Bayesian Graphical Models for Biomarker Relationships - Applications to Genomics Data
 Bayesian Graphical models
 One graph, two, and two hundred million...
 2017 Nonclinical Biostatistics Conference

Yuan Ji, PhD

June 11, 2017

Collaborator \& References

Collaborators

NorthShore
UT Austin
Johns Hopkins
U. of Louisville
U. of Chicago

Georgia Tech.

Yitan Zhu (Research Scientist)
Peter Müller (Profs)
Yanxun Xu (Assist. Prof.)
Riten Mitra (Assist. Profs)
Lorenzo Pesce and Computational Institute and IGSB Peng Qiu (Assist. Prof.)

References

- ONE GRAPH :

Mitra et al. (2013, JASA); Telesca et al. (2012, JASA)

- DIFFERENTIAL GRAPHS :

Mitra et al. (2015a, Bayesian Analysis ; 2015b)

- TWO MILLION GRAPHS :

Zhu et al. (2014, Nature Methods); Zhu et al. (2015, JNCI)
Website www.compgenome.org

ONE GRAPH

(Mitra et al., 2013; Telesca et al., 2013)

Bayesian Graphical Model - An overview

A class of Bayesian graphical hierarchical models Bayesian paradigm:

Bayesian Graphical Model - An overview

A class of Bayesian graphical hierarchical models
Bayesian paradigm:

$$
\underbrace{\text { Prior Pathways } G_{0}}_{\text {Graphical prior }}+\underbrace{\text { Data }}_{\text {Likelihood }} \rightarrow \underbrace{\text { Posterior Pathways } G}_{\text {Posterior knowledge }}
$$

Graph is random Allow topology to change (add or remove edges); posterior distribution on different graphs
False discovery control FDR is estimated based on posterior probabilities of graphs and edges
Prior graph Prior knowledge can be incorporated (e.g., consensus network from KEGG, GeneGO, Ingenuity...)

General structure

Bayesian paradigm:

General structure

Bayesian paradigm:

Notation:
\boldsymbol{Y} : observed data $y_{g t}$, feature g, sample t
\boldsymbol{e} : latent indicators $\boldsymbol{e}_{g t} \in\{-1,0,1\}$ for under-, over- and normal expression
$\mathcal{G}:$ Graph - dependence structure (conditional independence)
c: strength of dependence

Probability Model - 1. Priors on random graph $p(\mathcal{G})$
 Let $G=(V, E)$ denote a graph
 V : set of nodes in the graph (features)
 E : set of edges between pairs of nodes (edges between features)

Probability Model - 1. Priors on random graph $p(\mathcal{G})$

Let $G=(V, E)$ denote a graph
V : set of nodes in the graph (features)
E : set of edges between pairs of nodes (edges between features)
Prior on G

- Informative prior around G_{0} (consensus protein network): $p(G) \propto \tau^{d\left(G, G_{0}\right)}$
- Can deal with a graph with moderate size (say, 50 nodes)
- Need to have strong prior belief in G_{0}
- Example: Cellular protein signaling pathways (Telesca et al., 2012); multi-platform molecular interation map - Zodiac (Zhu et al., 2015)

Probability Model - 1. Priors on random graph $p(\mathcal{G})$

Let $G=(V, E)$ denote a graph
V : set of nodes in the graph (features)
E : set of edges between pairs of nodes (edges between features)
Prior on G

- Informative prior around G_{0} (consensus protein network): $p(G) \propto \tau^{d\left(G, G_{0}\right)}$
- Can deal with a graph with moderate size (say, 50 nodes)
- Need to have strong prior belief in G_{0}
- Example: Cellular protein signaling pathways (Telesca et al., 2012); multi-platform molecular interation map - Zodiac (Zhu et al., 2015)
- Vague prior when a prior network is not known: $p(\mathcal{G}) \propto$ const
- Feasible only for graphs with relatively small size (e.g., 15 nodes), see Dobra et al. (2005)
- For histone modifications, little prior knowledge is known about their dependence (Mitra et al. 2013)

Probability Model - 2. Joint prior of features presence given the graph $p(\boldsymbol{e} \mid \boldsymbol{\beta}, \mathcal{G})$
Presence of features: Define $\left\{e_{i t}=1\right\}$ the presence indicator of feature i in location t.

Joint distribution of \boldsymbol{e} given G and $\boldsymbol{\beta}$ is defined as $p(\boldsymbol{e} \mid \boldsymbol{\beta}, \mathcal{G})$.

Besag (1974) shows that any joint $p(\boldsymbol{e} \mid \boldsymbol{\beta}, G)$ can be written as

$$
\begin{align*}
& \quad p(\boldsymbol{e} \mid \boldsymbol{\beta}, G)=p(\mathbf{0} \mid \boldsymbol{\beta}, G) \\
& \times \exp \left\{\sum_{i} \beta_{i} e_{i}+\sum_{i<j} \beta_{i j} e_{i} e_{j}+\sum_{i<j<k} \beta_{i j k} e_{i} e_{j} e_{k}+\ldots+\beta_{1 \cdots m} e_{1} \cdots e_{m}\right\}, \tag{1}
\end{align*}
$$

where $\beta_{i_{1} \ldots i_{k}}$ is zero if and only if nodes i_{1}, \ldots, i_{k} do not form a

Clique

A clique is a set of nodes of which all pairs in the set are connected.

Not a Clique A Clique

Probability Model -3 . Sampling model $p(\boldsymbol{y} \mid \boldsymbol{e})$

We model $y_{i t}$ as random variable from a mixture distribution of Poisson and Log-normals.

$$
p\left(y_{i t} \mid e_{i t}\right) \propto \begin{cases}\operatorname{Poi}\left(\lambda_{i}\right) /\left(y_{i t}<c_{i}\right) & e_{i t}=0 \tag{2}\\ \pi_{i} \operatorname{LN}\left(\mu_{1 i}, \sigma_{1 i}^{2}\right)+\left(1-\pi_{i}\right) \operatorname{LN}\left(\mu_{2 i}, \sigma_{2 i}^{2}\right) & e_{i t}=1\end{cases}
$$

Probability Model -3 . Sampling model $p(\boldsymbol{y} \mid \boldsymbol{e})$

We model $y_{i t}$ as random variable from a mixture distribution of Poisson and Log-normals.

$$
p\left(y_{i t} \mid e_{i t}\right) \propto \begin{cases}\operatorname{Poi}\left(\lambda_{i}\right) I\left(y_{i t}<c_{i}\right) & e_{i t}=0 \tag{2}\\ \pi_{i} \operatorname{LN}\left(\mu_{1 i}, \sigma_{1 i}^{2}\right)+\left(1-\pi_{i}\right) \operatorname{LN}\left(\mu_{2 i}, \sigma_{2 i}^{2}\right) & e_{i t}=1\end{cases}
$$

The Poisson/log-normal mixture can be further replaced by introducing a trinary indicator $z_{i t} \in\{-1,0,1\}$ with $p\left(z_{i t} \mid e_{i t}=0\right)=\delta_{-1}\left(z_{i t}\right)$ and $p\left(z_{i t} \mid e_{i t}=1\right)=\pi_{i} \delta_{0}\left(z_{i t}\right)+\left(1-\pi_{i}\right) \delta_{1}\left(z_{i t}\right)$. Then

$$
p\left(y_{i t} \mid e_{i t}\right)= \begin{cases}\operatorname{Poi}\left(\lambda_{i}\right) I\left(y_{i t}<c_{i}\right) & z_{i t}=-1 \tag{3}\\ \operatorname{LN}\left(\mu_{1 i}, \sigma_{1 i}^{2}\right) & z_{i t}=0 \\ \operatorname{LN}\left(\mu_{2 i}, \sigma_{2 i}^{2}\right) & z_{i t}=1\end{cases}
$$

A fit of the mixture model (ChIP-Seq, Riten et al., 2013)

Histogram of the positive histone counts with density estimate

Figure: Fit of a Poisson/lognormal mixture model to the count data of a feature. The red (peaked) curve is the density of

Joint Posterior

Let $\boldsymbol{\theta}$ be the parameter vector for the sampling model.
The joint posterior is given by

$$
p(\boldsymbol{Y}, \boldsymbol{z}, \boldsymbol{e}, \boldsymbol{\theta}, G) \propto \underbrace{p(\boldsymbol{Y} \mid \boldsymbol{z}, \boldsymbol{\theta})}_{(3)} p(\boldsymbol{z} \mid \boldsymbol{e}, \boldsymbol{\theta}) \underbrace{p(\boldsymbol{e} \mid \boldsymbol{\beta}, G)}_{(1)} p(\boldsymbol{\theta}) p(\boldsymbol{\beta} \mid G) p(G)
$$

MCMC and posterior inference

Posterior MCMC simulation proceeds by iterating over the following transition probabilities:

$$
[\boldsymbol{e} \mid G, \boldsymbol{\beta}, \boldsymbol{\theta}, \boldsymbol{Y}],[\mathbf{z} \mid \boldsymbol{e}, \boldsymbol{\theta}, \boldsymbol{Y}],[\boldsymbol{\theta} \mid \boldsymbol{z}, \boldsymbol{Y}],[\boldsymbol{\beta} \mid \boldsymbol{e}, G],[G \mid \boldsymbol{\beta}, \boldsymbol{e}]
$$

MCMC and posterior inference

Posterior MCMC simulation proceeds by iterating over the following transition probabilities:

$$
[\boldsymbol{e} \mid G, \boldsymbol{\beta}, \boldsymbol{\theta}, \boldsymbol{Y}],[\boldsymbol{z} \mid \boldsymbol{e}, \boldsymbol{\theta}, \boldsymbol{Y}],[\boldsymbol{\theta} \mid \boldsymbol{z}, \boldsymbol{Y}],[\boldsymbol{\beta} \mid \boldsymbol{e}, G],[G \mid \boldsymbol{\beta}, \boldsymbol{e}]
$$

- Updating $\boldsymbol{\beta}$ and G involves evaluating

$$
\begin{equation*}
c(\boldsymbol{\beta}, G)=1 / p(\mathbf{0} \mid \boldsymbol{\beta}, G)=\sum_{\boldsymbol{e}} \exp \left\{\sum_{i} \beta_{i} e_{i}+\sum_{i<j} \beta_{i j}\left(e_{i}-\nu_{i}\right)\left(e_{j}-\nu_{j}\right)\right\} \tag{5}
\end{equation*}
$$

MCMC and posterior inference

Posterior MCMC simulation proceeds by iterating over the following transition probabilities:

$$
[e \mid G, \beta, \theta, Y],[z \mid e, \theta, Y],[\theta \mid z, Y],[\boldsymbol{\beta} \mid e, G],[G \mid \beta, e]
$$

- Updating $\boldsymbol{\beta}$ and G involves evaluating

$$
\begin{equation*}
c(\boldsymbol{\beta}, G)=1 / p(\mathbf{0} \mid \boldsymbol{\beta}, G)=\sum_{\boldsymbol{e}} \exp \left\{\sum_{i} \beta_{i} e_{i}+\sum_{i<j} \beta_{i j}\left(e_{i}-\nu_{i}\right)\left(e_{j}-\nu_{j}\right)\right\} \tag{5}
\end{equation*}
$$

step 1 Importance sampling to updated $\boldsymbol{\beta}$ (Chen and Shao, 1997; Che, Shao and Ibrahim, 2000)

- Approximate the M-H ratio by importance sampling
step 2 With step 1 and reversible jump, updating G.

CHIP-Seq Example

ChIP-Seq experiment for CD4 T Lymphocytes (Barski et al, 2007; Wang et al., 2008)
HM count data $\left[y_{i t}\right]$ with 50,000 selected locations and 39 types of HMs.
Posterior inference is based on $\hat{P}_{i j}$, the posterior probability of including an edge $\{i, j\}$.

1. Edge selection is based on posterior expected FDR to determine a cutoff c

$$
F D R_{c}=\frac{\sum_{i j}\left[\left(1-\hat{P}_{i j}\right) /\left(\hat{P}_{i j}>c\right)\right]}{\sum_{i, j} I\left(\hat{P}_{i j}>c\right)}
$$

so that edges with $\hat{P}_{i j}>c$ are selected.
2. Type of interaction is based on

$$
\operatorname{Pr}\left(\beta_{i j}>0 \mid \beta_{i j} \neq 0, \boldsymbol{y}\right)>0.5
$$

- Yes: positive
- No: negative

Results - 1: Point Estimate (ChIP-Seq on Histone Modifications)

Posterior inference for the ChIP-Seq data on 17 HMs under a uniform prior $p(G)$. The thickness of the edges indicate the strength of the relationship and is a function of the posterior inclusion probabilities $\hat{P}_{i j}$.

Results - 2: Variability Estimate

(a) 55

(c) 13

(b) 15

(d) 12

The four most frequent configurations (a through d) of a subgraph consisting of 4 edges. The posterior probabilities (in percent) are given below each subgraph.

DIFFERENTIAL GRAPHs (> 2 graphs)

(Mitra, Müller, Ji, 2014a; 2014b)

Differential Networks of

Assume an informative prior graph G_{0}. Inference on two graphs G^{1} and G^{2}. Define $\delta_{i j}=\left|G_{i j}^{2}-G_{i j}^{1}\right|$ the differential edge indicator.

$$
\begin{gather*}
G^{1} \mid G_{0} \sim U\left(G_{0}\right) \\
\delta_{i j} \sim \operatorname{Ber}(\pi), i<j \\
\pi \sim \operatorname{Beta}(a, b) . \tag{6}
\end{gather*}
$$

Together G^{1} and δ implicitly define G^{2} by

$$
G_{i j}^{2}=G_{i j}^{1}\left(1-\delta_{i j}\right)+\left(1-G_{i j}^{1}\right) \delta_{i j}
$$

for all edges $\{i, j\} \in E_{0}$.
We refer to (6) as the differential graph model, and refer to π as the global probability of similarity.

Differential Networks of

Assume an informative prior graph G_{0}. Inference on two graphs G^{1} and G^{2}. Define $\delta_{i j}=\left|G_{i j}^{2}-G_{i j}^{1}\right|$ the differential edge indicator.

$$
\begin{gather*}
G^{1} \mid G_{0} \sim U\left(G_{0}\right) \\
\delta_{i j} \sim \operatorname{Ber}(\pi), i<j \\
\pi \sim \operatorname{Beta}(a, b) . \tag{6}
\end{gather*}
$$

Together G^{1} and δ implicitly define G^{2} by

$$
G_{i j}^{2}=G_{i j}^{1}\left(1-\delta_{i j}\right)+\left(1-G_{i j}^{1}\right) \delta_{i j}
$$

for all edges $\{i, j\} \in E_{0}$.
We refer to (6) as the differential graph model, and refer to π as the global probability of similarity.

Differential graphs

(a) Promoters $\left(G^{1}\right)$
(b) Insulators $\left(G^{2}\right)$
(c) Differences $\delta_{i j}=\left|G_{i j}^{1}-G_{i j}^{2}\right|$

Figure: Panels (a) through (c) show posterior estimated networks in two regulatory regions and the posterior estimated differences between them. The solid lines denote the edges present in promoters, but not in insulators while dotted lines represent edges in insulators but not in promoters.

Extension to >2 graphs

- A latent "baseline" graph G_{0};
- Multiple graph model: For graph $G^{k}, k=1,2, \ldots K$,

$$
\begin{gathered}
p\left(G_{i j}^{k}=1 \mid G_{i j}^{0}=1\right)=p_{11}^{k} \quad \text { and } \quad p\left(G_{i j}^{k}=1 \mid G_{i j}^{0}=0\right)=p_{10}^{k} \\
p_{11}^{k}, p_{10}^{k} \sim \operatorname{Beta}\left(a_{1}, b_{1}\right) \\
p\left(G_{i j}^{0}=1\right)=p_{0} ; \quad p_{0} \sim \operatorname{Beta}\left(a_{0}, b_{0}\right)
\end{gathered}
$$

Extension to Time-Course Proteomics Data

 In Mitra et al. (2014), we consider a time-course data set from a functional proteomics experiment. About 66 proteins from PI3K pathway are measured over 8 time points. We consider a directed graph to estimate the joint dependence structure of these biomarkers.

200, 000, 000 GRAPHS
 (Zhu et al., 2014; 2015)

Biological goal

Understand genetic interactions in cancer between different genomics features of different genes

Zodiac: Blueprint

The Cancer Genome Atlas (TCGA)

- An NCI/NHGRI pilot project (cancergenome.nih.gov), cost about $\$ 1$ billion
- multiple cancer types (>25),
- Multiple -omics (copy number, mRNA, methylation, protein), whole genome, MATCHED samples!

	Data	a Levels in TC	$G A$
	Restricted access		Publicly available data
Data Type	Level 1 (Raw Data)	Level 2 (Normalized/Processed)	Level 3 (Segmented/Interpreted)
$\begin{gathered} \text { Copy Number (CGH } \\ \text { array) } \end{gathered}$	Raw signals per probe	Normalized signals for copy number alterations of aggregated regions, per probe or probe set	Copy number alterations for aggregated/segmented regions, per sample
DNA Methylation	Raw signals per probe	Normalized signals per probe or probe set and allele calls	Methylated sites/genes per sample
Exon Expression	Raw signals per probe	Normalized signals per probe set	Expression calls for Exons/ Variants per sample
Gene Expression	Raw signals per probe	Normalized signals per probe or probe set	Expression calls for Genes per sample
miRNA Expression	Raw signals per probe	Normalized signals per probe or probe set	Expression calls for microRNAs per sample
Mutations	NA	Putative mutations	Validated somatic mutations
SNP	Raw signals per probe	Normalized signals per probe or probe set	NA
Data Size			
300 TB		100 GB	

TCGA-Assembler Retrieves Level-3 TCGA data

TCGA Data Generation and Data Flow

TCGA Centers: Tissue Source Sites (TSS), Biospecimen Core Resources (BCRs), Data Coordinating Center (DCC), Genome Characterization Centers (GCCs), Genome Sequencing Centers (GSCs), Cancer Genomics Hub (CGHub), Genome Data Analysis Centers (GDACs)

TCGA-Assembler Produces Mega-Data

Illustration of Combining Multi-modal Data for Integrative Analysis

Gene expression	Single data table						
	Gene Symbol	Platform	Description	$\begin{array}{\|c\|} \hline \text { TCGA- } \\ \text { EI-6506-01 } \\ \hline \end{array}$	$\begin{array}{c\|} \text { TCGA- } \\ \text { AG-4021-01 } \\ \hline \end{array}$	$\begin{gathered} \text { TCGA- } \\ \text { AG-4022-01 } \end{gathered}$	$\begin{array}{\|c\|} \text { TCGA- } \\ \text { AG-3725-01 } \\ \hline \end{array}$
	AKT1	GE	207	3109.227	4118.632	2905.794	4008.446
	AKT1	PE	Akt-R-V	1.7805	2.0518	1.3533	2.0111
Protein expre	AKT1	PE	Akt_pS473-R-V	-1.621	-3.1844	-1.6175	-1.9758
ta fil	AKT1	PE	Akt_pT308-R-V	-1.3476	-1.8019	-1.4822	-1.2898
	AKT1	ME	Overall	0.720284	0.688232	0.680361	0.662689
	AKT1	CN	CHR14-	-0.38	0.1423	-0.1192	-0.002
	MIR200C	ME	Overall	0.189436	0.223844	0.183301	0.116829
	MIR200C	CN	CHR12+	0.0079	-0.6209	0.1662	-0.0034
miRNA expression	MIR200C	miRExp		16617.82	5761.941	11792.5	26984.18
data file	MIR506	ME	Overall	0.771979	0.757992	0.700243	0.671736
\square	MIR506	CN	CHRX-	0.0057	-0.1969	0.0017	0.0175
	MIR506	miRExp		0.277389	1.212507	0.115049	0.06591
-	MTOR	GE	2475	1520.826	1496.095	1007.077	1298.564
	MTOR	PE	mTOR-R-V	1.1394	1.0414	0.82713	1.2374
DNA copy numbe	MTOR	PE	mTOR_pS2448-R-C	-1.9719	-2.3493	-1.9848	-1.8108
data file	MTOR	ME	Overall	0.567012	0.585587	0.555973	0.549771
	MTOR	CN	CHR1-	-0.1671	0.1284	-0.1071	-0.0109
	PACS2	GE	23241	1141.753	1489.029	1041.575	1304.476
	PACS2	ME	Overall	0.72097	0.702261	0.708845	0.695105
	PACS2	CN	CHR14+	-0.38	0.1423	-0.1192	-0.002
DNA methylation	TP53	GE	7157	3783.318	2123.094	2564.794	2444.257
data file	TP53	ME	Overall	0.224788	0.233938	0.223865	0.227782
	TP53	PE	p53-R-V	-2.059	-2.8108	-2.0793	-2.2214
	TP53	CN	CHR17-	0.0047	-0.6397	-0.1182	-0.4899

Bayesian Graphical Models

Multi-omics Molecular Interaction Map

Inference of Intragenic and Intergenic Interactions

- Integrate data from multiple genomic/epigenomic/proteomic assay platforms to infer interaction mechanisms.
- Within and across cancer types
- Intragenic interactions of each gene ($\sim 20,000$ genes).

Intergenic interactions between each pair of genes ($\sim 200,000,000$ pairs).

Big-Data Computation and Visualization

Massive Parallel Computation

- Analysis of one gene pair takes ~ 47 seconds.
- Total required computation time is $\sim 2,459,455 \mathrm{CPU}$ hours.
- Analysis was conducted on Beagle, a super computer with > 17000 CPUs in University of Chicago and Argonne National Laboratory.
- Size of analysis results (~800 GB)
- 19,411 intragenic interaction networks
- ~200 million intergenic interaction networks

Overlap with Existing Databases of Genomic Regulations

KEGG pathways used for validation of inferred interactions

Cancers Overview	Pathways in cancer Transcriptional misregulation in cancer Proteoglycans in cancer
	MAPK signaling pathway
PI3K-Akt signaling pathway	
Notch signaling pathway	
mTOR signaling pathway	
Wnt signaling pathway	
Signal Transduction	TGF-beta signaling pathway
	ErbB signaling pathway
	VEGF signaling pathway
	Jak-STAT signaling pathway
	NF-kappa B signaling pathway

Overlaps between KEGG and Zodiac

KEGG Relationship	Enrichment	Fold
(Corresponding Zodiac relationship)	2.38	Enrichment P-value
Gene Expression Activation (Positive PE-GE or GE-GE)	14.17	$2.92 \mathrm{E}-18$
Protein Phosphorylation (Positive PE-PE(phos) or GE-PE(phos)) Multi-unit Protein and Protein Complex (Positive GE-GE or PE-PE)	3.10	1.29 E -312

Results-1: Intra-genic transcription regulation

A-i Intragenic interactions within a gene	A-iii Top 10 genes having strongest, significant (Bayesian FDR <= 0.01) positive GE-GE interactions with transcription factor gene EZH2			
	Gene Symbol	Mean of Strength Coefficient	Gene Symbol	Mean of Strength Coefficient
	HIST1H2BH	5.92	SKP2	0.49
A-ii Intragenic and intergenic interactions in a pair of genes	EFTY1	14.65	TBC1D3	10.49
	KDM3A	11.16	SCLT1	10.46
	MTIF2	10.93	NEK2	10.31
	NEURL	10.71	FASTKD1	10.21
	A. Illustration of statistical inference on intragenic and intergenic interaction networks			

Intragenic edges Intergenic edges
C. Numbers of significant edges inferred by analyses

Results-2: Entire Pathway

A. Signaling cascade in KEGG prostate cancer pathway

B. Posterior network inferred by BGM analysis

Results-3: Predictive markers for anti-PD-1 immune treatment

Mismatch-repair deficiency predicts response of solid tumors to PD-1 blockade

Dung T. Le ${ }^{1,2,3}$, Jennifer N. Durham ${ }^{1,2,3,^{*}}$, Kellie N. Smith ${ }^{1,3,^{*}}$, Hao Wang ${ }^{3, *^{*}}$, Bjarne R. Bartlett ${ }^{2,4,^{*}}$, Laveet K. Aulakh ${ }^{2,4}$, St...

+ See all authors and affiliations
Science 08 Jun 2017:
eaan6733
DOI: 10.1126/sclence.aan6733

Dung et al.
(2017, Science) discussed predictive biomarkers for anti-PD-1 blockade in treating cancer patients.
B2M is a gene that predicted worse outcome when mutated

Results-3: Predictive markers for anti-PD-1 immune treatment

The HLA gene family provides instructions for making a group of related proteins known as the human leukocyte antigen (HLA) complex. The HLA complex helps the immune system distinguish the body's own proteins from proteins made by foreign invaders such as viruses and bacteria. Cancer too?

Zodiac Website:
 http://www.compgenome.org/zodiac

Zodiac Blog:
http://compgenome.wordpress.com

Thank you!

Zodiac 2 - to be continued...

- Patient subgroups defined by different pathway architecture
- Status of pathway activation for individual patient (allowing for precision therapeutic decisions)
- Update existing cancer pathways using TCGA
- Tissue-specific pathways

