

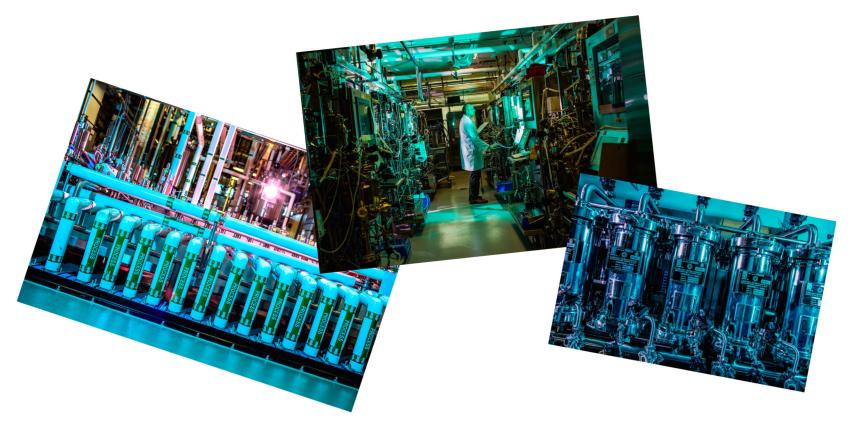
Estimating Precision of Analytical Methods in Biologics Development and Manufacturing

2019 NCB Conference, June 17-19

Ranran Dong, Yiming Peng, Yenny Webb Vargas Nonclinical Biostatistics Genentech, South San Francisco

* Opinions expressed in this talk are those of the authors and do not necessarily reflect those of Roche/Genentech

What is the True Process Variation?



Process or Assay (Measurement)?

Observed Process Variation =

True Process Variation

+

Assay Variation

Types of Assay Variability

- Repeatability
 - Within assay-run variability
 - In reality: change nothing, test same sample multiple times in the same assay run
- Intermediate Precision (IP)
 - Total of variation (between + within assay-run variability)
 - In validation: change analysts, reagent lots, machines, etc.
 - In reality: variation in re-assaying a sample weeks or months later
- Reproducibility
 - IP + between site variability
 - In reality: sites, climate, training, machinery, etc.
- Repeatability (SD) <= Intermediate Precision (SD) <= Reproducibility (SD)

Many Uses of IP

- Inform specifications (e.g., release specifications)
- Inform acceptance criteria for experiments (e.g., comparability)
- Investigations (e.g., process or assay?)
- Risk assessment (e.g., probability of OOS due to assay variability)

Estimation of IP in Practice

- In practice, IP is estimated by validation experiments
- Estimates of IP from validation have poor precision due to low degrees of freedom and are likely biased downwards due to motivated analysts performing the validation.
 Anonymous Statistician
- The variation of assay controls run during development may provide a better estimate of IP.
 - Anonymous Statistician

Is there data other than validation data that can be used to estimate IP?

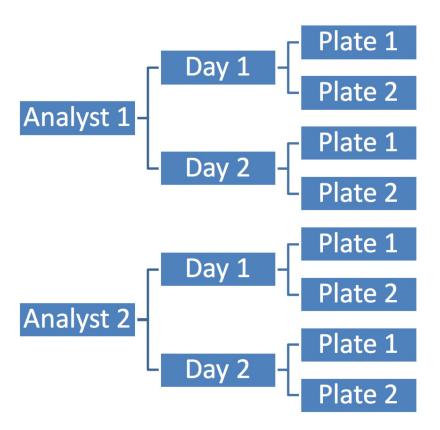
Data for IP Estimation

- Assay Validation Data
- Stability Data
- Method Monitoring (MM) Data

Will these data provide consistent estimates for IP?

Assay Validation Experiment – Potency

- Cell based potency and ELISA methods (e.g. CHOP, ECP, DNA)
 - Potential sources of variation: Analyst, Day, Plate
 - Variation due to assay run and preparation of reagents, samples and cells is included in Day
- The appropriate sources of variation depends on the method, the technology, etc.
- Modeling: Variance Components Proposal
- Estimation method: Restricted Maximum Likelihood (REML)



Assay Validation Experiment – HPLC

- 8 run full factorial design
- Reduced design removes
 runs 1 and 8
 - "Sufficient" for fitting variance components

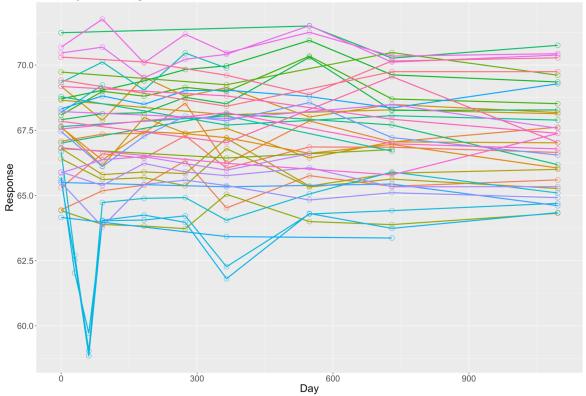
Analyst 1 — Column 1 — Machine 2	
Analyst 1 — Column 2 — Machine 1	
Analyst 1 — Column 2 — Machine 2	
Analyst 2 — Column 1 — Machine 1	
Analyst 2 — Column 1 — Machine 2	
Analyst 2 — Column 2 — Machine 1	

Stability Data at -20°C

- Originally, stability studies investigate the degradation rate of Critical Quality Attributes (CQAs) that are closely related to efficacy and safety
- For drug substance (DS) stored at -20°C, degradation rates are almost negligible, which means they are highly stable
- Data source:
 - Before approval, 3 lots of DS are put on stability at -20°C and are tested 7 times over a period of time
 - After approval, a lot is put on stability at -20°C every year or campaign

IP from Biologics Stability

Stability-Indicating Attribute



In reality: IP is observed in variation of re-assaying sample weeks or months later.

In stability,

IP = average within-lot variation

Method Monitoring (MM)

- Part of Continuous Process Verification
- Monitor **assay controls** for drift in method performance
- Ensures consistent method performance over time and across testing sites
- IP can be estimated from assay controls
 - Method variance is computed periodically within each site
 - We took weighted average variance across different sites and different periods for the same method

Results: Products with High Concordance (difference within 0.015)

Assay:

Potency Assay

Product	IP from Stability Data (SD)	IP from MM Data (SD)	IP from Validation Data (SD)
Product 1	0.035		0.037
Product 2	0.029	0.029	0.024
Product 3	0.033	0.028	0.02
Product 4	0.066	0.05	0.052
Product 5	0.202		0.173
Product 6		0.029	0.019
Product 7		0.009	0.023

Results: Products with Low Concordance

(difference greater than 0.015)

Product	IP from Stability Data (SD)	IP from MM Data (SD)	IP from Validation Data (SD)
Product 8	0.049	0.029	
Product 9	0.063	0.057	0.106
Product 10	0.075	0.052	0.019
Product 11	0.063	0.016	0.011

Discussion

- Data from Stability and Method Monitoring can be used to confirm or potentially improve the estimation of IP
 - Provide insights to Assay Validation in estimating IP
 - Help answer the true process variability question
- Concordance of IP estimates across these data exists in many products
 - Samples that did not satisfy system suitability (SST) criteria were removed from data analysis
- Challenges and future directions
 - Methods in scope of MM are limited
 - Potential autocorrelation of MM data may lead to underestimation of IP
 - Historical data are sometimes hard to retrieve, e.g., paper copies, .pdf files
 - Collaborative effort from different functional groups to build a data pool

Roche

Acknowledgements

Theo Koulis

Joe Marhoul

Dan Coleman

Hao Sun (2017 Summer Intern)

Jodi Fausnaugh Pollitt Tom Calderwood Chae Reed Ayly Tucker Xuan Gao Linda Chan

Doing now what patients need next

Assay Validation Data Modeling

Variance Components Proposal

Model all factors as random effects*

 $Y_{itk} = \mu + a_i + b_{t(i)} + \epsilon_{k(itp)},$

- μ describes the grand mean
- $a_i \sim \text{Normal}(0, \sigma_a^2)$ is analyst random effect. Describes analyst-to-analyst variation
- $b_{t(i)} \sim \text{Normal}(0, \sigma_b^2)$ is assay instance random effect. Describes day-to-day variation within the same analyst
- $\epsilon_{k(it)} \sim \text{Normal}(0, \sigma_e^2)$ is random error term. Describes plate-to-plate variation (within-assay variability)
- The total IP is estimated by $\sqrt{\hat{\sigma}_a^2 + \hat{\sigma}_b^2 + \hat{\sigma}_e^2}$
- Estimation method: Restricted Maximum Likelihood (REML)
 - Handles imbalance, e.g., staggered designs, missing data

Variance Components Proposal

- Model all factors as random effects*
- Use REML
 - Handles imbalance, e.g., staggered designs, missing data
- Use parametric bootstrap to make CI for IP and CV
 - Resamples both random effects and residuals and takes into account the hierarchical structure of nested designs
 - Described in *Fitting linear mixed-effects models using lme4*, Bates et-al, submitted to Journal of Statistical Software

* For reproducibility, laboratory is fixed effect

Why bootstrap CIs?

- REML on small data sets can be numerically unstable due to flat likelihood
 - Software implementations may balk at making likelihood based Cls when this is the case.
- Not sufficient data in IP experiment to support asymptotic results.

Stability Data Modeling

LMM model

$$Y_{it} = \mu + a_i + \epsilon_{it},$$

- μ describes the grand mean
- a_i is lot-specific random effect. Describes deviation of the *i*th lot mean from grand mean
- e_{it} is random error. Describes deviation of the *it*th measurement from the *i*th lot mean.
- Assumptions
 - $a_i, i = 1, ..., I$ are i.i.d. from $Normal(0, \sigma_a^2)$
 - $\epsilon_{it}, i = 1, \dots, I; t = 1, \dots, T$ are i.i.d. from $Normal(0, \sigma_e^2)$
 - $a_i \perp \epsilon_{ij}$
- Assay variation \rightarrow within-lot variation, σ_e^2 True process variation \rightarrow between-lot variation, σ_a^2
- Estimation method: Restricted Maximum Likelihood (REML)