Risk-based Parallelism test for Parallel Curve Assays

Perceval Sondag University of Liege, School of Medicine

NonClinical Biostatistics Conference 2019 I New Brunswick, NJ, USA

1. CONTEXT

The Relative Potency (RP) of a biological product is estimated from a concentration or \log (concentration)-response function, as the horizontal difference between sample and standard curves.

Parallelism between the functions is required to compute the RP Curves must share similar upper asymptotes, range between asymptotes and slopes.

Current approach:

- Calculate
$-r_{1}=\frac{\sqrt{M a x_{1}}}{y \overline{M a x_{2}}}$

$-r_{3}=\frac{\left(y \widehat{M a x} 1-y \widehat{M i n_{1}}\right) \widehat{H_{1}}}{\left(y \widehat{M a x_{2}}-y \widehat{M i n_{2}}\right) \widehat{H_{2}}}$
- Declare parallelism if $D_{L k} \leq r_{k} \leq D_{U k} \quad \forall k \in$ 1,2,3

Challenges with this test:

1. The ratio estimates in case of true parallelism are correlated.
\Rightarrow 'Empty space' in the 3D acceptance zone. Marginal limits are not adapted to the problem.
2. How to chose limits $D_{L k}$ and $D_{U k}$?

2. SOLUTION: Ratio CORRELATION

- Assess if the new set of $\log \left(\hat{r}_{k}\right) s$ are contained within the ellipsoid around the joint posterior distribution of $\log \left(r_{k}\right) s$ in case of true parallelism. Test:
- $\hat{\lambda}^{T} \hat{\Sigma} \hat{\lambda} \leq q_{\alpha, 3}$
where $\hat{\lambda}=\log \left[\hat{r}_{1}, \hat{r}_{2}, \hat{r}_{3}\right]$, $\hat{\Sigma}$ is the VCV matrix of the posterior distribution of λ and $q_{\alpha, 3}$ is the $100 \alpha^{\text {th }}$ percentile of the χ^{2} distribution with $3 d f$

3. SOLUTION: ACCEPTANCE LIMITS

- USP 1032 proposal : use historical data to develop equivalence margins \Rightarrow Comparison of the reference product to itself.
- Problem: historical data not always available, and generating plates full of reference product can be very expensive!

Using a case study, consider a Bayesian alternative to reference-toreference comparison. We have a qualification set of 9 plates with each a reference curve and a test curve.

- Using only the reference curves, fit the following model with Stan, using flat prior distributions
$y=y \operatorname{Max}_{j}+\frac{y \operatorname{Min}-y \text { Max }_{j}}{1+\left(\frac{x}{c 5}\right)^{H}} \quad j=1, \ldots, 9$: a plate-to-plate vari-
ability affects the upped asymptote.
- From the joint posterior distribution of the curve parameters and variance components, generate 10,000 plates with two reference curves.
- Calculate $\hat{\lambda}$ for each plate to obtain the joint posterior distribution of the log ratios in case of true parallelism (noted Λ).
- Calculate $\hat{\Sigma}=\operatorname{VCV}(\Lambda)$ for the ellipsoid test.
- For a chosen lab risk α of rejecting truly parallel curves - here 1% - use Nelder and Mead to find the smallest hyper-rectangle that contains $100(1-\alpha) \%$ of Λ.

This figure shows Λ. The red lines are the calculated limits for the hyper-rectangle, and the blue points show the posterior draws inside the 99% coverage ellipsoid.

4. Test comparisons

The figure below shows the worst possible curves accepted by each test. The reference is the black curve and the colored curves are the samples.

Both test control the The figure below shows the density of lab risk. We want to $\exp (|\log (\phi)|)$ for curves accepted by each test. assess the consumer risk. To do so, we simulate 10,000 ref erence and sample curves. For each pair of curves, we calculate

$$
\phi=\frac{\text { Observed } R P}{\text { TrueRP }}
$$

5. DISCUSSION

- MCMC simulation are a cost-efficient alternative to reference-to-reference comparison.
- The hyper-rectangle test can lead to very unsimilar curves to pass parallelism and therefore a high relative error in RP estimation
- The ellipsoid test also controls for lab risk, while better managing the consumer risk than the hyper-rectangle test.
- This poster purposely does not present parallelism tests as classic hypothesis tests. Contact author for explanation.
- Other tests for parallelism exists, this poster doesn't mention them for simplicity.

ACKNOWLEDGEMENT

Pierre Lebrun, Bruno Boulanger, Tara Scherder

