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Outline

 Introduction to Process analytical technology (PAT)
 IR spectroscopy: challenges is analysis
 Exploratory multivariate analysis
 Exponential model for kinetic rate of reaction
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API synthesis: reaction monitoring

• Reaction for the synthesis of aspirin:

 Goal of the process chemist:
 Optimize reaction conditions
 Maximize yield
 Minimize side products
 Maintain robustness of reaction for long period of time (up 

to 24 h)

https://en.wikipedia.org/wiki/Aspirin
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PAT and regulatory agencies

FDA (2004):



Process Analytical Technology

 PAT is a system to monitor and control the process, e.g. 
synthesis of API in the lab

 Advantages of PAT:
 Fast
 Not laborious
 Continuous monitoring

‘Offline’ way: take a 
sample and measure in a 
separate lab

‘Online’ way: measure 
during reaction
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PAT: (mid)infrared (m-IR) spectroscopy

 m-IR continuously measures relative concentrations of 
reaction components

 For each measurement a spectrum of values is provided

 Spectral signal = series of highly correlated peaks ordered 
by wave numbers

Wave numbers

Peaks (height of the 
peak proportional to 
concentration)
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d+HNMR+Spectra+for+Aspirin



Challenges in analysis of spectroscopy data

 Single component may have multiple peaks
 Overlapping peaks
 Complexity of the signal may depend on reaction conditions 

(concentration of solvents, temperature)
 Need to deconvolve complete spectrum into several 

components which would (ideally) correspond to the 
chemical components of a reaction

 Standard techniques in chemometrics (e.g. partial least 
squares) require offline measurements to calibrate the 
model
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Data

 Several IR experiments, each containing spectral data for 
10 to 20 hours (in total >1000 spectra per experiment)

 Preprocessed by spectralAnalysis R package in-house 
developed together with Open Analytics (baseline corrected, 
normalized to the reference peak):
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Exploratory multivariate analyses

Goals
 investigate the evolution of main reaction components with 

time to have a quick view on the reaction progress
 investigate the end point detection of a reaction without 

having offline data

Methods
 Principal component analysis (PCA)
 Factor analysis for bicluster aquisition (FABIA)
 Non-negative matrix factorization (NMF)
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Methods

 PCA, FABIA, NMF and time series FA: dimensionality 
reduction (compression) techniques

 General idea: matrix decomposition into p components 
Y ൌ Λ ൈ Z ൅ Ψ	or		Y ൌ L ൈ ܵ,	

where Λ௠ൈ௣ and L௠ൈ௣	contains loadings (per each point on a spectrum) 
and	Z௣ൈ௡ and S௣ൈ௡	contains scores  of components (per each measured 
time point)
 The solution is not unique, so different methods apply 

various restrictions:
PCA: orthogonality of components
FABIA: independence of components and sparseness of 
loadings
NMF: non-negative loadings and scores
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Challenges in methods application

 PCA is sensitive to the irregularities in the measurement 
process, data may require some pre-treatment

 FABIA requires number (upper bound) of the factors to 
analyze + initialization of algorithm

 NMF is sensitive to the number of components and 
initializations (can use template spectra for the initialization 
of components)
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PCA and FABIA: illustration on a single run

3 principal components from PCA 
decomposition: the scores

3 factors of FABIA: the scores
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NMF: illustration on a single run

3 components of NMF: the scores 
based on the initialization with 
template spectra

3 components of NMF: the scores 
based on the random initialization
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Discussion: results on a single run

 All methods point out at stabilization of a reaction at 
approximately 5 hours

 PCA has the most clear reaction trend information in the 
second component

 FABIA has clear information in the first factor and more 
noisy trend estimated in the second factor, the third factor 
looks redundant

 NMF results have the best physico-chemical meaning: non-
negative scores and loadings and allow for initialization with 
template spectra of starting materials and end product

 There are two correlated components (starting material and 
end product), which makes de composition of this 
information in different latent factors complex without 
application of methods like NMF
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Methods: analysis of multiple experimental 
runs

 Often data from several experiments are collected for the
same reaction

 Multiple reactions have the same components (i.e. starting
materials) loadings should be common/similar

 To ensure commonality of loadings across experimental
conditions, data from all experiments are combined in
one large matrix:

Y ൌ Yଵ, Yଶ, … , ௞ܻ

 It is possible to have separate analyzes per experiment, but
loadings will vary and scores interpretation would be more
difficult
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PCA on three experimental runs

PC1: 97.98% PC2: 1.56%
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FABIA on three experimental runs

Two of the three factors have relevant information
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NMF on three experimental runs

If initialization by template spectra is used three components can be 
identified
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Discussion: analysis of several runs

 Most likely, the first PC contains information on difference 
between experimental runs (despite normalization), the 
PC2 contains the reaction progress

 Even though three factors are specified, only two are 
meaningful in FABIA solution

 NMF provides a decomposition into three different 
components related to the template spectra of starting 
materials and end product of the reaction 



Discussion

 Method of dimensionality reduction allow for reaction 
monitoring without a selection of specific wavelength

 By looking at component-specific trends, the abnormalities 
in the reaction process can be detected

 These methods do not require offline measurements to 
decide on the endpoint of a reaction

 PCA is a well-established technique and usually does not 
require a lot of prior knowledge and experience but is 
sensitive to variation between experiments

 NMF usually provides more sensible and interpretable 
results compared to other techniques, but requires more 
knowledge and experience in order to choose a number of 
components or initialize the analysis

 NOTE that these methods provide in general qualitative 
results and are specific for the dataset at hand
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Ongoing research

 Further investigation of how scores can be used for 
endpoint detection

 Continuous model building for the online monitoring of a 
trend (so far, successful proof of concept using NMF)

 Calibration transfer problem when shifting from one 
instrument to the other

 Evaluation of a possibility to make multivariate analysis 
quantitative (at least to some normalizing constant)
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Conclusions

 IR spectroscopy allows online monitoring of chemical 
processes

 The generated IR data contains information on various 
components present in reaction

 Exploring and extracting the signal from the overlapping 
spectra of components is not a trivial task

 Multivariate techniques can be applied to extract the most 
relevant components

 The latent structures may or may not have direct chemical 
interpretation depending on the method at hand

 MVA can be used as a first run analysis to look at the data, 
check the trends and link individual experiments with 
experimental conditions
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PCA results
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FABIA results
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NMF results with initialization spectra
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NMF without initialization spectra


