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Classical Response Surface Methodology

A set of designs and methodologies to optimize a process or mixture, with steps to
• Identify the primary factors
• Identify the region of interest for the primary factors
• Develop useful models in the region of the optimum settings of the factors
• Confirm the results
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Classical Response Surface Methodology: Fractional Factorials
Two-level factorial designs, 2k, k the number of factors, are the basic building blocks

• can reveal interactions of factors
• provide excellent precision for estimates
• give some sense of range of validity for conclusions about each factor
• do not allow for estimation of quadratic effects
• can be modified to reduce the number of the runs as well as increase the size of

the design space
• are excellent building blocks

C

T

K

Typically recode variables to -1 and 1
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Classical Response Surface Methodology: Fractional Factorials

Fractional factorials are often run without replications
To pick important terms,

• Normal plot
• Half-normal
• Lenth test

Example (from Box & Draper, Prob 4.10): 4 factors (catalyst concentration, NaOH,
level of agitation, temperature) in unreplicated 24 factorial. The response variable is
the yield of an unspecified chemical process
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Classical Response Surface Methodology: Fractional Factorials
Normal Plot
Idea: - Most of the estimated effects will just normal noise—all with the same variance
- Important effects will look like outliers
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Classical Response Surface Methodology: Fractional Factorials
Half-Normal Plot
Same-idea, but take advantage that sign shouldn’t be relevant
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Classical Response Surface Methodology: Fractional Factorials
Lenth Test
Calculate a pseudo standard error and compare ratios to reference distribution

Lenth Plot for Box & Draper Ex 4.10
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PSE = 1.5median|θ̂i|<2.5s0
|θ̂i|,

where
s0 = 1.5median|θ̂i|.

The PSE is a robust estimator the standard
error of the non-active effects. Form

tPSE,i = θ̂i
PSE ,
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Classical Response Surface Methodology: Fractional Factorials
Blocking in Fractional Factorials

• May need to run smaller sets of runs than will fit in full factorial
• Would like any block effect to be orthogonal to effect estimates
• Basic idea: define blocks by signs of high-order interaction

• E.g., 23 with two blocks, define block by sign of A × B × C (using ±1 coding)
• Block will be confounded with the ABC interaction
• E.g., 23 with four blocks, define blocks by the pair of signs of A × B and A × C
• Block will be confounded with the AB, AC, and BC interactions

Colors indicate blocks
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Classical Response Surface Methodology: Fractional Factorials
Fractional Factorial Designs
When K becomes large, the number of experimental runs can become unmanageable.

• E.g., k = 7, 2k = 27 = 128
• What do we get for all this work? Estimates of all main effects and interactions.

With K = 7
Interactions number
grand mean 1

(
7
0

)
main effects 7

(
7
1

)
2-way 21

(
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2

)
3-way 35

(
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3

)
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(
7
4

)
5-way 21

(
7
5

)
6-way 7

(
7
6

)
7-way 1

(
7
7

)
• Most higher order interactions are not likely to be real
• A lot of effort for an iffy part of model
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Classical Response Surface Methodology: Fractional Factorials
Imagine that we our we had run our 27 in 2 blocks, defined by the sign of

ABCDEFG
,

• Now imagine running just the block ABCDEFG = 1
• We have a design equivalent to a full factorial in 6 factors, with the levels of

factor G determined by G = ABCDEF
• G is confounded with ABCDE
• all main effects confounded with 5 way interactions
• all 2 way interactions confounded with 4 way interactions and so on

• Denote as a 27−1 fractional factorial

Blue indicates a 23−1 fractional factorial design; white indicates a second design
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Classical Response Surface Methodology: Fractional Factorials

Just as we can create 2, 4, 8, . . . blocks, we can create half, quarter, eighth, … fractions
For example,

• Define the levels of F and G by F = ABCD and G = BCDE
• Gives a 27−2 design
• There are implicit defining relations:

• I = ABCDF and I = BCDEG ⇒ I = AEFG

• The defining relations determine all of the confounding patterns—which effects
are aliased with which

• E.g., since I = AEFG, AF is completely confounded with EG

• We define resolution of a design is the length of the shortest word in a defining
relation

• E.g., the design here has resolution IV, written 27−2
IV
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Classical Response Surface Methodology: Fractional Factorials
Continuing the example, we can construct a 27−3

IV design with these generators
• E = ABC
• F = BCD
• G = ACD
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Classical Response Surface Methodology: Fractional Factorials

The generators E = ABC, F = BCD, G = ACD then determine the defining relations
• I = ABCE
• I = BCDF
• I = ACDG
• I = ADEF
• I = BDEG
• I = ABFG
• I = CEFG

For a p-th fraction, there are 2p defining relations (including I = I)
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Classical Response Surface Methodology: Fractional Factorials
In a fractional factorial design, if any factor is inert the design projects to a fractional
factorial in the remaining factors
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Blue indicates a 23−1 fractional factorial design; white indicates a second design
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Classical Response Surface Methodology: Fractional Factorials

Since
• a fractional factorial design is like a blocked full factorial with all but one block

missing
• if the results are ambiguous we can augment the design with another of the blocks

• typically be flipping the signs of some or all factors (“fold over”)

• or a fraction of a missing block
• (or use optimal design)
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Classical Response Surface Methodology: Fractional Factorials

Fold over example:
• Original design a 25−2

III with D = AB and E = BC and defining relations
• I = ABD = BCE = ACDE

• We flip the signs (levels) of all the factors, so D = −AB and E = −BC so the the
defining relations for the new block are

• I = −ABD = −BCE = ACDE

• Since I = ACDE is common to both halves the combined fractions have this as
the relation

• Block will be confounded with 3 way interactions
• The original design plus the fold over form a blocked 25−1

IV
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Classical Response Surface Methodology: Plackett-Burman Designs

Plackett and Burman are a popular alternative to fractional factorial designs for
detecting main effects.

• Allow for the number of design points to be a multiple of 4
• Can have up (number of factors - 1) runs, or drop off extra columns from the

design and gain some df
• No power of 2 restriction
• Aliasing pattern for a Plackett-Burman design is much more complex. Generally,

each main effect is aliased with every 2-way interaction not involving that effect
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Classical Response Surface Methodology: Plackett-Burman Designs

A 12-run Plackett-Burman design
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Classical Response Surface Methodology: Plackett-Burman Designs

Reminder:
• From regression methods we know that

β̂ = (X′X)−1X′y
cov(β̂) = σ2(X′X)−1,

so we can always calculate the correlation among estimates.
• JMP, Design-Expert, and the daewr package in R will all make nice heatmaps of

the correlations.
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Classical Response Surface Methodology: Plackett-Burman Designs

Correlation heat map of 25−3
III design and an 11-factor Plackett-Burman design
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Classical Response Surface Methodology: Basic Strategy

1. Use a screening design (fractional factorial of resolution III or IV,
Plackett-Burman, …) to determine active factors

2. Use the effect estimates to move in the direction of steepest ascent
• Include some center points in design to detect curvature

3. When curvature is detected, switch to designs sufficient for 2nd order models
Steps 1 and 2 or steps 2 and 3 can sometimes be combined.

From Myers, Montgomery, and Cook
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Classical Response Surface Methodology: Screening

Three principles underlie the methods:
• Hierarchical Ordering Principle Lower order effects are more likely to be important

than higher order effects
• Effect Sparsity, or Pareto, Principle The number of important effects is generally

small
• Effect Heredity Principle For an interaction effect to be significant, (at least one

of) its parent effects should be significant
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Classical Response Surface Methodology: Screening

• When effects are not independent, normal & half-normal plots or the Lenth test
are not really appropriate

• Applies to non-regular designs such as Plackett-Burman, definitive screening, and
others

• Instead need to build a model
• Various approaches including enforcing hierarchical principle or Bayesian approaches

with priors on main effects, 2-way interactions, etc
• If there are not too many factors, can do all subsets regression and select using AICc,

say
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Classical Response Surface Methodology: 2nd Order Models

• With 2nd order designs, interested more in prediction than parameter estimation
• There are two classic 2nd order designs for k factors
• Central composite designs

• require 2k−p + 2k + number center points design points
• typically use 5 levels; can use 3
• there are also “small central composite designs”

• Box-Behnken designs
• use 3 levels
• do not use corners of experimental region

• (3k designs used less often because of the size)

25 / 129



Classical Response Surface Methodology: 2nd Order Models

Number of runs

k Central Composite Design Box Behnken Small Central Composite Design
3 10 or 14 + nc 12 + nc
4 16 or 24 + nc 24 + nc 19 + nc
5 26 or 32 + nc 40 + nc 21 or 22 + nc
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Classical Response Surface Methodology: 2nd Order Models

Central Composite Designs
Built out of

• A factorial part: 2k or 2k−p
III or 2k−p

V
• Axial (aka “star”) points, 2k of them, with all but one factor set to 0
• several points at the center
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Classical Response Surface Methodology: 2nd Order Models

The radius, α, of the axis points is flexible
• α = 1 is known as “face-centered” and so requires only 3 levels per factor
• α = 2(k−p)/4, makes the design “rotatable”—the variance of prediction depends

only on the distance from the (coded) origin
• α can be used to make block effects orthogonal . . .
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Classical Response Surface Methodology: 2nd Order Models

Blocking with central composite designs
1. If needed, block the factorial component, but include cf center runs
2. One block for the axial points plus ca center points
3. With the right choice of α, all the block effects will be orthogonal to the

parameter estimates

α =
√

2k−p(2k + ca)
2(2k−p + cf)

.

- For example, with k = 3, p = 0, and ca = cf = 2, α ≈ 1.79
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Classical Response Surface Methodology: 2nd Order Models

Small (Central) Composite Designs
• Replace the factorial component of a CCD with a partially aliased design such as

Plackett-Burman
• Same idea works using 2k−p

III
• The axial points resolve aliasing of 2-way interactions with main effects
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Classical Response Surface Methodology: 2nd Order Models

Central composite designs
• Can combine with an existing factorial design to give a blocked 2nd order design

• Advantageous for sequential experimentation

• Allow for 3 or 5 levels per factor
• Can be made (near) rotatable
• Flexible
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Classical Response Surface Methodology: 2nd Order Models

Box-Behnken designs
• Incomplete 3k factorials
• Are (close to) rotatable—variance of prediction depends only on distance from

center
• Formed by combining two-level factorial designs with incomplete block designs

• E.g., k = 3,

A B C
∗ ∗
∗ ∗

∗ ∗

• For each line, replace ∗ with a 22 factorial and put 0 in for blank cells
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Classical Response Surface Methodology: 2nd Order Models

Note that there are no design points on the vertices.
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Classical Response Surface Methodology: 2nd Order Models

Box-Behnken designs
• Have the advantage (and disadvantage) of using 3 levels per factor
• They do not extend to the vertices of the cube

• May be an experimentation advantage
• Don’t think of as a cubic design—think of as a spherical design

• Are rotatable or near-rotatable
• Can sometimes block—3 blocks when k = 3 or 2 blocks when k = 4
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Classical Response Surface Methodology: Canonical Analysis

• After the regression model has been estimated, the response can be studied with a
contour plot or lattice plots of contours.

• Canonical analysis gives a direct estimate of the stationay point and the nearby
behavior by writing the response surface in the form (e.g., when k = 3)

y − ys = λ1w2
1 + λ2w2

2 + λ3w2
3,
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Classical Response Surface Methodology: Canonical Analysis

If we write
ŷ = β̂0 + x′β̂ + x′B̂x,

• To find the stationary point xs, differentiate ŷ, set to zero, and solve

Xs = −B̂−1β̂/2.

• The eigenvalues of B̂ indicate the behavior at the stationary point.
• We almost always want to not just know where an optimum is but how the

surface behaves nearby.
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Classical Response Surface Methodology: 2nd Order Models
Myers, Montgomery, and Anderson-Cook, Example 7.6
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Classical Response Surface Methodology: 2nd Order Models
Myers, Montgomery, and Anderson-Cook, Table 6.2
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Classical Response Surface Methodology: Texts

1. Box [2009] and Box and Draper [2007] are classics
2. Myers et al. [2016] is the dominant textbook
3. Anderson and Whitcomb [2016] gives a light-footed introduction
4. del Castillo [2010] includes Bayesian approaches and computer experiments
5. Wu and Hamada [2011] gives a more mathematical treatment of topics
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Optimal Design

Optimal design theory—and its implementations—are critical when classical designs
are inappropriate

• Constrained design space
• Need a different number of runs than in classical designs
• Combination of mixture and process variables
• Split plot features
• Nonstandard linear models (e.g., cubic terms)
• Augmenting an existing design (particulary one with failed runs)
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Optimal Design

Writing X as the design matrix,
• β̂ = (X′X)−1X′y
• var(β̂) = σ2(X′X)−1

• ŷx = xβ̂
• var(ŷx) = σ2x(X′X)−1x′

The design problem:
• selecting rows of X
• such that the design defined by X in some defined sense, optimal
• Just need sensible criteria and algorithms
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Optimal Design

Smith (1918) proposed “minimize the maximum variance of any predicted value”

min
xi,i=1,...,n

max
x∈X

var(ŷx).

Now called global, or G-optimality.
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Optimal Design

Wald (1943) put the emphasis on the quality of the parameter estimates:

max
xi,i=1,...,n

|X′X|.

• Now called D-optimality
• Determinant is the product of the eigenvalues,

• inversely proportional to the product of the axes of the confidence ellipsoid around β̂
• so maximizing |X′X| ⇔ minimizing the volume of the confidence ellipsoid

The Kiefer-Wolfowitz General Equivalence Theorem established that D and G optimal
designs are equivalent, under certain conditions.
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Optimal Design

There are many other design criteria.
• I (or IV) optimal may be next most important

• Minimizes the average variance of prediction over the region of interest
•

∫
R

x′(X′X)−1x dx = Trace
(
(X′X)−1M

)
, where M =

∫
R

xx′ dx
• Over a cuboidal region minimizes the average variance of the parameter estimates
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Optimal Design

There are many other design criteria.
• I (or IV) optimal
• Bayesian D-optimal: like D-optimal

• gives relative weights to the importance of the model terms
• considers |X′X + K|, where K is a diagonal matrix

▶ 0 for terms of greatest interest
▶ 16, say, for terms of secondary interest

• Bayesian I-optimal: like I-optimal,
• gives relative weights to the importance of the model terms
• Trace

(
(X′X + K)1M

)

45 / 129



Optimal Design

• Use a design criterion that corresponds to your design problem
• Often

• Estimation: D-optimality
• Prediction: I-optimality
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Optimal Design

A toy example
First order model in a constrained region, n = 6
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Optimal Design

D−optimal
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Optimal Design

I−optimal
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Optimal Design

Bayesian D−optimal (2nd order terms if possible)

50 / 129



Optimal Design

Bayesian I−optimal (2nd order terms if possible)
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Optimal Design

• D- and I- optimal designs push points out to the edges
• Very model dependent
• To robustify the,

• Previously, would use a higher order model or “D-optimal onion design”
• Bayesian D-optimal and I-optimal designs target same objective more elegantly
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Algorithms:
• Vertex exchange

• Start with a random design, try to improve design point by point in the design matrix

• Coordinate exchange
• Start with a random design, try to improve design element by element in the design

matrix
• Typically faster and more flexible

• Designs incorporate some randomness
• Can get stuck in local optima
• Use many restarts
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Optimal Design

• JMP and SAS (proc optex) implement D-, I-, Bayesian D-, and Bayesian
I-optimality

• Design-Ease implements D- and I-optimality
• R has AlgDesign package for D and I-optimality and some specialized ones

Goos and Jones [2011] is an engaging introduction to optimal design via case studies.
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Definitive Screening Designs
Jones and Nachtsheim [Jones and Nachtsheim, 2011, 2013, 2016] introduced the class
of “definitive screening designs”

• For m factors, they require 2m + 1 runs
• Use 3 levels per factor
• Main effects are orthogonal

• to themselves
• to 2-way interactions
• to quadratic effects

• 2-way interactions
• not completely confounded among themselves or quadratic effects

• quadratic effects are
• estimable
• not completely confounded with 2-way interactions

• With 6 through 16 factors, all 2nd order models with ≤ 3 factors can be estimated
• With 17 through 20 factors, all 2nd order models with ≤ 4 factors can be

estimated
• …
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Definitive Screening Designs
The design is built out of foldover pairs and a center run. The exact coordinates for
each pair is chosen using optimal design criterion.

From @jones2011class
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Definitive Screening Designs
This is an example of a 8-factor, 17-run design
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Definitive Screening Designs
The heat map shows the correlation of the parameter estimates

from https://community.jmp.com/t5/JMP-Blog/Introducing-definitive-screening-designs/ba-p/30075 58 / 129



Definitive Screening Designs

Compare this to the parameter esimate correlation of a 28−4
IV design with 1 center point

from https://community.jmp.com/t5/JMP-Blog/Introducing-definitive-screening-designs/ba-p/30075
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Definitive Screening Designs

• Definitive screening designs have been extended to incorporate flexible blocking
and a few 2-value categorical variables

• Implemented in JMP and Design-Expert (and partially in R package daewr)
• Typically analyzed using

• forward stepwise regression on a full 2nd order model
• using the AICc criterion
• sometimes with a hierarchy restriction

• Recommended only for at least 4 factors
• Can increase power by designing for more factors and dropping columns

• e.g., for 4 factors, build a 6-factor DSD and drop the last 2 columns
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Definitive Screening Designs

Not a fix-all. Not effective . . .
• For many categorical variables or categorical variables at more than 2 levels
• When you expect cubic effects
• When there are constraints on the design region
• When some factors are mixture ingredients
• When the design is run as a split-plot

Note: Christopher Nachtsheim is speaking on definitive screening designs on
Wednesday at 8:30
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Experimental Design for Mixtures: Classic Approach
Mixture experiments differ from others in that the components must add to one. We
typically visualize the experimental region as a simplex.
A simple example from Waaler et al. [1991], via Eriksson et al. [1998].
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Experimental Design for Mixtures: Classic Approach

Scheffé Canonical Models
• Linear E(y) =

∑
βixi

• Quadratic: E(y) =
∑

βixi +
∑ ∑

i<jxixj

• Special Cubic: E(y) =
∑

βixi +
∑ ∑

i<jxixj +
∑ ∑ ∑

i<j<kxixjxk

• βj represents the expected response from a pure mixture with xj = 1
•

∑
βixi term is called the linear blending term

• Quadratic terms are called nonlinear blending terms
• Estimates can be fit with OLS, but adjustment if needed for correct R square and

standard errors of model coefficients
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Experimental Design for Mixtures: Classic Approach
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Experimental Design for Mixtures: Classic Approach
Standard mixture designs 1

• Simplex-Lattice {q, m} designs
• Every possible combination of q components with m + 1 equally spaced values from

0 to 1, xi = 0, 1/m, 2/m, . . . , 1 for i = 1, 2, ..., q
• Except centroid, all design points are on the boundaries of the simplex
• often augmented with “axial check points” midway from vertices to centroid

from http://reliawiki.org/index.php/Mixture_Design

A {3, 3} simplex lattice
65 / 129
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Experimental Design for Mixtures: Classic Approach
Standard mixture designs 2

• Simplex-Centroid
• q vertices of the form (1, 0, . . . , 0)
• all points of the form (1/2, 1/2, 0, . . . , 0)
• …
• all points of the form (1/r, 1/r, . . . , 0)
• 1 point of the form (1/q, . . . , 1/q).

• Except centroid, all design points are on the boundaries of the simplex
• often augmented with “axial check points” midway from vertices to centroid
• efficient for cubic models

from http://reliawiki.org/index.php/Mixture_Design 66 / 129
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Experimental Design for Mixtures: Classic Approach
Standard mixture designs 3

• Simplex Screening
• Vertices
• Centroid
• Axial check blends

from @smith2005experimental
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Experimental Design for Mixtures: Constraints

• It is not uncommon to have constraints in a mixture experimental space
• If every constraint has the form xi ≥ L, then the components can be rescaled to

pseudo-components
• Interpretation of result can be helped by using a reference blend on Cox directions

• Lines from vertex to reference blend
• Proportion of other components is constant along that line

• Design is best handled via optimal design
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Experimental Design for Mixtures

References:
• Cornell [2011]
• Smith [2005]
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Analysis of Mixture Data Using Partial Least Squares

With many constraints and components,
• Scheffé model can be difficult to interpret
• Cox model (reference blend with Cox directions) is easier to interpret, but
• Estimation can be numerically unstable
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Constraints lead to estimation problems

With contraints,
• the xi increase in collinearity,
• X′X becomes ill-conditioned, which
• leads to poor quality estimates

Including process (i.e., non-mixture) variables causes more complications.
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Partial Least Squares

• Partial least squares (PLS) gives a single framework to analyze data from a
mixture experiment, with or without process variables. Introduced by
Kettaneh-Wold [1992] for mixture experiments

• Very popular in chemometrics, but less well known to statisticians
• A dimension reduction method
• Uses Y to identify orthogonal directions in X that are highly correlated with Y
• seeks factors that explain both response and predictor variation
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Partial Least Squares

• The mth PLS direction ϕ̂m solves

max
α

Cor2(y, Xα)Var(Xα),

subject to ∥α∥ = 1 and αSϕi = 0, where S is the sample variance matrix of X.
• Compare to principal components analysis, which has criterion

max
α

Var(Xα),

subject to ∥α∥ = 1 and αSϕi = 0.
• Note that if X is orthogonal to start, then PLS is the same as ordinary least

squares.
• Cross-validation is used to decide on how many dimensions to use.
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Partial Least Squares

PLS is implemented in
• JMP
• proc pls in SAS
• pls package in R
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Partial Least Squares

A PLS Example (from Snee and Marquardt [1976] and Kettaneh-Wold [1992])
Eight components with the following constraints

• 0.10 ≤ x1 ≤ 0.45
• 0.05 ≤ x2 ≤ 0.50
• 0.00 ≤ x3 ≤ 0.10
• 0.00 ≤ x4 ≤ 0.10
• 0.10 ≤ x5 ≤ 0.60
• 0.05 ≤ x6 ≤ 0.20
• 0.00 ≤ x7 ≤ 0.05
• 0.00 ≤ x8 ≤ 0.05

A 20 run design, selected by D-optimality from 182 extreme vertices, plus 4 centroid
replicates, was run.
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Partial Least Squares
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Chemometrics-style “Multivariate Design”

• May be the case that factors that can be manipulated are not the variables that
directly affect the system (e.g., changing an amino acid changes many
characteristics)

• May be too many possible factors (e.g., 400 pairs of amino acids, or many
possible excipients from many suppliers)

• May also be too many variables, such as from spectroscopy

From @gabrielsson2003multivariate
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Chemometrics-style “Multivariate Design”

• As a first step, apply principal components analysis (PCA), reducing many
variables to a few dimensions

• 2 approaches:
1. Treat the PCA space as the set of factors, and choose design points from it

corresponding to classic designs
2. Treat the actual projected points in the design space as candidate points and apply,

say, D-optimality

From @gabrielsson2003multivariate
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Chemometrics-style “Multivariate Design”

An Example from Gabrielsson et al. [2003]
Screening of excipients to development of a new tablet formulation for direct
compression. (They have a full set of papers describing various steps in the process.)

• 105 samples of 21 different excipients
• characterized by FT-IR and NIR spectroscopy
• divided into 3 classes (fillers, binders, and disintegrants), standardized separately
• (also samples of active pharmaeceutical ingredient (API) from three batches each

from two manufacturers)
• PCA applied: 3 principal components extracted for each class
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Chemometrics-style “Multivariate Design”

From @gabrielsson2003multivariate
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Chemometrics-style “Multivariate Design”

• Total of 14 factors (3 × 3 principal components, plus API, plus some additional
factors)

• Performed a 214−9
IV fractional factorial with 3 center points for 35 experimental

runs
• Picked excipients corresponding to low and high values for each PCA component
• Measured 9 outcomes such as disintegration time and crushing strength
• Performed partial least squares with main effects only model for analysis
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Chemometrics-style “Multivariate Design”

Disintegration time
From @gabrielsson2003multivariate
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Chemometrics-style “Multivariate Design”

They separately considered - disintegration time - crushing strength - ejection force -
disintegration type - hausner ratio - adhesion - compression force
It is still necessary to interpret the PCA components back to the original excipient
samples.
Note: In the next paper in the series, Gabrielsson et al. [2006], they use D-optimality
(using vertex exchange) to select the design points.
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“Design of Dynamic Experiments”
An example of how we think of a design point can expand, from Georgakis [2013]

• Batch processes can involve time-varying inputs
• Expand these in terms of the first few Legendre polynomials

• P0(τ) = 1, P1(τ) = (−1 + 2τ)/
√

3, P2(τ)(1 − 6τ + 6τ 2)/
√

5, …
• The design points of a 22 factorial are then ±P0(τ) + ±P1(τ)

From @georgakis2013design

22 and 23 factorials
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Design Space

In ICH Q8(R2), the Design Space is defined by
• The multidimensional combination and interaction of input variables (e.g.,

material attributes) and process parameters that have been demonstrated to
provide assurance of quality.

• Working within the design space is not considered as a change.
• Movement out of the design space is considered to be a change and would

normally initiate a regulatory postapproval change process

85 / 129



Design Space

This immediately brings to mind using designed experiments and statistical modeling.
Two traditional approaches to multivariate response:

1. Overlapping mean response surfaces
2. Desirability functions
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Multiple Responses: Overlapping mean response surfaces

Overlapping mean response surfaces is a straightforward approach
• Once an experimental region is set, the experimental design does not depend on

the response
• the design criteria are based on X, not y

• Following the experiment phase, build separate response surfaces for each response
• Define the design space as set as the values of factors such that the response

surfaces are all within acceptable values
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Multiple Responses: Overlapping mean response surfaces
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Multiple Responses: Overlapping mean response surfaces
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Multiple Responses: Overlapping mean response surfaces

As an aside, in an optimization setting, the fitted response surfaces can be turned into
a constrained optimization problem, e.g.
maximize y1 subject to constraints on y2, . . . , ym
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Multiple Responses: Desirability functions

Idea:
• For each response, create an individual desirability function

0 ≤ di ≤ 1,

setting di = 0 if the response is unacceptable.
Then maximize the overall desirability

D = (d1d2 . . . dm)1/m.
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Multiple Responses: Desirability functions
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Multiple Responses: Desirability functions

• Not so simple to optimize, since the desirability function D is not differentiable
• Both Design-Expert and JMP have desirability function capabilities
• There is an R package desirability
• SAS requires (substantial) IML coding
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Design Spaces: Problems with traditional multivariate response approach

• On the edge of a region defined by overlapping mean response surfaces, the
probability that the responses exceed the limits is at best 50%.

• With traditional multivariate response approaches, there is no allowance
• for model uncertainty
• variance of prediction
• correlated responses
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Design Space: A frequentist approach

Chiao and Hamada [2001]’s approach:
• Write A for the specification region

• Think of A as the region of acceptable values for the critical quality attributes
(CQAs)

• Focus on p(x) = P(Y ∈ A|x)
• Assume Y has a multivariate normal distribution,

Y ∼ N(µ, Σ),

where µ = µ(x) and Σ(x) are functions of t x.
• For any A, µ, and Σ, finding p(x) = P(Y ∈ A|x) corresponds to integration of the

multivariate normal density
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Design Space: A frequentist approach

Chiao and Hamada [2001] model
• µk in the usual way, as xαk,

• αk correspond to coefficients of a response surface model

• log(σ2
k) = xβk

• tanh−1(ρkl) = xγkl (tanh−1(ρkl) is equivalent to 1/2logit((ρ + 1)/2))
Write Θ = (α1, . . . , αm, β1, . . . , βm, γ1, . . . , γm)
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Design Space: A frequentist approach

To fit the model, there has to be replication at the design points so that the variance
components can be modeled.

• Could be genuine replicates
• Could be across a small factorial of noise factors

Can then use sample estimates, µ̂k, σ̂2
k , and ρ̂kl as the responses to an unreplicated

experiment
Note:

• log σ̂2 is approximately normal with variance 2/(n − 1) and
• tanh−1 ρ̂ is approximately normal with variance 1/(n − 3)

So significance tests can be used for determining the effects for those “responses”
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Design Space: A frequentist approach

• Chiao and Hamada [2001] give 3 industrial examples of maximizing
p(x) = P(Y ∈ A|x, data)

• In practice,
• µ̂k, σ̂2

k , and ρ̂kl can be modeled using standard software as responses to an
unreplicated experiment

• requires replication so that the covariance can be modeled
• mvtnorm package in R can be used for the calculations
• Could also use Monte Carlo simulation via draws from N(µ̂, Σ̂)
• P(Y ∼ N(µ̂, Σ̂) ∈ A can be calculated

▶ over a grid and interpolated
▶ using a computer experiment approach (e.g., a using a Latin hypercube followed by

kriging, Fang et al. [2005])

• Note that uncertainty of model estimates is not incorporated
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Design Space: Peterson’s posterior predictive approach

Peterson [2004] proposed a Bayesian approach to incorporate both uncertainty and
correlation.
Start with the model,

Y = Bz(x) + e, e ∼ (N(0, Σ))

and consider how to determine p(x) = P(Y ∈ A|x, data)
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Design Space: Peterson’s posterior predictive approach

To incorporate model parameter uncertainty,
• Peterson uses the usual noninformative joint prior for B and Σ
• proportional to |Σ|−(p+1)/2

with the resulting posterior predictive distribution of . . .
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Design Space: Peterson’s posterior predictive approach

. . . y|x, data ∼ multivariate t-distribution, with
• mean B̂z(x),
• variance D/ν(1 + z(x)(Z(X)′Z(X)−1z(x0)′, where D = (Y − XB̂)′(Y − XB̂) is a

scale matrix
• ν = n − p − q + 1 degrees of freedom

Computation can be done
• mvtnorm package in R, using the Genz and Bretz algorithms
• Monte Carlo simulation, converting multivariate normal random variables and

independent chi-square random variables to multivariate t
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Design Space: Peterson’s posterior predictive approach

Extension to Seemingly Unrelated Regression (SUR) Models, Peterson et al. [2009]
• No requirement that the regression model be the same for each outcome

• Also uses multivariate t distribution instead of multivariate normal
• allows for moderate outliers
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Design Space: Peterson’s posterior predictive approach

• Models for each response can be done separately using usual tools
• Residuals can be used to estimate multivariate error correlation structure
• Peterson et al. [2009] uses Gibbs sampling to simulate draws from the posterior

predictive distribution of Y given a value of x
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Design Space: Peterson’s posterior predictive approach

“Pre-posterior analysis”
After design, experimentation, and analysis, the region of acceptable probability of
conformance to specifications may be too small, or the probabilities too low.
Inherent in the process, or a function of the sample size?

• Impute additional data from the fitted model
• Redo the analysis with new data
• Examine the change in the probability of conformance

• A sufficient change indicates more certainty in parameter estimates (i.e., bigger
sample size) is needed

• An insufficient change indicates that the issue lies with the process itself
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Bayesian predictive approach

Advantages of the Bayesian predictive approach [from ?]:
• It incorporates model parameter uncertainty
• It incorporates correlations among responses
• Informative priors can be used if available
• Direct calculation of a region of acceptable probability of conformance to

specifications
• Allows noise variables to be added
• Allows “pre-posterior analysis”
• Very general and flexible framework
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Bayesian predictive example 1

Lebrun et al. [2012] give a particularly complete example, in optimizing a spray-drying
process for a pulmonary drug.
There were three critical process parameters:

Critical process parameters Abbreviation Low level High level
Inlet temperature (°C) IT 110.00 220.00
Spray flow rate (L/h) SFR 439.00 1744.00
Feed rate (ml/min) FR 2.50 7.50

106 / 129



Bayesian predictive example 1

and five critical quality attributes:

CQA Specification
Yield >80
Moisture <1
Fraction [1–5] �m >60
Compressibility index <15
Hausner ratio <1.18

The latter two, measures of flowability, are derived from bulk and tapped density.
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Bayesian predictive example 1

Lebrun et al. [2012] used a multivariate multiple linear regression model, with

Y = (logit(Yield), logit(Fraction), log(Moisture), log(Bulk), log(Tapped))

and

Y = β0+linear(IT, FM, SFR)+quadratic(IT, FR)+2-way interaction(IT, SFR)+3-way interaction(IT, FR, SFR)+E,

with
E ∼ N(0, Σ).

By specifying a particular non-standard model they are trying to prevent over- and
under-fitting.
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Bayesian predictive example 1

As above, by using the non-informative prior p(B, Σ) = |Σ|−(p+1)/2 they arrive at
predictive posterior density of

(Y|x0, data) ∼ Tp
(
B̂x0, D/ν(1 + x0(X′X)−1x′

0, ν)
)

,

where
• B̂ is the least square estimate of B
• D = (Y − XB̂)′(Y − XB̂) is a scale matrix
• ν = number design pts − number responses − number factors + 1
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Bayesian predictive example 1

• For the design, they used a face-centered central composite design with 3 center
points for n = 17.

• First, they use the marginal posterior density of parameters to get 95% credible
intervals
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Bayesian predictive example 1
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Bayesian predictive example 1

Next, they examine residuals

Note the amount of variability
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Bayesian predictive example 1
… including normal QQ plots
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Bayesian predictive example 1

The estimated correlation matrix is a long way from the identity matrix.

## Warning: Missing column names filled in: 'X1' [1]

X1 LYield LTapped LMoisture LBulk LFraction
LYield 1
Ltapped −0.05 1.00
Lmoisture 0.16 0.04 1.00
LBulk 0.3 0.90 0.31 1.00
LFraction 0.83 0.32 0.28 0.60 1

114 / 129



Bayesian predictive example 1

The resulting probability map
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Bayesian predictive example 1

… and a resulting cuboid design space (for Prob > 0.437)

Critical process parameters DS range
Feed rate (ml/min) [4.2–4.8]
Spray flow rate (L/h) [1614–1744]
Inlet temperature (°C) [118–125]
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Bayesian predictive example 1
They finish by examing the marginal distributions at the optimum
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Bayesian predictive example 1

CQA Lower 95% Lower 75% Median Mean Upper 75% Upper 95%
Yield (%) 42.00 75.00 88.00 81.00 94.00 �100
Moisture content (%) 0.26 0.57 0.71 0.76 0.89 1.31
Inhalable fraction (%) 17.00 49.00 70.00 65.00 85.00 100
Compressibility index 0.40 6.20 8.80 9.00 11.50 16.1
Hausner ratio 1.00 1.07 1.09 1.10 1.13 1.19
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Bayesian predictive example 2

• Fu et al. [2016] give an example of a yeast fermentation process for producing a
recombinant protein.

• 3 critical process parameters: pH, disolved oxygen, temperature
• 10 critical quality attributes

• Central composite design with 8 center points, augmented with 6 more
• One axial point (DO) run farther out than others

• Used Peterson et al. [2009] approach
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Bayesian predictive example 2: Overlapping contour plot

from @fu2016characterization
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Bayesian predictive example 2: predictive probability plot

from @fu2016characterization
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Bayesian predictive example 2: predictive probability plot of broth titer ≥
1.12 g/L

from @fu2016characterization
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Take-away

The Treachery of Images
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