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An approach for building (and estimating the parameters of) the model

What is the model for:

Denoising (Imputing) single cell RNA sequencing data

A relatively new technology which brings along new data challenges

What this talk is really about:

Getting you excited to think more about single cell data and our data denoising framework



Overview of my Talk

1. Single cell RNA sequencing (scRNA-seq)

- Why is scRNA-seq data noisy? How can we address this problem?
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At birth, we have well over 200 major cell types that
constitute the human body

Just like appreciating a smoothie needs an understanding of its constituent ingredients,
comprehending the complexity of life necessitates a grasp of its diverse cell type composition
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Individuals/ Human Subjects

Individuals/ Human Subjects

wela

Cell types that make up
the majority of a tissue
dominate the gene
expression patterns
resulting from bulk, or
while tissue, RNA
sequencing



A granular understanding of gene expression
required the ability to sequence individual cells




A New (Molecular)
Microscope

| | Single-cell transcriptomics |
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Single-cell
profiling —  Single-cell data
technologies

Groundbreaking

discoveries

Science

AVAAAS

BREAKTHROUGH
of the YEAR
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In anticipation of the Human Cell Atlas
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Global efforts are underway to
catalogue all the cell types and
their transcriptomic patterns in
the healthy human body



Single Cell experiments harbor multiple sources of
noise

What you observe:

' Some transcripts are lost
' during cell lysis

cells

' Some transcripts may not
' be converted to cDNA. | genes

. PCR amplification step

. introduces nonlinear What the truth might be:
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Why bother with denoising?

Because if this is the truth We’d want to identify novel, rare cell types that
associate with specific disease conditions and might
be absent in an otherwise healthy individual

cells

We’d like to characterize all the genes that mark a given cell
population to be able to study them further, target them

__..,f.',‘.f.' ;. specifically, or isolate them using other experimental setups
genes
[ Be careful what you denoise for}
Don’t want false signals or Don’t want to lose true biological

oversmooth patterns information in the process




Overview of my Talk

1. Single cell RNA sequencing (scRNA-seq)

- Why is raw scRNA-seq data noisy? How can we address this problem?

2. The ideas underlying our proposed solution
- Exploring the power (and the limits) of transfer learning

Single-cell Analysis Via Expression Recovery by
harnessing eXternal data:

SAVER-X



Our model setup is intuitive and comprehensive

Biological variations

\
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Observed Idiosyncratic Shared variations

variations across genes

A = (Agc)G <C

(Biological “noise”

ind
Xoe)  pioidgidd) varidliiae) A~ some structure

e Shared variations across genes

e Purely random, unpredictable variations

= Stochastic gene.expression and dts
consequences Cell, 2008]

=  Functional roles for noise in genetic
circuits [Nature, 2010]



Our model setup is intuitive and comprehensive

Biological variations
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Poisson-alpha is well-suited to model technical noise

ind :
Validating the noise model YgelXge ~ Poisson(lcXyc)
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Biological variations
I
/ \

Observed Shared variations

Idiosyncratic

variations dCross genes

A = (Agc)(; <C

(Biological “noise”

ind ind
YgelXge ~ EQC(XQC) Xgelh ~ Hg(AQC)
Poisson(l.X;.) Gene-specific dispersion
ind [

XgelA Ager 0523 ]

R

mean variance




Achieving a balance between the predicted and the observed

Predictable gene/ Predictable gene/
High efficiency Low efficiency

Informative genes

Expression estimate
Expression estimate

Prediction Prediction

Unpredictable gene/ Unpredictable gene/
High efficiency Low efficiency

Expression estimate
Expression estimate

Prediction Prediction
e Observed A SAVER —— Prediction (45° line)




Decomposing the variation in three components

Biological variations

\
( \

Observed Idiosyncratic Shared variations

variations across genes

A = (Agc)G <C

(Biological “noise”

ind ind
™ FoclXae) Koel =~ Ho(ge)
Poisson(l.X;.) Gene-specific dispersion
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Can we use existing data in the public domain to
denoise new scRNAseq datasets being generated?

Microwell-seq

If the original study is of relatively low quality
Or >400,000 Single Ce

mRNA-seq

It hasn’t profiled enough cells of a particular type The Mouse Call Atas
that one might be interested in "




At the backend, we pretrain an autoencoder using publicly available data --
|
- ‘ o & Gene 1 0 1
2
B o

12 2
Initialize the weights of the autoencoder by pretraining

on cells extracted from public repositories. The weights --

are then updated to fit the target data. Gene WWE

_ Gene 13 04 1.7
liter Genes p— _ 01 26 205

3
! Observed

Bayesian shrinkage computes a
weighted average of the predicted
values and the observed data.

https://singlecell.wharton.upenn.edu/saver-x/



https://singlecell.wharton.upenn.edu/saver-x/

Raw Gene Expression Bottleneck Layer Recovered Gene Expression

20,000 128 64 32 64 128 20,000
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Genes
@ Human-specific
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@ Shared Human-Mouse
@ All human denoised
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0:-0000000:--00

@ All mouse denoised

Loss function: maximize (quasi-) log-likelihood
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What is transfer learning doing?

Estimating the parameters in our model (autoencoder) for better
initialization

Prior information
learnt from public data




Let’s look at how SAVER-X does on real data

Original SAVER-X (no pretrain) SAVER-X (HCA)
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Let’s look at how SAVER-X does on real data

Original SAVER-X (no pretrain) SAVER-X (HCA)
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Let’s look at how SAVER-X does on real data
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Let’s look at how SAVER-X does on real data

Original SAVER-X (no pretrain) SAVER-X (HCA)
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Let’s look at how SAVER-X does on real data

Original SAVER-X (no pretrain) SAVER-X (HCA) 900 PBMC cells
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Denoising datasets in disease settings by borrowing
information from related datasets in the healthy
domain
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SAVER-X improves correlations between cell surface
proteins and their corresponding genes

8000 cells,

100 cells 1000 cells 8000 cells 10% downsampled
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Ventral Midbrain Development
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Can mouse data help

denoise human data? Mouse

La Manno (2016) Mouse Cell Atlas

Developing (2018)
Ventral Midbrain Developing Brain Cells
Human  Mouse Mouse

random split
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Ventral Midbrain Development

Can mouse data help
denoise human data?

Mouse

Human

La Manno (2016) Mouse Cell Atlas
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Ventral Midbrain Development

Can mouse data help Fosf TN
denoise human data?
La Manno (2016) Mouse Cell Atlas , @
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Ventral Midbrain Development

Can mouse data help Pl TN
I ?
denoise human data- Human =
Mt d m%ﬁgfxa [
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Ventral Midbrain Development

Can mouse data help Pl TN
I ?
denoise human data- Human =
Mt d m%ﬁgfxa [
La Manno (2016) Mouse Cell Atlas @
Developing (2018) '
Ventral Midbrain Developing Brain Cells
v |
Human  Mouse Mouse 5

random split
»~ A e
_ @) @ ® Le 008 TG L3 2
1000icells 977 cells {Avg. UMI/cell: 8123)  (Avg. UMI/cell: 675) C) @ T O
3 @® Major cell types

hEndo
¢ hGaba
hNbM
hNbML1
hNProg
hOMTN
. hPeric
¥ # hProgBP
) Ry  hProgFPL
W I ¥ hProgFPM
L 0.332 ® hProgh
0.301 g * hRgl2a
-~ ¢ hRal2b

Down-sampling
with average efficiency 10%

L I B B N

@ (low quality)

(Avg. UMI/cell: 452)




Ventral Midbrain Development

Yes, mouse data help
denoise human data!

La Manno (2016) Mouse Cell Atlas

Developing (2018)
Ventral Midbrain Developing Brain Cells
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SAVER-X does not bias towards external data

SAVER-X preserves gene expression patterns that are unique to human
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Medical neuroblast
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* Training after initialization
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Overview of my Talk

1. Single cell RNA sequencing (scRNA-seq)

- Why is raw scRNA-seq data noisy? How can we address this problem?

2. The ideas underlying our proposed solution
- Exploring the power (and the limits) of transfer learning

3. Statistical inference on the denoised values: why you should care



Propagating uncertainty in downstream analyses

Gene-level analyses:

Determining gene-gene correlations

Inference of regulatory networks

Cell-level analyses:

Computing cell-to-cell distance for clustering or visualization

Uncertainty-adjusted Euclidean distance between cells
~ ~ n2 " "
ELIX: — X2 1V] = |8 = Rl + ) 04+ ) D
g g

versus
Sampling of X, from its posterior distribution
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Recovering gene—gene relationships
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= Cor(Aeg, Aegr) X fg X fy

fg has simple analytical formula.
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Recovering gene—gene relationships

Dropseq
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Recovering gene—gene relationships

Dropseq
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Recovering gene—gene relationships

Acgl ch» Heg, é\-cg -~ F(/Tcg: vcg)

_’
COT'(ACg, Acg,) 10 20 30 40 50 60

SAVER

= COT(/Alcg, icg/) X fg X fqi r= 0.69

fg has simple analytical formula.

BABAM1

Dropseq

r= 0.19

r..» 1T T 1T 1T 1
00 05 10 15 20 25 3.0

MAGIC




The SAVER framework has been validated by third parties
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Take Home Messages

1. Transfer learning in single-cell transcriptomics improves data
denoising and pattern discovery

https://www.biorxiv.org/content/10.1101/457879v2

2. Denoise your single cell transcriptomics data using our gateway:

https://singlecell.wharton.upenn.edu/saver-x/

3. Put your statistical hat on while using the denoised values for
identifying new biomarkers (target cell types and/or genes)


https://www.biorxiv.org/content/10.1101/457879v2
https://singlecell.wharton.upenn.edu/saver-x/
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