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8.3 Equivalence bounds for similarity limit median potency bias
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a, b, c, and d random effects, with indices: 7 = block, & = row in block, & [ = column in block.
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response, A = Response Range, B = "Shape” or "Slope”, C' = Ln EC50, D = No-dose
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e Full or unrestricted model: y* = + D; + € where y* = transformed
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