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The LASSO procedure is widely used nowadays in a
preponderance of studies involving high-dimensional data, such as
large-scale analysis of genomic and genetic data, etc. By adding
𝐿
"
	penalizations to the optimization object thus shrinking estimated

coefficients towards zero, it serves the role of both parameter
fitting and variable selection, and achieves high prediction
accuracy in various applications.

However, it is only recently that attention has been focused on the
inferential aspects of the LASSO approach, i.e., testing the
significance of the included predictor variables, in the sequence of
models visited along the LASSO solution path. The adaptive
nature of the estimation procedure makes this problem difficult.
Some “traditional” methods include the Bayesian methods and
the bootstrap, with more recent approaches proposed like the
covariance and spacing tests, among others.

INTRODUCTION

OBJECTIVES

METHODS:	Covariance	Test
Table 1: Covariance test results evaluated at 𝜆%&' from CV.

REAL	DATA	ANALYSES

CONCLUSIONS
Simulation results show that all residual variance estimation
methods will lead to covariance test statistics achieving correct
coverage probability. However, the sparseness of predictors,
SNR and the correlation structures in the design matrix are all
important factors that can affect the statistical power of the
covariance test.

§When predictors are sparse, CV-LASSO, CV-SCAD, RCV
and De-biased LASSO performed the best. When predictors
are less sparse, RCV, SZ, and De-biased LASSO performed
better.

§ In all sparseness settings, increasing SNR seems to induce
decreasing trend of the power;
vIn sparse setting, CV-SCAD, RCV and De-biased LASSO perform

better, scaled LASSO (SZ) and Moment method (D2) perform
good with small SNR.

vIn mild sparse setting, RCV and and De-biased LASSO perform
better, Moment method (D2) perform good with small SNR.

vIn non-sparse setting, De-biased LASSO performs better.

Therefore, in order to achieve higher statistical power, it is crucial
to assess the condition of the data before choosing the post-
selection inference procedure.
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We will focus on the covariance test, which consists of the
procedure of estimating residual variance and then plugging it into
the test statistics to obtain 𝑝-values. In the high dimensional
settings with 𝑁 < 𝑝,	estimating residual variance (𝝈𝟐) is not as
straightforward, but several variance estimators have been
proposed in the literature, all with accompanying consistency and
asymptotic normality under certain assumptions. These methods
include:

§ LASSO-CV estimation
§ SCAD-CV estimation (Fan, J. and Li, R, 2001)
§ Refitted Cross-Validation (RCV) (Fan et al., 2012)
§ Scaled LASSO estimation (Sun and Zhang, 2012)
§ Moment-based method (Dicker, L. H., 2014)
§ De-biased LASSO estimation (Javanmard et al., 2014)

We will explore the role of estimating error variance (𝝈𝟐) with
an extensive simulation study comparing various methods for
estimating residual variance in high-dimensional settings, and
comparing various methods by varying the sparseness of
predictors, signal-to-noise ratio (SNR) and the correlation
structures in the design matrix inform the choice of the optimal
method to achieve higher statistical power.

We will also apply post-selection inference to the clinical dataset in 
predicting kidney disease progression to make valid statistical 
inference after model selection from LASSO.
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SIMULATION	SETTINGS

Coefficients Z-score P-value
AGE_INTEGER 0.019 0.687 0.482

race.fOther 0.034 1.229 0.292
race.fWhite 0.176 5.635 0.04
SEXFemale -0.053 -1.817 0.037

SMOKE100Smoker -0.008 -0.317 0.751
BMI 0.034 1.291 0.397

HEMOGLOBIN_A1C -0.071 -2.452 0.024
MAP -0.123 -4.367 0.026

alb.f>300 -0.557 -15.66 0
alb.f30-300 -0.184 -5.982 0

EGFR_CKD_EPI 0.012 0.428 0.418
Ion.122 0.043 1.048 0.266

Ion.1269 0.084 2.683 0.007
Ion.1468 0.013 0.443 0.658
Ion.1715 0.054 1.759 0.049
Ion.226 -0.087 -1.752 0.816
Ion.282 0.019 0.657 0.494
Ion.333 -0.004 -0.113 0.91
Ion.353 0.002 0.055 0.957
Ion.54 -0.05 -1.106 0.148
Ion.928 -0.066 -2.357 0.117
Ion.986 -0.022 -0.665 0.53

A	MOTIVATING	EXAMPLE

Patients with Type II diabetes are at high risk for mortality and
comorbidities, particularly chronic kidney disease (CKD).
Metabolomics may reveal novel features that identify Type II
diabetics at high-risk for CKD. Here we would like to test the
accuracy of a published 13- metabolite signature to predict kidney
disease progression over and above clinical variables, with the
primary outcome of eGFR slope, a continuous slope obtained from
Generalized Linear Mixed Model (GLMM). Using a sample of
1000 Type 2 diabetic patients, we applied the penalized model
selection method, LASSO, to identify new multivariate metabolite
sets that are significantly associated with CKD after adjusting for
clinical variables.

The Covariance test ( Lockhart et. al, 2014) is an idea on making
inference after selection by the LASSO, which assigns p-values to
predictors as they are successively entered by the LASSO.

Assume 𝝈𝟐 is know for now. And under usual LM setup, instead
of comparing the reduction in residual sum of squares (RSS) of 2
nested models with 𝜒/(1) distribution, as in traditional inference,
covariance test takes the adaptive fitting procedure into account by
balancing the two opposing procedures of adaptivity and
shrinkage.

With the assumption that columns of X are in general position.
The LASSO path is a continuous and piecewise linear function
of 𝜆, with knots at values 𝜆" > 𝜆/ > ⋯ > 𝜆5 . To define a test
statistics at the 𝒌𝒕𝒉 step of the path, consider:

§ A: active set just before 𝜆9; predictor 𝑘 enters at 𝜆9
§ 𝜷=	(𝝀𝒌?𝟏):  solution at the next knot, using predictor 𝑨∪

{𝑘}, i.e.       

𝛽E	(𝜆9?")= 𝑎𝑟𝑔𝑚𝑖𝑛M∈O P QR 	
"
/
	 | 𝒚 − 𝑿𝛽 |// +𝜆9?"| 𝛽 |"

§ 𝜷𝑨X	(𝝀𝒌?𝟏): solution using only active predictors at 𝑨,
but with 𝜆 = 𝜆9?", i.e. 

𝛽YX(𝜆9?")= 𝑎𝑟𝑔𝑚𝑖𝑛M∈O|P| 	
"
/
	 | 𝒚 − 𝑿Y𝛽Y |// +𝜆9?"| 𝛽Y |"

The covariance test statistics has been defined as:

𝑇9 =
< 𝒚,𝑿𝛽E 𝜆9?" > 	−		< 𝒚,𝑿Y𝛽YX 𝜆9?" >

𝜎/
Under the null hypothesis that all truly active predictors are
contained in the current active set, it can be shown that

𝑇9 →]^
_ 𝑬𝒙𝒑 𝟏 		𝑎𝑠	𝑁, 𝑝 → ∞

However, 𝝈𝟐 is unknown in practice. If 𝑁 > 𝑝, 𝜎e/ = "
fgh

𝑅𝑆𝑆k
lmn

ln
→]^
_ "

fgh
𝜒/ 𝑁 − 𝑝

And using 𝑭𝒌 =
pq,rM= stQR u	g	pq,rPMPX stQR u

lmn
= vtwln

lmn
→]^
_ 𝑭𝟐,𝑵g𝒑

yields p-values, but when 𝑁 < 𝑝,	estimating residual variance
(𝝈𝟐) is not as straightforward, several variance estimators have
been proposed in the literature.

METHODS:	Residual	Variance	Estimation
Existing methods (except for the moment-based method which
assumes 𝑿 has multivariate normal distribution and derives 𝜎e/)
have similar ideas of emulating the sum of squares estimator of
OLS in high dimensional settings, with the general form of 𝜎e/ =
"

fgyz={
| 𝒚 − 𝑿𝜷sX |// , where 𝜷sX is some estimator with

regularization parameter 𝜆, 	𝜆E is selected via cross-validation, and
𝑠s=m is the number of non-zero element in 𝜷sX .

Thus, the methods of estimating 𝜎e/ depends on different
estimating procedure for 𝜷sX , including: LASSO-CV estimation,
SCAD-CV estimation, Refitted Cross-Validation (RCV)
method, Scaled LASSO estimation, Moment-based method,
De-biased LASSO estimation etc.

In the study we control the sparsity of the underlying true 𝛽	vector
as well as its signal-to-noise ratio (SNR).

All simulations were conducted at a sample size of n = 100, and
total number of predictors p = 100. Elements of the predictor
matrix 𝑿 were generated randomly as orthonormal.

The true 𝛽 was generated from Poisson(1), and then the elements
were scaled such that the signal-to-noise ratio, defined as
𝛽|𝜮𝛽/𝜎/, was some predetermined value snr. At each setting, B =
1000 replications were obtained.

Sizes of the tests:
§ All methods achieved the nominal level of 5%.

Power comparisons:
1. Effect of sparseness:

2. Effect of SNR:

SIMULATION	RESULTS

Power idp X, orthogonal X, at first step k=1
𝑛 = 𝑝
= 100

Sparse 
# non-zero 𝛽 = 1

Mild sparse 
# non-zero 𝛽 =𝒑/𝟐

Non- sparse
# non-zero 𝛽 = 𝒑

Reference:
𝜎=1 % of ref % of ref % of ref

Package: 
sd(y) 0.1721 0.0013 0.0000

CV-LASSO 0.7861 0.0126 0.0032
CV-SCAD 0.8605 0.0151 0.0032

RCV 0.9116 0.4384 0.6645
SZ 0.4419 0.4096 0.6966

SZ-LS 0.1721 0.0013 0.0021
D2 0.1721 0.0013 0.0598

De-biased 
LASSO

0.9535 0.4812 0.4402
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Table 2: Power comparisons under difference sparseness  setting of 𝛽

Figure 1: Power comparisons under different sparseness + SNR combinations


