots, \beta^{d}\right)$
- P-value calculated with reference to distribution of $U^{j} \mid \boldsymbol{U}^{-j}$ for $\boldsymbol{U}^{-j}=U^{1}, \ldots, U^{j-1}, U^{j+1}, \ldots, U^{d}$
Standard inference uses an approximation to this distribution.
- Multivariate CLT says $\boldsymbol{U}$ approximately Gaussian
- with expectation $\psi^{j}$,
- variance calculated from $\psi^{\prime \prime}$ using standard multivariate normal conditional variance formula.
- Derivatives calculated at MLE with constraint $\beta_{j}=\beta_{j}^{\circ}$.
- This fails when this MLE is infinite.


## Proportional Hazards Regression Model

For subject $i$, observe

- measurement $Y_{i}$
- $C_{i}$ indicating true measurement (1) or above threshold (censored) (0)
- covariates $\boldsymbol{x}_{i}$

Model

- subjects as acting independently
- censoring (loss to followup) as not dependent on covariates
- Subjects called "at risk" before censoring, event.
- $R_{i}=\left\{j \mid Y_{j} \geq Y_{i}\right\}$.
- among those at risk at an observed $Y$ value
$P[$ subject $i$ has the event $]=\exp \left(\boldsymbol{\beta}^{\top} \boldsymbol{x}_{i}\right) / \sum_{j \in R_{i}} \exp \left(\boldsymbol{\beta}^{\top} \boldsymbol{x}_{j}\right)$


## Proportional Hazards Regression (partial) Likelihood

Leads to partial log likelihood

$$
\begin{aligned}
\ell(\boldsymbol{\beta}) & =\sum_{i \mid C_{i}=1}\left(\boldsymbol{x}_{i} \boldsymbol{\beta}-\log \left[\sum_{j \in R_{i}} \exp \left(\boldsymbol{x}_{j} \boldsymbol{\beta}\right)\right]\right) \\
& =\boldsymbol{u} \boldsymbol{\beta}-\sum_{i \mid C_{i}=1} \log \left[\sum_{j \in R_{i}} \exp \left(\boldsymbol{x}_{j} \boldsymbol{\beta}\right)\right]
\end{aligned}
$$

for $\boldsymbol{u}=\sum_{i \mid C_{i}=1} \boldsymbol{x}_{i}$

- $u_{j}$ is sum of covariate value for subjects with event.
- When covariate is 0 or $1, u_{j}$ is number of subjects with event and 1 for covariate $j$.
Cox [1972]
Note similarity to multinomial log likelihood.


## Partial Likelihood

- Two groups, red and blue.
- Two data sets, having the same partial likelihood.

- Data sets are identical except two consecutive censored items are swapped between groups.
- In a fully-parametric model, right panel is stronger evidence in favor of red.
- Partial likelihood treats them identically.


## The Logistic Regression Model

Observe $M$ responses $Y_{j} \in\{0,1\}$ associated with covariates $\boldsymbol{x}_{j} \in \Re^{d}$.

- $P\left[Y_{j}=1\right]=\exp \left(\boldsymbol{\beta}^{\top} \boldsymbol{x}_{j}\right) /\left(1+\exp \left(\boldsymbol{\beta}^{\top} \boldsymbol{x}_{j}\right)\right)$
- Independent.
- In this case, if covariates are 0 or 1 , then $\boldsymbol{U}$ is the number of subjects with event and with covariate value 1.
In example, $Y=1$ if Hg concentration exceeds $.2 \mu \mathrm{~g} / \mathrm{g}, 0$ otherwise.

| (Intercept) | 1.32282 | 0.65267 | 0.04268 |
| :--- | ---: | ---: | ---: |
| PctWetland | -0.06308 | 0.10427 | 0.54521 |
| SedAVSH | -20.82888 | 6206.28059 | 0.99732 |
| SedLOIH | 20.95513 | 6206.28065 | 0.99731 |
| SedMeHgH | -1.71573 | 1.12170 | 0.12612 |
| SedAVSH:SedMeHgH | 17.82589 | 9224.45144 | 0.99846 |
| SedLOIH:SedMeHgH | 4.05001 | 8778.81457 | 0.99963 |

Same phenomenon.

## Exact Inference for the LR model for HG data I

- $2^{44} \approx 16 \times 10^{3 \times 4}=1.6 \times 10^{13}$ ways to pick responses $\boldsymbol{Y}$
- 54, 600 choices keeping sufficient statistics for intercept, sediment variables at observed value.
- Various algorithms make this job more tractable.


## Exact Inference for the LR model for HG data II

| $U_{2}$ | count | $U_{2}$ | count | $U_{2}$ | count |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 582.0 | 6 | 586.6 | 1540 | 678.8 | 1144 |
| 583.0 | 28 | 587.1 | 990 | 679.3 | 2640 |
| 583.5 | 66 | 587.3 | 1760 | 679.5 | 264 |
| 583.8 | 132 | 587.6 | 880 | 679.6 | 1320 |
| 584.0 | 16 | 588.1 | 4620 | 679.8 | 528 |
| 584.5 | 308 | 589.1 | 2640 | 680.3 | 5720 |
| 584.8 | 616 | 676.0 | 24 | 680.6 | 2860 |
| 585.3 | 660 | 677.0 | 52 | 681.1 | 3960 |
| 585.5 | 176 | 677.5 | 264 | 681.3 | 2640 |
| 585.6 | 330 | 677.8 | 528 | 681.6 | 1320 |
| 585.8 | 352 | 678.0 | 24 | 682.1 | 8580 |
| 586.3 | 3080 | 678.5 | 572 | 683.1 | 3960 |
|  | P -value |  |  |  |  |
|  | Statist |  |  | Exact |  |
|  | 588 | 155 | /54600 | $=0.285$ |  |

cf. normal approximate 2 -sided p-value 0.545 .

## Logistic Regression Solution Using Optimization

Clarkson and Jennrich [1991] detect infinite $\hat{\beta}_{j}$. Kolassa [1997] detects observations with extreme probabilities.

- Remove column for interest parameter from $\boldsymbol{X}$ to give $\boldsymbol{Z}$.
- Find vectors $\boldsymbol{r}, \boldsymbol{s} \in\left(\Re_{\geq 0}\right)^{d}$
- $s_{i}>0$ implies $\hat{\pi}_{i}=0, r_{i}>0$ implies $\hat{\pi}_{i}=1$.
- with the maximal number of positive entries,
- satisfying linear constraints $\mathbf{M r}+\boldsymbol{N s}=\mathbf{0}$ for some matrices $\mathbf{M}, \boldsymbol{N}$.
- Optimization task like linear programing.


## Construction of a New Data Set without Infinite Estimates

Kolassa [1997] shows that removing observations with extreme probabilities leads to same conditional distribution for interest parameter.

- Remove $\boldsymbol{X}$ rows corresponding to positive entries in $\boldsymbol{r}, \boldsymbol{s}$.
- Remove redundant columns of $\boldsymbol{X}$.
- Recalculate sufficient statistics.

Use standard saddlepoint inference on reduced data set.

## The Multinomial Regression Model

Multinomial Regression Model:

- $N$ decisions to make
- For decision $j \in\{1, \ldots, N\}$, potential choice $D_{j} \in\left\{1, n_{j}\right\}$, $P\left[D_{j}=i\right] \propto \exp \left(\boldsymbol{x}_{j i} \boldsymbol{\beta}\right)$
Log likelihood is $\ell(\boldsymbol{\beta})=\boldsymbol{\beta}^{\top} \boldsymbol{\beta}-\sum_{j=1}^{N} \log \left(\sum_{i=1}^{n_{j}} \exp \left(\boldsymbol{x}_{j i} \boldsymbol{\beta}\right)\right)$
- for $\boldsymbol{u}=\sum_{j=1}^{N} \boldsymbol{x}_{j D_{j}}$


## As a special case of Conditional Logistic Regression I

- Design matrix for Conditional Logistic Regression
$n_{1}$ rows like this $N$ columns
$n_{2}$ rows like this columns
$\vdots$
$n_{N}$ rows like this
$\vdots$$\left(\begin{array}{ccccc}1 & 0 & \ldots & 0 & \boldsymbol{x}_{11} \\ 1 & 0 & \ldots & 0 & \boldsymbol{x}_{12} \\ \vdots & 0 & \ldots & \vdots & \vdots \\ 1 & 0 & \ldots & 0 & \boldsymbol{x}_{1 n_{1}} \\ 0 & 1 & \ldots & 0 & \boldsymbol{x}_{21} \\ \vdots & \vdots & \ldots & \vdots & \vdots \\ 0 & 1 & \ldots & 0 & \boldsymbol{x}_{2 n_{2}} \\ \vdots & \vdots & \ldots & \vdots & \vdots \\ 0 & 0 & \ldots & 1 & \boldsymbol{x}_{N 1} \\ \vdots & \vdots & \ldots & \vdots & \vdots \\ 0 & 0 & \ldots & 1 & \boldsymbol{x}_{N n_{N}}\end{array}\right)$


## As a special case of Conditional Logistic Regression II

- Response is column of $n_{1}+\cdots+n_{N}$ zeros
- except for 1 in slots corresponding to choice.
- Condition on sufficient statistics for the indicators.
- Kolassa [2016] applies Kolassa [1997] to this conditional logistic regression.


## The Plan for Inference

Convert data set to one with non-monotone likelihood.

- Treat partial likelihood as product of multinomial likelihoods
- Observations are not independent
- Multiply probabilities because they are conditional.
- Express multinomial events as conditional logistic regression
- Analyze conditional logistic regression to identify subjects whose fitted probabilities are zero or one.
- Implies which multinomial subjects have selection probability either 0 or 1 .
- This implies which survival subjects are guaranteed either to have or to fail to have the next event.
- Remove these from the Cox regression.
- Remove redundant covariates (coxph in R does this.)

Apply saddlepoint approximation.

## Competitors

Run standard algorithm until it fails numerically.

- Advantage: Generally close to "best" answer.
- Disadvantage: Performance, stability not guaranteed.

Regularization Heinze and Schemper [2001]:

- Advantage: Numerically stable
- Disadvantage: Depends on regularization choice.

Identification of parameters estimated at infinity
Clarkson and Jennrich [2000]:

- Advantage: Solves a simpler optimization problem than recommended here.
- Disadvantage: Does not facilitate inference.

Bayesian approach

- Zhang and Kolassa [2008] provide matching prior argument.


## Pluses and Minuses of the New Approach

- Pluses:
- Subjects removed from the multinomial regression are removed consistently.
- No tuning is required for regularization.
- Minuses:
- Slow.
- Conditioning argument removing nuisance parameters is only approximate, because it ignores censoring and sequential aspects of the problem.


## Smallmouth Bass Result

Result removing extreme subjects:

|  | coef | se(coef) | $\operatorname{Pr}(>\|z\|)$ |  |
| :--- | ---: | :---: | :---: | :--- |
| PctWetland | -0.01753 | 0.01344 | 0.19207 (cf -0.0104 |  |
| SedAVSH | -4.80506 | 1.47348 | 0.00111 from the |  |
| SedLOIH | 5.57092 | 1.51177 | 0.00023 ''Let it Run', |  |
| SedMeHgH | -0.36040 | 0.54185 | 0.50597 approach) |  |
| SedAVSH:SedMeHgH | 1.49744 | 0.80577 | 0.06311 |  |
| SedLOIH:SedMeHgH | NA | 0.00000 | NA |  |

- Different from the failed-to-converge result.
- Different from result dropping offending covariate
- NA for covariate indicates removal because of nonidentifiability.


## Summary

The problem of infinite estimates in proportional hazards regression may be addressed by:

- Re-expressing Cox regression as a conditional logistic regression
- Using the method of Kolassa [1997] to remove subjects whose probability of event is estimated at 0 or 1
- Performing the standard analysis on the reduced data set.

The above procedure does not adversely affect test size.

## Bibliography I

Douglas B. Clarkson and Robert I. Jennrich. Computing extended maximum likelihood estimates for linear parameter models. Journal of the Royal Statistical Society. Series B (Methodological), 53(2):417-426, 1991. ISSN 00359246. URL http://www.jstor.org/stable/2345752.
Douglas B. Clarkson and Robert I. Jennrich. Computing extended maximum likelihood estimates for cox proportional-hazards models. In F. Thomas Bruss and Lucien Le Cam, editors, Game theory, optimal stopping, probability and statistics, volume Volume 35 of Lecture Notes-Monograph Series, pages 205-217, Beachwood, OH, 2000. Institute of Mathematical Statistics. doi: $10.1214 / \mathrm{lnms} / 1215089754$. URL https://doi.org/10.1214/lnms/1215089754.

## Bibliography II

D. R. Cox. Regression models and life-tables. Journal of the Royal Statistical Society. Series B (Methodological), 34(2):pp. 187-220, 1972. ISSN 00359246. URL http://www.jstor.org/stable/2985181.
Georg Heinze and Michael Schemper. A solution to the problem of monotone likelihood in cox regression. Biometrics, 57(1):pp. 114-119, 2001. ISSN 0006341X. URL
http://www.jstor.org/stable/2676848.
John E. Kolassa. Infinite parameter estimates in logistic regression, with application to approximate conditional inference. Scandinavian Journal of Statistics, 24(4):523-530, 1997. doi: 10.1111/1467-9469.00078. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-9469.0
John Edward Kolassa. Inference in the presence of likelihood monotonicity for polytomous and logistic regression. Advances in Pure Mathematics, 6(5):331-341, 2016. doi: 10.4236/apm.2016.65024.

## Bibliography III

Lopaka Lee. NADA: Nondetects and Data Analysis for Environmental Data, 2017. URL https://CRAN.R-project.org/package=NADA. R package version 1.6-1.

Juan Zhang and John Kolassa. A practical procedure to find matching priors for frequentist inference. Communication in Statistics- Theory and Methods, 42, 052008.

## Naive Results

Results of a Proportional Hazards regression in R:
Variable Estimate $\quad$ SE
$\begin{array}{llll}\text { Tilapia } & -5.267 \times 10^{-1} & 1.217 & 0.665108\end{array}$
$\begin{array}{llll}\text { Walleye } & 4.846 & 1.283 & 0.000158\end{array}$
WhiteBass $\quad 3.329 \times 10^{+1} \quad 4.572 \times 10^{5} \quad 0.999942$
WhiteCrappie $\begin{array}{lll}-5.190 \times 10^{-1} & 1.733 & 0.764530\end{array}$
PctWetland $\quad 2.017 \times 10^{-2} \quad 4.816 \times 10^{-3} \quad 2.82 \times 10^{-5}$

- Problem: Proportional hazards algorithm fails to converge
- Partial Likelihood monotone in parameter for White Bass.


## Logistic Regression Linear Constraints

Kolassa [1997] detects observations with extreme probabilities.

- Remove column for interest parameter from $\boldsymbol{X}$ to give $\boldsymbol{Z}$.
- Find vectors $\boldsymbol{r}, \boldsymbol{s} \in\left(\Re_{\geq 0}\right)^{d}$ with the maximal number of positive entries, satisfying

$$
\begin{aligned}
& -\left(\boldsymbol{T}^{\top}\left(\boldsymbol{Z}^{\top} \boldsymbol{Z}\right)^{-1} \boldsymbol{Z}^{\top}-\mathbf{1}\right) s-\boldsymbol{T}^{\top}\left(\boldsymbol{Z}^{\top} \boldsymbol{Z}\right)^{-1} \boldsymbol{Z}^{\top} r=\mathbf{0} \\
& \cdot\left(\boldsymbol{I}-\boldsymbol{Z}\left(\boldsymbol{Z}^{\top} \boldsymbol{Z}\right)^{-1} \boldsymbol{Z}^{\top}\right)(\boldsymbol{s}-\boldsymbol{r})=\mathbf{0}
\end{aligned}
$$

## Logistic Regression Solution Using Linear Programming

- Find vectors $\boldsymbol{r}, \boldsymbol{s} \in\left(\Re_{\geq 0}\right)^{d}$
- with the maximal number of positive entries,
- satisfying linear constraints $\mathbf{M r}+\mathbf{N s}=\mathbf{0}$ for some matrices $\mathbf{M}, \boldsymbol{N}$.
- Maximize $\sum_{j} c_{j}\left(r_{j}+s_{j}\right)$ : Linear programming.
- Start with $c_{j}=1 \forall j$.
- This optimization is not exactly the same as maximizing the number of positive entries.
- After finding $r_{j}+s_{j}>0$, reset $c_{j}=0$ and restart.
- If LP is solved using simplex method, can hot start next iteration.

