Synergy-Informed Design of Platform Trials for Combination Therapies

Nan Miles Xi !, Man Mandy Jin !, Lin Wang 2, Xin Huang !

I Data and Statistical Sciences, AbbVie Inc., North Chicago, IL 60064, USA
> Department of Statistics, Purdue University, West Lafayette, IN 47907, USA

Introduction

Combination drug therapies hold significant promise for enhancing
treatment efficacy, particularly 1 fields such as oncology,

immunotherapy, and infectious diseases. However, designing
clinical trials for these regimens poses unique statistical challenges
due to multiple hypothesis testing, shared control groups, and
overlapping treatment components that induce complex correlation
structures. In this paper, we develop a novel statistical framework
tailored for early-phase translational combination therapy trials, with
a focus on platform trial designs. Our methodology introduces a
generalized Dunnett’s procedure that controls false positive rates by
accounting for the correlations between treatment arms.
Additionally, we propose strategies for power analysis and sample
size optimization that leverage preclinical data to estimate effect
sizes, synergy parameters, and inter-arm correlations. Simulation
studies demonstrate that our approach not only controls various false
positive metrics under diverse trial scenarios but also informs
optimal allocation ratios to maximize power. A real-data application
further illustrates the integration of translational preclinical insights
into the clinical trial design process. An open-source R package 1s
provided to support the application of our methods in practice.
Overall, our framework offers statistically rigorous guidance for the
design of early-phase combination therapy trials, aiming to enhance
the efficiency of the bench-to-bedside transition.

Methodology

e False Positive Control

We consider a platform trial design consisting of K substudies,
where 1n each substudy, two investigational arms are compared

against a common standard-of-care control arm A used throughout

the trial.
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For each substudy, we define two primary test statistics:
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Their correlation, Cor (Z kirZl j), 1s given by
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We can compute each pairwise correlation to form a 2K X 2K
correlation matrix X :

T
L= (Z1,1»Z1,2:Zz,1:Zz,2: ---:ZK,l:ZK,Z) ~ N(0,X)

Given the 2K-dimensional test statistic vector Z and its correlation
matrix X, to control the m-FWER at level a, we determine a critical

value ¢* such that
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* Allocation Ratio Optimization

In each substudy k, there are three allocation ratios: p, for the
common control arm A, pg, for the monotherapy arm By, and pyp,

for the combination arm A + Bj,. Assume that each monotherapy By,
has a true effect §; over the standard-of-care A, defined as 6 =
Ug, — Ua. For the combination arm A + By, , its effect is expressed

as
5ABk = SOk

where sy, 1s the synergy parameter 1n substudy k. Wald noncentrality
parameters for the combination and monotherapy arms are given by:
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Let 8 =(60,04,..,0,x) be a vector of unconstrained real

parameters, and define:
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The optimization problem is then formulated as

max min (Wy,1(0), Wy 2(0)}

* Sample Size Determination

Step 1: Locating an upper bound

We estimate power at N = Ny using the Monte Carlo evaluation
described 1 Step 3. If the estimated power 1s below the target, we
double the current N and repeat the evaluation. The first value of N
meeting the power requirement is stored as N,,,4,, and the previous
value 1s recorded as N,,,;;, .

Step 2: Binary search
We initialize low = N,,;;,, and high =
we compute

N 0. While low < high,

| [low + high]
mid = 2

and evaluate the power at N = mid. If the estimated power is at
least the target, we update high = mid; otherwise, we set low =
mid + 1. The algorithm terminates when low = high, and this value
is taken as the minimal sample size N* that achieves the desired
pOWET.
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Step 3: Monte Carlo power evaluation

Given the sample size N, optimal allocation ratios (py, pg, Pag) and
inter-arm correlations, we compute the correlation matrix X. We then
generate Ng;,, realizations of the sample means (Y, Yg, Y45), each
drawn from their joint distribution. We compute the test statistics
and count how many times exceed c¢*. The minimum of the two

empirical rejection proportions across simulations 1s taken as the
estimated power for the given sample size N.

Results
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Joint density functions of test statistics Z; and Z, under null
hypothesis with correlation p = 0.5. The family-wise error rate
(FWER) 1s defined as the sum of the four shaded edge regions
minus the area of regions 1+2+3+4.
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False positive metrics as functions of p,p . The blue dashed lines

represent baseline rates under an independent-trial design
(FWER=0.0975; FMER=0.0025). All results are generated under the
global null hypothesis at a significance level of @ = 0.05.
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Optimal allocation ratios and required sample sizes under varied
synergy and arm correlation scenarios.

A B P2 Pr Pag  Error metric p-value threshold N*
FWER 0.026 365
LEEO11 everolimus 0.501 0455 0.044 FMER 0.026 365
MSFP 0.006 443
FWER 0.026 405
LEEO11 binimetinib 0.491 0.498 0.011 FMER 0.029 397
MSFP 0.007 479
FWER 0.025 4746
INC280 trastuzumab 0.492 0.492 0.017 FMER 0.052 3938
MSFP 0.013 4765
FWER 0.027 97
encorafenib  binimetinib 0.445 0.450 0.105 FMER 0.013 114
MSFP 0.003 135
FWER 0.026 9321
BYL719 binimetinib  0.527 0.463 0.010 FMER 0.027 9239
MSFP 0.006 11220
FWER 0.025 52886
BKM120  binimetinib 0.527 0462 0.011 FMER 0.042 46090
MSFP 0.010 55412

Optimal allocation ratios and required sample sizes for six synthetic
combination trials based on PDX preclinical data.

Conclusion

We present a synergy-aware statistical framework for designing
platform trials 1n early-phase combination therapy studies. By
generalizing Dunnett’s procedure to account for shared controls and
overlapping treatment components, our method rigorously controls
multiple false-positive metrics while optimizing sample allocation
and trial power. Through simulation and real preclinical data, we
demonstrate how incorporating synergy estimates and correlation
structures enables more efficient and statistically sound trial designs.
R package combodesign, source code and documentation are
available from https://github.com/xnnbal984/combodesign.
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