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Outline =

o Reproducibility/repeatability

o Why do we need a Bayesian method
o How to provide a Bayesian solution
o Potential issues and future work

o Summary

BayesAgree June 13, 2017 2 /47



Reproducibility /Repeatability =

@ “Repeatability assesses pure random error due to “true” replications”

o “Reproducibility assesses closeness between observations made under
condition other than pure replication, e.g., by different labs or
observers.” [Barnhart et al., 2007]

We have witnessed an increasing need to study the
reproducibility /repeatability in early drug development due to the recent
booming of promising new tools and technologies.
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Within-Subject Coefficient of Variation (WSCV)

Definition—[Quan and Shih, 1996]

o Consider a one-way random effect model:
Yij = U+ o+ €ij

Qj ~ N(O, O'(i), €ij ~ N(O,U?), (e H] 1 €ij
@ Define WSCV as

o ="
W
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WSCV

Conjugate Prior

~ N(0,1e4)
~ T(le—2,1e—2)

~ [(le—2,1e—2)
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Jeffreys Prior =

The prior is proportional to the square root of the determinant of the
Fisher information

@ Invariant under re-parameterization
o For an alternate parameterization ¢ = h(6),

dd
m(y) = 7T(9)I@
e The prior probability over any region will be invariant for all ways of

choosing the parameters

@ Generalization of flat priors in some parameterization
@ Independent of data
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Reference Prior =

@ History
o Proposed by Jose Bernardo in 1979
o Further developed by Jim Berger and others from 1980’s till now
e Brought about the concept of "Objective Bayesian”

o What is it

o Quantify what exactly we mean by “non-informative” prior

o Maximize some measures of distance between the posterior and prior to
allow the data have the maximum effect on the posterior estimates

o It is equal to Jeffreys prior under regularity conditions

o With nuisance parameters

o For this case {(u,02),02}, we are interested in (y,02) and 02 is a
nuisance parameter.
o The prior is different than other setup, for example {(p,02),02}.
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WSCV

Jeffreys and Reference Prior

@ The priors have the form

1)\? 1 b
(7) (@)
with (a, b) equal to (1, 3/2) and (5/4, 1), respectively, for Jeffreys

prior and reference prior.

@ Note that there is no need to run MCMC to obtain the posteriors.
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WSCV

Simulation

Setup for two raters normal data

Comb. pu o0, o
1 10 1 1
2 10 2 1
3 10 3 1
4 10 1 2
5 10 2 2
6 10 3 2
7 10 1 3
8 10 2 3
9 10 3 3
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Coverage probability of nominal 95% credible/confidence intervals for

WSCV when n

5
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Coverage probability of nominal 95% credible/confidence intervals for

WSCV when n =10
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Coverage probability of nominal 95% credible/confidence intervals for

WSCV when n
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Median width of nominal 95% credible/confidence intervals for WSCV

when n=5
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Bias of point estimates for WSCV when n =5
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MSE of point estimates for WSCV when n =5
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Intraclass Correlation Coefficient (ICC)
Definition—[Shrout and Fleiss, 1979]

The correlation between two readings from the same subject i, Yj; and Yj;.
There are different types of 1CCs.

@ /CC; is based on a one-way random effect model without observer
effect
Yij=p+aite

ai~ N(0,02),€; ~ N(0,02),c; L ¢

o2

ICCl = ﬁ

2
Oa O¢
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A Positron Emission Tomography (PET) example

-- |
i0

Averaged (0-90 minutes) PET images (overlaid on MRI image) of
[*1C]MK-4232 in rhesus monkeys at baseline (left image) and after

MK-3207 administration (right image). Color scale is in SUV
[Hostetler et al., 2013].
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Robust Bayesian Estimate
o It is well-known that even“high-quality” samples demonstrate small
but noticeable deviation from the normal distribution in terms of
having longer tails and slight skewness
[Barnett and Lewis, 1984, Hampel et al., 2011].
@ The t distribution provides a useful extension of the normal for robust
modeling of data [Lange et al., 1989].
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A Positron Emission Tomography (PET) Example (cont'd)

Bland Altman plot s“r‘]:"lz’eﬁ:ﬁ;"l‘::'e‘
" . Yiji = ptaite
. 2
o . 1 o ~ NO,03)
. 2
N ) . 21 €; ~ N(0,07)
ce R 2
N o E 22 ¢€; ~ t(0,05,v)
° e
s LIS e -
10‘5‘11‘5‘12‘5‘13‘5‘ 1‘0 1‘1 1‘2 1‘3 1‘4 1‘5
mean Read 1 /CCl
Method Point Cl DIC

normal-normal  0.80  (0.05, 0.99) 29.17
normal-t 078  (0.06, 0.99) 17.22
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ICC, o

ICG, is based on a two-way random or mixed effect model with observer
effect 3;
Yi=p+oai+8i+e;

and )
o
ICCy — — "o
2 o2 + 0[23 + 02
where

e «a; ~ N(O, 02), €jj ~ N(0,0’S), aj L €j
o If §; is fixed, then 03 = Z};l B7/(k— 1) is used with constraint of
k
Zj:l Bi=0
e If B is random, assume f3; ~ N(O,aé) and «j, B}, €jj are mutually
independent.
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Concordance Correlation Coefficient (CCC)

In a widely cited paper, Lin (1989), the CCC was proposed to evaluate the
degree to which pairs fall on the 45° line

@ Assume bivariate data was distributed under a distribution with mean
vector p = (u1, 12)" and covariance matrix

y — U% po102
pPO102 0'5

Then define CCC as

E(x; — X2)2

E(x1 — x2)? when x; and x, are uncorrelated

pe = 1-

2p0c102
o3 + 05 + (11 — p2)?
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Concordance Correlation Coefficient (CCC)

In a widely cited paper, Lin (1989), the CCC was proposed to evaluate the
degree to which pairs fall on the 45° line
@ Assume bivariate data was distributed under a distribution with mean
vector p = (p1, 2) and covariance matrix

45 degree

Z _ 0_% pUl 0_2 line
po1o2 03
Then define CCC as
(Xl,xz)
E(X1 — X2)2
- 1-—
Pe E(x1 — x2)?> when x; and x; are uncorrelated
2p0102

03 + 0% + (1 — p2)?
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Concordance Correlation Coefficient (CCC)

In a widely cited paper, Lin (1989), the CCC was proposed to evaluate the
degree to which pairs fall on the 45° line
@ Assume bivariate data was distributed under a distribution with mean
vector p = (p1, 2) and covariance matrix

y — U% po102
pPO102 O’%

Then define CCC as

E(X1 — X2)2
E(x1 — x2)?> when x; and x; are uncorrelated
2p0102
of + 05 + (11 — 42)?

pC:1—

@ Bivariate normal was assumed to facilitate inference.
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CCC (cont'd)

CCC has been generated to multiple observers for data with replications

p—1 p
22 Z UU

i=1 j:i+1

, p>2

DS W T

i=1 j=i+1
o total CCC, inter-CCC, and intra-CCC, etc.
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Prior for CCC under Normal Assumption

o Conjugate prior
po~ N, T
Y1~ Wishart(l, k)

o Jeffreys prior for bivariate normal
1
ofo3(1 - p?)?

Note that it is straightforward to obtain independent samples from
the posteriors.
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An Electroencephalogram (EEG) Example

Awake
Sensor at nose e waves
1o measure air flow

Drowsy, refaxed R —
Alpha waves
Stage N1 sleep F
Theta waves
Stage N2 sleep
BN it et meh T A,

Stage N3 sleep
Deita waves

nger
measures amount of
e o —
cocygen i g AWM A A

Sleep stage
r4
N

Hours of sleep

https://www.medicwiz.com/medtech/diagnostics/
9-types-of-eeg-tests-everything-about-brainwave-monitoring
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An EEG Example

LPS

Scatter plot with

Bland Altman plot N -
P the identity line
© ®
< ~
2 g 4
2 3
o 2
° 2 °
2 o PN
o o °
D
L) @
» o e o k]
¥ 4
T T T T T T T T T T T
0 1 2 3 4 5 6 0 2 4 6
mean Manual
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Robust Bayesian Estimate of the CCC by Multivariate t
Distribution b

@ The t distribution is widely used in statistics for robust inference
especially when the data contain values that look like outliers
[Liu, 1994, Berger, 1994].

@ The Bayesian estimate is more reliable inferentially than the MLEs
specially with small sample size [Liu, 1994].
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Bayesian Treatment of the Multivariate t Distribution

We adopt the widely used representation as a scale mixture of normal
distributions. Let X; denote a vector of p dimensions

p(Xil g2, Z, A7) ~ N(p, MY (1)
p(Ailv) ~T(v/2,v/2) (2)
Then the marginal distribution of X; has central multivariate t distribution
with v degrees of freedom and parameters p and X with the density
function
r(“3%)
(v/2)(rm)PPIE[L + L (X — ) TE (X — )] +P)/2

f(X,-’[,l,, X, V) = r
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Bayesian Treatment of the Multivariate t Distribution

(cont'd) =

p(Xi“'La 2, /\i) ~ N(/"’: )‘iz_l) (3)
p(Ailv) ~T(v/2,v/2) (4)

@ Assign conjugate priors on parameters u, & and uniform prior on v

o Initial values are obtained by Expectation/Conditional Maximization
Either (ECME) algorithm

o Use slice sampling [Neal, 2003] to generate samples from the
posterior of v
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An EEG Example—With and Without “QOutliers”

Scatter Plot Point estimate and Cl
LPS
- 7
L <
K )
(5
=i (14
. .
. -
*®
A (1]
.
o o ®
o oo . ®
T T T T T T T T T T T T
4 1 2 3 4 5 6 0.5 0.6 0.7 0.8 0.9
Manual All == Without 'Qutliers’ ==
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An EEG Example—Convergence Diagnostics

28

28

24
I

22

2.0

T T T T T T
2000 4000 6000 8000 10000

o

lterations

K<<l [> ] =]+
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An EEG Example—Three Raters o

Data Point estimate and Cl
WideMedAuto b hd
2 g
o ‘ e ..
2 WideMedPartial -
Pt P
................... N
P O <
06 07 08 0.9

All == Without 'Qutliers’ ==
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An EEG Example—Gender Effect

WideMedPartial Manual

WideMedAuto

=
........... L
T T T
¥ £ 4 b
= =
— s
; ; ‘ 2 _F
= ==
—
T T T T T T
] g ¥ £ [4 b
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Bayesian Treatment of the Multivariate t
Distribution—Adjustment of Covariates b

@ Assume a multivariate linear model with t distribution as follows
W = XI/B + €,

where ¢;,i=1,...,n, are i.i.d. MVT(0,%,v).

e Assign non-informative priors on X and 3, and uniform prior on v.
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An EEG example—Gender Effect (cont'd)

Box plot

BayesAgree

Point estimate and Cl

T —
———

———— o

——

-

0.86 088 090 092 094 0.96
Al === Without 'Outliers' ===
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Another EEG Example

WASO

WideMedAuto

SiestaAuto

Manual

BayesAgree

June 13, 2017
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Bayesian Treatment of a Skewed Distribution

KjZBo—i-a,-—i-ﬂj—i—e,-j

o [ is the overall mean
@ [3; is the fixed rater effect
e ¢ is the random error and €;; ~ N(0, 0?)

@ «; is the random subject effect and log () ~ N(pte,02)
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Bayesian Treatment of a Skewed Distribution (cont'd)

o Introduce «; as latent variables [Van Dyk and Meng, 2001]
o Let

log () |tar 08~ N(ttas 03)
\/U‘,BO,,BJ',OK,',US ~ N(/80+05i+5j7052)

@ Assign non-informative priors to Bo, 3}, fta, 02,02
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Another EEG Example (cont'd)

Scatter Plot Point estimate and Cl
R [ Bayes lognomaomal |
SiestaAuto —— L
. [ Rawssn
i
_._ L
Wena [ camsco |
s s —— L
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Bayesian Model Checking =

Posterior predictive p-values: the probability that the replicated data could
be more extreme than the observed data

P = P(T(yrep’e) < T(yve)’y)
— [ [ mmariopty l00pendrea

The posterior predictive p-value for maximum values of each measure is
0.51, 0.45, and 0.46, respectively, for WideMedAuto, SiestaAuto and
Manual method.

BayesAgree June 13, 2017 39 / 47



An R Package

agRee: Various Methods for Measuring Agreement
https://CRAN.R-project.org/package=agRee
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https://CRAN.R-project.org/package=agRee

Potential Issues and Future Work

@ A parametric distributional assumption underpins each model. The
less appropriate the assumption, the worse the results.

o The goodness-of-fit of each model can be checked and based on the
DIC, different distributional assumptions can be compared to each
other.

e A more accurate estimate may be obtained through some
non-parametric Bayesian approaches. Sample size?!

o Different choice of prior

e Adoption of informative prior
o Objective prior

o Computational issues
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Summary =

@ The Bayesian approaches can provide very compelling results even
from a frequentist point of view such as accurate coverage
probabilities.

@ Practically relevant issues, such as accommodation of covariates and
model diagnostics and comparison, can all be addressed coherently
within the Bayesian framework.

@ Some issues need further investigation.
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Thanks!@®
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