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What is the True Process Variation?



Process or Assay (Measurement)?

Observed Process Variation =

True Process Variation 

+ 

Assay Variation



Types of Assay Variability
• Repeatability

– Within assay-run variability

– In reality: change nothing, test same sample multiple times in the same assay run

• Intermediate Precision (IP)

– Total of variation (between + within assay-run variability)

– In validation: change analysts, reagent lots, machines, etc.

– In reality: variation in re-assaying a sample weeks or months later

• Reproducibility

– IP + between site variability

– In reality: sites, climate, training, machinery, etc.

• Repeatability (SD) <= Intermediate Precision (SD) <= Reproducibility (SD)



Many Uses of IP

• Inform specifications (e.g., release specifications)

• Inform acceptance criteria for experiments (e.g., comparability)

• Investigations (e.g., process or assay?)

• Risk assessment (e.g., probability of OOS due to assay variability)



Estimation of IP in Practice

• In practice, IP is estimated by validation experiments

• Estimates of IP from validation have poor precision due to low 
degrees of freedom and are likely biased downwards due to 
motivated analysts performing the validation.
– Anonymous Statistician

• The variation of assay controls run during development may provide 
a better estimate of IP.
– Anonymous Statistician

Is there data other than validation data that can be used to estimate IP?



Data for IP Estimation

• Assay Validation Data

• Stability Data

• Method Monitoring (MM) Data

Will these data provide consistent estimates for IP?



Assay Validation Experiment – Potency
• Cell based potency and ELISA methods 

(e.g. CHOP, ECP, DNA)
– Potential sources of variation: 

Analyst, Day, Plate
– Variation due to assay run and 

preparation of reagents, samples 
and cells is included in Day

• The appropriate sources of variation 
depends on the method, the technology, 
etc.

• Modeling: Variance Components Proposal

• Estimation method: Restricted Maximum 
Likelihood (REML)



Assay Validation Experiment – HPLC

• 8 run full factorial design

• Reduced design removes 
runs 1 and 8
– “Sufficient” for fitting 

variance components



Stability Data at -20°C

• Originally, stability studies investigate the degradation rate of Critical Quality 
Attributes (CQAs) that are closely related to efficacy and safety

• For drug substance (DS) stored at -20°C, degradation rates are almost 
negligible, which means they are highly stable

• Data source:

– Before approval, 3 lots of DS are put on stability at -20°C and are 
tested 7 times over a period of time

– After approval, a lot is put on stability at -20°C every year or campaign



IP from Biologics Stability

In reality: IP is observed in 
variation of re-assaying sample 
weeks or months later. 

In stability,
IP = average within-lot variation



Method Monitoring (MM)

• Part of Continuous Process Verification

• Monitor assay controls for drift in method performance

• Ensures consistent method performance over time and across testing sites

• IP can be estimated from assay controls
– Method variance is computed periodically within each site
– We took weighted average variance across different sites and 

different periods for the same method



Results: Products with High Concordance 
(difference within 0.015)

Product
IP from Stability 

Data (SD)
IP from MM Data 

(SD)
IP from Validation 

Data (SD)

Product 1 0.035 0.037

Product 2 0.029 0.029 0.024

Product 3 0.033 0.028 0.02

Product 4 0.066 0.05 0.052

Product 5 0.202 0.173

Product 6 0.029 0.019

Product 7 0.009 0.023

Assay:

Potency Assay



Product
IP from Stability 

Data (SD)
IP from MM Data 

(SD)
IP from Validation 

Data (SD)

Product 8 0.049 0.029

Product 9 0.063 0.057 0.106

Product 10 0.075 0.052 0.019

Product 11 0.063 0.016 0.011

Results: Products with Low Concordance 
(difference greater than 0.015)



Discussion
• Data from Stability and Method Monitoring can be used to confirm or 

potentially improve the estimation of IP

– Provide insights to Assay Validation in estimating IP

– Help answer the true process variability question

• Concordance of IP estimates across these data exists in many products

– Samples that did not satisfy system suitability (SST) criteria were removed from 

data analysis

• Challenges and future directions

– Methods in scope of MM are limited

– Potential autocorrelation of MM data may lead to underestimation of IP

– Historical data are sometimes hard to retrieve, e.g., paper copies, .pdf files

– Collaborative effort from different functional groups to build a data pool
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Doing now what patients need next



Appendix



Assay Validation Data Modeling
Variance Components Proposal

• Model all factors as random effects* 

!"#$ = & + (" + )# " + *$("#,),
– & describes the grand mean

– (" ∼ Normal(0, 789) is analyst random effect. Describes analyst-to-analyst variation

– )# " ∼ Normal(0, 7:9) is assay instance random effect. Describes day-to-day variation within the same 
analyst

– *$("#) ∼ Normal 0, 7;9 is random error term. Describes plate-to-plate variation (within-assay variability)

• The total IP is estimated by <7=9 + <7>9 + <7?9

• Estimation method: Restricted Maximum Likelihood (REML)

– Handles imbalance, e.g., staggered designs, missing data



Variance Components Proposal

● Model all factors as random effects* 
● Use REML 

○ Handles imbalance, e.g., staggered designs, missing data 

● Use parametric bootstrap to make CI for IP and CV

○ Resamples both random effects and residuals and takes into 
account the hierarchical structure of nested designs

○ Described in Fitting linear mixed-effects models using lme4, Bates 
et-al, submitted to Journal of Statistical Software

* For reproducibility, laboratory is fixed effect



Why bootstrap CIs?

● REML on small data sets can be numerically unstable due to flat 
likelihood

○ Software implementations may balk at making likelihood based 
CIs when this is the case.

● Not sufficient data in IP experiment to support asymptotic results.



Stability Data Modeling
• LMM model

!"# = % + '" + ("#,
– % describes the grand mean
– '" is lot-specific random effect. Describes deviation of the )th lot mean from grand mean
– *"# is random error. Describes deviation of the )+th measurement from the )th lot mean.

• Assumptions
– '", ) = 1,… , / are i.i.d. from 0123'4 0, 678
– ("#, ) = 1,… /; + = 1,… , : are i.i.d. from 0123'4 0, 6;8
– '" ⊥ ("=

• Assay variation à within-lot variation, 6;8
True process variation à between-lot variation, 678

• Estimation method: Restricted Maximum Likelihood (REML)


