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Abstract

In applications such as flagging adverse events (AEs) in clin-
ical safety studies or identifying differentially expressed genes
in microarray experiments, the data of the experiments usu-
ally consists of frequency counts. In the analysis of such data,
researchers often face multiple hypotheses testing based on dis-
crete test statistics. Incorporating this discrete property of the
data we propose several stepwise procedures controlling FWER,
which allow to use the CDF of p-values to determine the testing
threshold. We show that the proposed procedures strongly con-
trol the FWER and are more powerful than the existing ones
for discrete data. Through real data analysis and simulation
studies, the proposed procedures are shown to outperform the
existing procedures in terms of the FWER control and power.

Background

In statistical analysis of biomedical experiments, there are often
a number of hypotheses to test. Examples include:
• Evaluating efficacy of a new drug for multiple endpoints.
• Detecting adverse events across body systems in a clinical
trial of drug or medical treatment.

• Identifying differentially expressed genes in microarray
experiments.

Discrete data sets are often seen in these experiments. Thus,
some discrete statistics (for instance, Fisher’s Exact Test, Bi-
nomial Test, etc.) are commonly used in practice.

A Motivating Example

Suppose there are two groups of individuals, group 1 is study group
with the treatment, group 2 is control group with the placebo. The
clinical trial is conducted to monitor the counts of m types of ad-
verse events (AEs) in patients’ body systems. Our goal is to detect
“reasonable” or “correct” AEs (flagging) from many AEs. Thus, the
null and alternative hypotheses of interest are:

Hij : p1j = p2j against H ′ij : p1j 6= p2j.

Here, pij is proportion of individuals from i-th group experiencing
the j-th AE, where i = 1, 2; j = 1, . . . ,m.
If p1j = p2j then the j-th AE is not flagging (or is not caused by
this treatment). Otherwise this AE is caused by the treatment.

? Such a clinical safety problem can be formulated as a multiple
hypotheses testing for discrete data.

Related Concepts

•Family-wise Error Rate: FWER = Pr {V > 0}, the
probability of making at least one false rejection.

•Minimal Power: Pr {S > 0}, the probability of rejecting at
least one false null.

•Assumption of p-value for discrete test: For the
discrete test statistic Ti, let Pi denote the corresponding p-value
for testing Hi and Pi denote the set of all attainable p-values for
Hi such that Pi ∈ Pi. Suppose Fi denote the cumulative
distribution function (CDF) of Pi under Hi is true, that is,
Fi(u) = Pr {Pi ≤ u|Hi is true}. For any u ∈ Pi, Fi(u) = u;
otherwise, Fi(u) < u, where i = 1, . . . ,m.

Existing Methods

Traditional stepwise procedures:
• Bonferroni procedure
• Holm procedure (Holm, 1979)
• Hochberg procedure (Hochberg, 1988)

Existing Methods (cont.)

Procedures for discrete data:
• Tarone procedure (Tarone, 1990)
• Tarone-Holm (Hommel and Krummenauer, 1998)
• Roth-Hochberg (Roth, 1999)

Proposed Procedures

Let Pi be the p-value of hypothesis Hi, where i = 1, . . . ,m and P(1) ≤ . . . ≤ P(m) be the ordered p-values of the corresponding hypotheses
H(1), . . . , H(m).

Modified Bonferroni Procedure: Let t = max
{
p ∈

m⋃
i=1

Pi :
m∑
i=1
Fi(p) ≤ α

}
and set t = α

m
if the maximum does not exist. Then

reject Hi if its corresponding p-value Pi ≤ t.
Modified Holm Procedure: Let αi = max

{
p ∈

m⋃
j=i

P(j) :
m∑
j=i
F(j)(p) ≤ α

}
with α0 = 0. Set αi = max

{
αi−1,

α

m− i + 1

}
if the

maximum does not exist for some i. Then reject no null hypotheses if P(1) > α1; otherwise, rejectH(1), . . . , H(r) and retainH(r+1), . . . , H(m),
where r is the largest index satisfying P(1) ≤ α1, . . . , P(r) ≤ αr.
Modified Hochberg Procedure: Using the same αi as in the Modified Holm procedure, reject all hypotheses H(1), . . . , H(m) if
P(m) ≤ αm; otherwise, reject H(1), . . . , H(r) and retain H(r+1), . . . , H(m), where r is the largest index satisfying P(r) ≤ αr.

Theoretical Results

1 Modified Bonferroni Procedure strongly controls the
FWER at level α under arbitrary dependence.

2 Modified Holm Procedure strongly controls the FWER
at level α under arbitrary dependence.

Properties of Proposed Procedures

•Modified Bonferroni Procedure is universally more
powerful than Tarone Procedure and Modified Tarone
Procedure.

•Adjusted p-value:
1 The adjusted p-value of Hi for Modified Bonferroni Procedure
is P̃MBonf

i = min
{

1,
m∑
j=1

Fj(Pi)
}
, where i = 1, . . . ,m.

2 The adjusted p-value of H(i) for Modified Holm Procedure is

P̃MHolm
(i) =


min

{
1,

m∑
j=1

F(j)(P(1))
}
, i = 1

max
{
P̃MHolm

(i−1) , min
{

1,
m∑
j=i
F(j)(P(i))

}}
. i = 2, . . . ,m

3 The adjusted p-value of H(i) for Modified Hochberg Procedure is

P̃MHoch
(i) =


F(m)(P(m)), i = m

min
{
P̃MHoch

(i+1) ,
m∑
j=i
F(j)(P(i))

}
. i = m− 1, . . . , 1

• All proposed procedures satisfy α-consistency and
p-value monotonicity.

Real Data Analysis

Conduct a safety trial of a candidate vaccine against measles,
mumps, rubella and varicella (MMRV). (see Mehrotra and Heyse,
2004)
• Monitor Nine Tier 2 AE types in the skin body system.
•N1 = 148 −→ MMR −→ X1i
N2 = 132 −→ MMRV −→ X2i

• Two-sided Fisher’s Exact Test

Real Data Analysis (cont.)

Table 1: A comparison of adjusted p-values for single step procedures

AEi X1 X2 Pi P̃Bonf
i P̃Tarone

i P̃MBonf
i

1 13 3 0.0209 0.1880 0.0836 0.0534
2 8 1 0.0388 0.3490 0.1551 0.1343
3 4 0 0.1248 1.0000 0.8734 0.7134
4 0 2 0.2214 1.0000 1.0000 1.0000
5 6 2 0.2885 1.0000 1.0000 1.0000
6 2 0 0.4998 1.0000 1.0000 1.0000
7 1 2 0.6033 1.0000 1.0000 1.0000
8 4 2 0.6872 1.0000 1.0000 1.0000
9 2 1 1.0000 1.0000 1.0000 1.0000

Table 2: A comparison of adjusted p-values for step-down procedures

AE(i) X1 X2 P(i) P̃Holm
(i) P̃TH

(i) P̃MHolm
(i)

(1) 13 3 0.0209 0.1880 0.0836 0.0534
(2) 8 1 0.0388 0.3103 0.1163 0.0982
(3) 4 0 0.1248 0.8734 0.6238 0.5050
(4) 0 2 0.2214 1.0000 1.0000 1.0000
(5) 6 2 0.2885 1.0000 1.0000 1.0000
(6) 2 0 0.4998 1.0000 1.0000 1.0000
(7) 1 2 0.6033 1.0000 1.0000 1.0000
(8) 4 2 0.6872 1.0000 1.0000 1.0000
(9) 2 1 1.0000 1.0000 1.0000 1.0000

Table 3: A comparison of adjusted p-values for step-up procedures

AE(i) X1 X2 P(i) P̃Hoch
(i) P̃Roth

(i) P̃MHoch
(i)

(1) 13 3 0.0209 0.1880 0.0836 0.0534
(2) 8 1 0.0388 0.3103 0.1552 0.0982
(3) 4 0 0.1248 0.8734 0.7246 0.5050
(4) 0 2 0.2214 1.0000 1.0000 1.0000
(5) 6 2 0.2885 1.0000 1.0000 1.0000
(6) 2 0 0.4998 1.0000 1.0000 1.0000
(7) 1 2 0.6033 1.0000 1.0000 1.0000
(8) 4 2 0.6872 1.0000 1.0000 1.0000
(9) 2 1 1.0000 1.0000 1.0000 1.0000

Simulation Studies

Basic settings: number of hypotheses m = 5, true null proportion
π0 = {0.2, 0.4, 0.6, 0.8}, iteration B = 2000, sample size N = 25.
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Figure 1: The simulated FWER comparisons using Fisher’s Exact Test.
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Figure 2: The simulated minimal power comparisons using Fisher’s Exact Test.

Conclusions

• We have developed several FWER controlling procedures,
which exploit the information of discreteness for test
statistics. Some desired properties of proposed procedures
are discussed as well.

• Real data analysis and simulation studies illustrate that the
proposed procedures can perform better than existing
procedures in some cases, especially when the proportion of
true null hypotheses (π0) is large, or when the sample size
(N) is small.

Computing Tools

?
R package: MHTdiscrete
cran.r-project.org/web/packages/MHTdiscrete

?
Web Application: MTPs
allen.shinyapps.io/MTPs
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