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ONE GRAPH
(Mitra et al., 2013; Telesca et al., 2013)
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Bayesian Graphical Model – An overview

A class of Bayesian graphical hierarchical models
Bayesian paradigm:

Prior Pathways G0︸ ︷︷ ︸
Graphical prior

+ Data︸︷︷︸
Likelihood

→ Posterior Pathways G︸ ︷︷ ︸
Posterior knowledge

Graph is random Allow topology to change (add or remove
edges); posterior distribution on different graphs

False discovery control FDR is estimated based on posterior
probabilities of graphs and edges

Prior graph Prior knowledge can be incorporated (e.g., consensus
network from KEGG, GeneGO, Ingenuity...)
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General structure
Bayesian paradigm:

Prior Pathways G0︸ ︷︷ ︸
Graphical prior

+ Data︸︷︷︸
Likelihood

→ Posterior Pathways G︸ ︷︷ ︸
Posterior knowledge

Notation:
Y : observed data ygt , feature g , sample t

e: latent indicators egt ∈ {−1, 0, 1} for under-, over- and
normal expression

G: Graph – dependence structure (conditional independence)

c: strength of dependence

θ: other nuisance parameters

Model:
p(Y | θ, e) p(e | G, c) p(c | G) p(G) p(θ).

sampling model latent trinary dependence nuisance

Single Graph: June 11, 2017 5
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Probability Model – 1. Priors on random graph p(G)
Let G = (V ,E ) denote a graph
V : set of nodes in the graph (features)
E : set of edges between pairs of nodes (edges between features)

Prior on G

• Informative prior around G0 (consensus protein network):
p(G ) ∝ τd(G ,G0)

• Can deal with a graph with moderate size (say, 50 nodes)
• Need to have strong prior belief in G0
• Example: Cellular protein signaling pathways (Telesca et al.,

2012); multi-platform molecular interation map – Zodiac (Zhu
et al., 2015)

• Vague prior when a prior network is not known: p(G) ∝ const
• Feasible only for graphs with relatively small size (e.g., 15

nodes), see Dobra et al. (2005)
• For histone modifications, little prior knowledge is known

about their dependence (Mitra et al. 2013)
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Probability Model – 2. Joint prior of features presence given
the graph p(e | β,G)

Presence of features : Define {eit = 1} the presence indicator of
feature i in location t.

Joint distribution of e given G and β is defined as p(e | β,G).

Besag (1974) shows that any joint p(e | β,G ) can be written as

p(e | β,G ) = p(0 | β,G )

× exp

∑
i

βiei +
∑
i<j

βijeiej +
∑

i<j<k

βijkeiejek + . . .+ β1···me1 · · · em

 ,

(1)

where βi1···ik is zero if and only if nodes i1, . . . , ik do not form a
clique in the graph G .Single Graph: June 11, 2017 7
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Clique

A clique is a set of nodes of which all pairs in the set are connected.

!"#$%$&'()*+$ ,$&'()*+$
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Probability Model – 3. Sampling model p(y | e)
We model yit as random variable from a mixture distribution of
Poisson and Log-normals.

p(yit | eit) ∝

{
Poi(λi ) I (yit < ci ) eit = 0
πiLN(µ1i , σ

2
1i ) + (1− πi )LN(µ2i , σ

2
2i ) eit = 1

(2)

The Poisson/log-normal mixture can be further replaced by
introducing a trinary indicator zit ∈ {−1, 0, 1} with
p(zit | eit = 0) = δ−1(zit) and
p(zit | eit = 1) = πiδ0(zit) + (1− πi )δ1(zit). Then

p(yit | eit) =


Poi(λi ) I (yit < ci ) zit = −1
LN(µ1i , σ

2
1i ) zit = 0

LN(µ2i , σ
2
2i ) zit = 1

(3)

I
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A fit of the mixture model (ChIP-Seq, Riten et al., 2013)
Histogram of the positive histone counts with density estimate

Histone Counts
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Figure: Fit of a Poisson/lognormal mixture model to the count data of a
feature. The red (peaked) curve is the density of
0.5× Pois(1)I (yit < 2) + 0.3× LN(1, 0.4) + 0.2× LN(2, 0.6). The
histogram shows the empirical distribution of the data.
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Joint Posterior

Let θ be the parameter vector for the sampling model.

The joint posterior is given by

p(Y , z , e,θ,G ) ∝ p(Y | z ,θ)︸ ︷︷ ︸
(3)

p(z | e,θ) p(e | β,G )︸ ︷︷ ︸
(1)

p(θ) p(β | G ) p(G )

(4)

Single Graph: June 11, 2017 11



Single Graph Two or More Graphs Zodiac – Two hundred million graphs

MCMC and posterior inference

Posterior MCMC simulation proceeds by iterating over the following
transition probabilities:

[e | G ,β,θ,Y ], [z | e,θ,Y ], [θ | z ,Y ], [β | e,G ], [G | β, e]

• Updating β and G involves evaluating

c(β,G ) = 1/p(0 | β,G ) =
∑
e

exp

∑
i

βiei +
∑
i<j

βij(ei − νi )(ej − νj)

 .

(5)

step 1 Importance sampling to updated β (Chen and Shao, 1997;
Che, Shao and Ibrahim, 2000)

• Approximate the M-H ratio by importance sampling

step 2 With step 1 and reversible jump, updating G .

Single Graph: June 11, 2017 12
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CHIP-Seq Example
ChIP-Seq experiment for CD4 T Lymphocytes (Barski et al, 2007;

Wang et al., 2008)
HM count data [yit ] with 50,000 selected locations and 39 types of

HMs.
Posterior inference is based on P̂ij , the posterior probability of

including an edge {i , j}.
1. Edge selection is based on posterior expected FDR

to determine a cutoff c

FDRc =

∑
i j [(1− P̂ij)I (P̂ij > c)]∑

i ,j I (P̂ij > c)
,

so that edges with P̂ij > c are selected.
2. Type of interaction is based on

Pr(βij > 0 | βij 6= 0, y) > 0.5
• Yes: positive
• No: negative

Single Graph: June 11, 2017 13
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Results – 1: Point Estimate (ChIP-Seq on Histone
Modifications)
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Posterior inference for the ChIP-Seq data on 17 HMs under a uniform prior p(G). The thickness of the

edges indicate the strength of the relationship and is a function of the posterior inclusion probabilities P̂ij .
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Results – 2: Variability Estimate
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The four most frequent configurations (a through d) of a subgraph consisting of 4 edges. The posterior

probabilities (in percent) are given below each subgraph.
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DIFFERENTIAL GRAPHs (> 2 graphs)
(Mitra, Müller, Ji, 2014a; 2014b)
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Differential Networks of

Assume an informative prior graph G0. Inference on two graphs G 1

and G 2. Define δij = |G 2
ij − G 1

ij | the differential edge indicator.

G 1 | G0 ∼ U(G0)

δij ∼ Ber(π), i < j

π ∼ Beta(a, b). (6)

Together G 1 and δ implicitly define G 2 by

G 2
ij = G 1

ij (1− δij) + (1− G 1
ij )δij

for all edges {i , j} ∈ E0.
We refer to (6) as the differential graph model, and refer to π as
the global probability of similarity.

Two or More Graphs: June 11, 2017 17
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Differential graphs
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(a) Promoters (G 1) (b) Insulators (G 2) (c) Differences δij = |G 1
ij − G 2

ij |

Figure: Panels (a) through (c) show posterior estimated networks in two
regulatory regions and the posterior estimated differences between them.
The solid lines denote the edges present in promoters, but not in
insulators while dotted lines represent edges in insulators but not in
promoters.
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Extension to > 2 graphs

• A latent “baseline” graph G0;
• Multiple graph model: For graph G k , k = 1, 2, ...K ,

p(G k
ij = 1 | G 0

ij = 1) = pk11 and p(G k
ij = 1 | G 0

ij = 0) = pk10

pk11, p
k
10 ∼ Beta(a1, b1)

p(G 0
ij = 1) = p0; p0 ∼ Beta(a0, b0)
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Extension to Time-Course Proteomics Data
In Mitra et al. (2014), we consider a time-course data set from a
functional proteomics experiment. About 66 proteins from PI3K
pathway are measured over 8 time points. We consider a directed
graph to estimate the joint dependence structure of these
biomarkers. Journal of Applied Statistics 7

Figure 2. Posterior estimated network for interactions of proteins in the Pi3k inhibitor pathway. The solid
(blue) and dashed (red) edges denote positive and negative associations, respectively. An arrow from node
i to node j indicates that protein i affects protein j at the subsequent time point. Please see Table 1 for the
protein names.

and STAT3 (i = 42) are some proteins with high posterior mean connectivities. Of these, TSC2
pT1462 has the highest mean connectivity E(c22 | y) = 10, with p(c22 = c | y) = 0.45, 0.52 and
0.03 for c = 9, 10, 11.

The estimated posterior network in Figure 2 infers many genomic interactions validated by
recently biological research. First, AKT, a serine threonine-specific protein kinase, is one of the
major targets of PI3K and plays a key role in the PI3K signaling pathway. It regulates TSC2 and
p70S6K in our estimated network. The positive regulation of AKT on phosphorylated p70S6K is
supported by an experiment showing constitutive activation of AKT increases phosphorylation
of p70S6K protein [17]. The experimental result that constitutive activation of AKT significantly
induces the degradation of TSC1/TSC2 protein complex in a dose-dependent manner validates
the negative regulation of AKT on TSC2 predicted by our posterior network [2] The positive reg-
ulation of SRC on AKT is also consistent with the fact that AKT is transcriptionally up-regulated
by SRC (i = 46) through a cascade of molecular interactions [15]. Second, STAT3 is a highly
connected node in the estimated network. Its activation is important for insulin/IGF1-induced
anchorage-independent growth and survival of certain ovarian cancer cells. The predicted posi-
tive regulation of IGFR on phosphorylated STAT3 protein is consistent with the fact that IGFR
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200, 000, 000 GRAPHS
(Zhu et al., 2014; 2015)
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Biological goal
Understand genetic interactions in cancer between different

genomics features of different genes

Zodiac – Two hundred million graphs: June 11, 2017 22
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Zodiac: Blueprint

Zodiac – Two hundred million graphs: June 11, 2017 23
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The Cancer Genome Atlas (TCGA)

• An NCI/NHGRI pilot project (cancergenome.nih.gov), cost
about $ 1 billion

• multiple cancer types (>25),
• Multiple -omics (copy number, mRNA, methylation, protein),
whole genome, MATCHED samples!

Zodiac – Two hundred million graphs: June 11, 2017 24
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TCGA-Assembler Retrieves Level-3 TCGA data

Zodiac – Two hundred million graphs: June 11, 2017 25
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TCGA-Assembler Produces Mega-Data
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Bayesian Graphical Models
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Multi-omics Molecular Interaction Map
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Big-Data Computation and Visualization
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Results-1: Intra-genic transcription regulation
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Results-2: Entire Pathway
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Results-3: Predictive markers for anti-PD-1 immune
treatment

Dung et al.
(2017, Science) discussed predictive biomarkers for anti-PD-1
blockade in treating cancer patients.
B2M is a gene that predicted worse outcome when mutated

Zodiac – Two hundred million graphs: June 11, 2017 34
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Results-3: Predictive markers for anti-PD-1 immune
treatment

The HLA gene family
provides instructions for
making a group of
related proteins known
as the human leukocyte
antigen (HLA)
complex. The HLA
complex helps the
immune system
distinguish the body’s
own proteins from
proteins made by
foreign invaders such as
viruses and bacteria. –
Cancer too?
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Zodiac Website:
http://www.compgenome.org/zodiac

Zodiac Blog:
http://compgenome.wordpress.com
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Thank you!

Zodiac 2 – to be continued...
• Patient subgroups defined by different pathway architecture
• Status of pathway activation for individual patient (allowing
for precision therapeutic decisions)

• Update existing cancer pathways using TCGA
• Tissue-specific pathways
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