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Examples for Multiple Testing

Evaluating efficacy of a new drug for multiple endpoints.

Detecting adverse events across body system in drug safety analysis.

Selecting voxels on multiple brain regions in fMRI studies.

Multiple families/groups structure are often seen in these experiments!
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A Motivating Example from Clinical Safety Analysis

m body systems BS1, . . . ,BSm.

ni adverse event types AE1, . . . ,AEni in the BSi .

Goal: Select Body Systems of Interest (BSoI).
Flag significant AEs in BSoI.

Hypothesis: Family (BS) level Gi :
ni⋂

j=1
Hij vs. G ′i :

ni⋃
j=1

H ′ij .

Individual (AE) level Hij : θ1ij = θ2ij vs. H ′ij : θ1ij 6= θ2ij .

This safety analysis question can be formulated as a multiple testing
problem for multiple families structure!
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Addressing Selective Inference

1 Selection: Body Systems of Interest (BSoI)
2 Inference: Flagging AEs
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Research Motivation

A common two-stage procedure uses the same data for both selection
and testing.

The selection bias leads to the existing multiple testing procedures in
clinical safety studies such as double FDR and modified double FDR
failing to strongly control FDR.

Most existing approaches for multiple families structure multiple
testing only consider individual hypotheses level error control, but
ignore family level error control. It is natural to consider
simultaneously controlling error rates for both levels
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Type 1 Error Rates

Family-wise Error Rate: FWER = Pr{reject at least one true null}
FWER is suitable for small scale multiple testing.

Generalized Family-wise Error Rate:
k-FWER = Pr{reject at least k true nulls}

k-FWER is suitable for moderate scale multiple testing.

False Discovery Rate: FDR = E
{ # of rejected true nulls

# of rejected all hypotheses

}
FDR is suitable for large scale multiple testing.
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Stepwise Multiple Testing Procedures (MTPs)

Ordered p-value based stepwise MTP, which is described by using a
sequence of non-decreasing critical constants α1 ≤ . . . ≤ αm.

k-FWER Controlling MTPs

Generalized Bonferroni procedure: αi = kα
m

Generalized Sidak procedure: αi satisfies
m∑

j=k

(m
j
)
αj

i (1− αi)m−j = α

FDR Controlling MTPs

Step-up: Benjamini-Hochberg (BH) procedure: αi = iα
m

Reject Hi if pi ≤ R
mα, where R = max{1 ≤ i ≤ m : p(i) ≤

iα
m }.
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Problem Formulation

For family index i = 1, . . . ,m; individual index j = 1, . . . , ni ,

p̃i : p-value for the corresponding global hypothesis Gi .
Ṽ : number of false selections when selecting families.
S ⊆ {1, . . . ,m}: set of selected families.
|S|: the number of total selections.

pij : p-value for the corresponding individual hypothesis Hij .
Vi : number of false rejections for i-th family.
Ri : number of total rejections for i-th family.
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Error Rates Guaranteed in This Work

Generalized FWER: (across families)

k-FWER = Pr{Ṽ ≥ k}

Conditional FDR for i-th family: (within families)

cFDRi = E
{ Vi
Ri ∨ 1

∣∣∣i ∈ S} .
Average FDR over selected families: (overall)

average-FDR = E


∑
i∈S

Vi
Ri ∨ 1
|S| ∨ 1


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A Selective Inference-Based Two-Stage Procedure

Procedure 1 (cFDR-α-minP-k-Sidak-α1)
1 (a) For each body system, compute the global p-value p̃i = ni min

1≤j≤ni
{pij}.

(b) Apply generalized Sidak procedure on p̃1, . . . , p̃m at level α1.
2 (a) In the i-th selected body system, calculate the conditional p-value for Hij :

p′ij = pij
ti

if min
1≤s≤ni ,s 6=j

{pis} > ti ; otherwise, p′ij = pij , where

ti = 1− (1− t̃)
1
ni .

(b) Apply BH procedure on p′i1, . . . , p′ini
at level α.
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Several Remarks

1 The selection rule: p̃i ≤ t̃ is equivalent to minP combining function
f (pi1, . . . , pini ) = min

1≤j≤ni
{pij} ≤ ti .

2 The conditional p-value is inflated from original p-value,
P ′ij := Pij |min{pi1, . . . , pij−1,Pij , pij+1, . . . , pini} ≤ ti = Pij

bij
, then

observed p′ij = pij/bij , where the inflation factor

bij =

ti if min
1≤s≤ni ,s 6=j

{pis} > ti ,

1 otherwise.
3 If the individual p-value pij ∼ U(0, 1) −→ the conditional p-value

p′ij ∼ U(0, 1)
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Error Rates Control

Theorem 1 (k-FWER control)

If global p-values P̃1, . . . , P̃m are independent p-values with U(0, 1) under
true null, then Procedure 1 strongly controls the k-FWER at level α1 across
body systems.

Theorem 2 (cFDR control)

For each selected body system Fi , if individual p-values Pi1, . . . ,Pini are
independent p-values with U(0, 1) under true null, then Procedure 1
strongly controls the conditional FDR at level α.

Corollary 1 (average-FDR control)
Under the assumption of Theorem 1 and 2, Procedure 1 strongly controls
the average FDR at level α.
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Simulation Settings I: Independence

m: number of BS; n: number of AE.
Generate m × n independent normal r.v. matrix with Xij ∼ N(µij , 1),
where i = 1, . . . ,m; j = 1, . . . , n.
m = 10, n = 20, m0 = {2, 4, 6, 8}; n0 = {5, 10, 15}.

Test Hij : µij = 0 versus H ′ij : µij > 0.
Set µij = 3 for i = 1, . . . ,m−m0; j = 1, . . . , n−n0; the rest of µij = 0.

Selection by generalized Sidak with k = 1, 2, 3 and α1 = α = 0.05.
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Simulation Results (k = 1)
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Simulation Results (k = 1)
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Simulation Results (k = 1)
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Simulation Results (k = 1)
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Selection Rule: Bonferroni v.s. Sidak (k = 2, k = 3)
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Simulation Settings II: Dependence

The p-values are dependent within one body system with equal
correlation and independent of the p-values in other body systems.

m = {10, 20}, m0 = 7, n = 20, n0 = 15, ρ = {0, 0.1, . . . , 0.9}.
α1 = α = 0.05.
B = 2000 iterations.
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Simulation Results (m = 10)
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Simulation Results (m = 20)
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Simulation Summary

The proposed procedure controls average FDR along with k-FWER
across families and conditional FDR within a family under all
independent and moderate dependent scenarios.

DFDR and DFDR2 cannot control cFDR for null families and
average-FDR under all scenarios! BB procedure cannot guarantee
cFDR control for null families when using k-FWER selection rule with
k > 1.

The proposed procedure is more powerful than BB procedure with the
same selection rule.
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Back to the Motivating Example

Revisit the safety analysis of a candidate vaccine against measles, mumps,
rubella and varicella (MMRV)1.

Monitor 40 Tier 2 AE types from m = 8 body systems

N1 = 148 −→ MMR −→ X1i
N2 = 132 −→ MMRV −→ X2i

Two-sided Fisher’s Exact Test

α1 = 0.05, α = 0.1

1The paper of Mehrotra and Heyse (2004)
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A Safety Analysis Example

Table 1: The example from Mehrotra and Heyse (2004) under α1 = 0.05 for
selecting BSoI and α = 0.1 for flagging AEs.

Approach BSoI Flagging AE
Naive BH NA 503 (1)
DFDR 5 (1) 503 (1)
DFDR2 5 (1) 503 (1)
GBH NA 503 (1)
Original BB 5 (1) 503 (1)
cFDR-minP-0.05 2,5,7 (3) 0
cFDR-minP-Sidak-0.05 0 0
cFDR-minP-3-Sidak-0.05 5 (1) 0
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Another Safety Analysis Example

Table 2: The Example 4.2 from Mehrotra and Adewale (2012) under α1 = 0.05 for
selecting BSoI and α = 0.1 for flagging AEs. The study monitored 49 AE types
across 9 body systems, N1 = N2 = 1616.

Approach BSoI Flagging AE
Naive BH NA 703 (1)
DFDR 3, 7 (2) 301, 704 (2)
DFDR2 7 (1) 703, 704 (2)
GBH NA 301, 401, 703, 704 (4)
Original BB 7 (1) 703 (1)
cFDR-minP-0.05 1, 2, 3, 4, 6, 7 (6) 301, 703, 704 (3)
cFDR-minP-Sidak-0.05 7 (1) 703, 704 (2)
cFDR-minP-3-Sidak-0.05 3, 7 (2) 703, 704 (2)
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Comparisons for Different Approaches

Table 3: Error rates control for different MTPs with multiple families structure

Approach Family level Within family Overall
DFDR × × ×
DFDR2 × × ×
GBH × × global FDR
Original BB FDR × average FDR
cFDR-minP-t (fixed) × conditional FDR average FDR
cFDR-minP-k-Sidak k-FWER conditional FDR average FDR

Discoveries across body systems selection (BSoI) is considerable
important and should be given more attentions for future research!
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R Package: MHTmult

R package: MHTmult a convenient computing tool to help users make decisions
more efficiently.

Calculating adjusted (conditional) p-values for multiple families
MTPs:
cFDR.cp.adjust(); DFDR.p.adjust(); DFDR2.p.adjust();
avgFDR.p.adjust(); GBH.p.adjust()

Calculating adjusted p-values for k-FWER controlling MTPs:
gbonf.p.adjust(); gsidak.p.adjust()

Options:
1 Selection rule (combining method, selecting procedure)
2 Decision-making
3 Visualization
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Summary

1 We developed a two-stage multiple testing procedure using minimum
p-value to selecting body systems, and efficiently flag the AE types.

2 We found out the procedure can guarantee desired type 1 error rate
control across family level, within selected families and overall
average on selected families.

3 Simulation studies and real data analysis illustrate that the proposed
procedures outperform the existing procedures in terms of the error
rates control and power. DFDR procedure cannot control the FDR!

4 Computing tools such as R Package package: MHTmult can be easily used,
one web application with visualization function is still on work.
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