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How do we obtain actionable data from in vivo studies?

Video: A Rotarod test



What'’s the Utility of Digital Biomarkers In Vivo?
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‘ What'’s the Utility of Digital Biomarkers In Vivo?
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Activity in Group-Housed Home Cages of Mice as a
Novel Preclinical Biomarker in Oncology Studies

> Genes Brain Behav. 2017 Jun;16(5):564-573. doi: 10.1111/gbb.12374. Epub 2017 Mar 29.
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Other reasons to use digital biomarkers

* Digital biomarkers enable longitudinal measurements for low researcher effort.

* Adaptive designs. We can use cues to know when to enroll an animal in a study, for example when its

behavioral phenotype is sufficiently altered.
*  Magnify the phenotype (model window)
* Greater chance to detect a noticeable treatment effect

* ...and reverse digital translation




‘ What digital metrics are useful in humans?

Reverse digital translation
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Challenges in Digital Biomarker Development

* Biomarker Choice

* Does the biomarker describe an important correlate of the pathology we are exploring?
* What evidence does that correlate provide?

* Value Demonstration

* Does the biomarker add new evidence, complement current evidence, or neither?
* How do we gain consensus from preclinical and clinical teams?

* Data Engineering and Analysis

* Can we turn additional data into better evidence?
* How do we follow good statistical practices in our design and analysis?



Targeted Biomarkers through Supervised ML

Activity <> metabolic expenditure & frailty indices.
Respiration <> pulmonary toxicity & ALS progression.
Temperature <> inflammation

Sleep architecture <> neurodegeneration & sleep

Supports DIVA goal of biomarkers with clear
mechanism ties

Use annotated frames or multimodal ground truth

NNs for frame-wise detection; Transformers for
temporal context; pose-based classifiers using
key-point kinematics

Analytical validation: AUROC vs. expert labels,
distance from expert label




From Video to Digital Biomarker
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‘ Video Acquisition & Verification

* Many home-cage/other systems out there

* Top-, side-, multi-view cameras remove
occlusions

* IR illumination keeps circadian cycle
undisturbed

* Automated QC: focus drift, occlusion
detection

* V5 “Verification” requirement: prove raw
signal fidelity over study duration
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RFID Trocking RFID Tog Codes
016080244
0 RFID-SI0 Metching Log
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Figure: Video from YouTube of a Home
Cage Monitoring System



‘ A Brief History of Home-Cage Analytics

 Early home-cage systems (e.g., HomeCageScan, EthoVision unsupervised modules) relied on background subtraction + blob
tracking

* Breakthroughs: LEAP (2018), DeepLabCut (2018) made key-point tracking feasible with ~hundreds of labelled frames

» These pose coordinates enabled engineered kinematic features (gait speed, limb angle) and density-based clustering (UMAP +
HDBSCAN) to separate behaviors.

* Unsupervised:

* MoSeq (Datta 2017) used depth + a HMM to identify sub-second motifs in behavior
*  VAME (Luxem 2022) trained VAEs on pose to discover motifs in freely moving mice
* B-SOID clusters pose data then trains a supervised model to predict cluster membership on new data

e Supervised:

* DeepEthogram (Bohnslav 2021) uses CNNs previously trained for human action recognition to predict specific behaviors



A Review of Multi-Object Tracking Tools

Tracking by detection: SORT /DeepSORT (2016-2017) use Kalman filter + Hungarian matching to match tracks to detected
objects; DeepSORT added appearance features

ByteTrack (2021) added a second association step for low confidence detections, assessing their similarities with tracklets
Joint detection and embedding trackers were popular in the early 2020s
Transformer based trackers, such as those based on Segment Anything 2 like SAM2MOT (2025), are now popular

Other trackers such as ConsistencyTrack (2024) frame tracking as a denoising problem



DeeplLabCut & Markerless Pose Estimation

Released in 2018, DeeplabCut performs pose estimation
with ~hundreds of labelled frames

Uses pre-trained ResNet models to predict keypoints in
animals

Easy to train, but quality is sometimes insufficient for more

complex markers

Video: Example of DeeplLabCut Pose
Estimation (from the DLC website)



‘ Our Analysis Pipeline

Utilize DeepLabCut predictions to prompt a modified version of
SAM 2 to track specific parts of the animal more accurately

Predict bouts of interest (e.g. movement); stratified sample equally
from these bouts and other times

Use stable keypoint predictions to initialize tracking with a larger
model

Uses Segment Anything 2 as a base model, but adds various

problem-specific features

Distractor-resolving, high-quality, and dynamic memory for multiple
objects

Geometric constraints

Unique implementation of Kalman filtering

DLC Detection:
High/Low Activity Times

v

Sample ~30s Intervals
from Activity Periods

v

Single Point Prompt
from DLC (High Likelihood)

v

Mask Propagation
& Candidate Generation

v

Evaluation & Filtering

v

v

v

Kalman Filter
Position Validation

loU Measurement
with Previous Mask

Geometric Validation
Triangle Features

Recovery Mode
After 3 Failures

State Updates
Kalman & Memory

f

Exit after 5 frames

SAM2-based Workflow for Object Tracking



‘ Algorithm Overview: Mask Generation

« Mask Propagation & Candidate Generation:
* The SAM 2 predictor takes previous-frame masks as prompts — propagates to next frame, yielding 3
candidate masks per object
* Wehave a;= f(xi|m(ak, pl)), where

. a; is the mask for frame i

. X; are the features from frame i

*  m(ag,p,) are memory embeddings based on the prompts from frame 1 and a certain amount of previous masks
* Memory embeddings are generated from

* Spatial feature maps (image embeddings from past frames)
*  Obiject Pointers (mask features from mask decoder)

* Model implements cross-attention between current frame features and memory bank
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Figure: SAM 2 Architecture (from the SAM 2 paper, 2024)



‘ Algorithm Overview: Mask Validation

o Kalman Filter Validation:
For each object, run a constant-velocity Kalman filter on bounding box center
Use high process noise and initial uncertainty to reflect animal movement
Compare candidate bounding boxes against the Kalman filter’s predicted position using loUs
Obiject could either be overlapping with the previous frame or overlapping with KF prediction; if no valid masks generated,
discard track

o Geometric Validation:
Compute closest points between object masks (using FAISS on CPU or GPU)
Construct shape features (distance, angles) based on these points
Validate current geometric relationships against historical statistics
Criteria can be mean + 3SD of the last ~10 seconds or based off of known cutoffs



‘ Distractor-Aware Memory for SAM 2 (Videnovic 2024)

* Concept: 'distractors’ come into view before

segmentation VOT2022: EAO
* Obijects that are similar to the one of interest
* Use largest connected component of *
alternative masks from SAM 2; if loU < Distractor detected! 3,565
threshold, add frame to memory l 0673 |JEEEEE ___::‘2%
* Separation suggests a mask of a different # i
thing vs. a low quality mask for the object of oy T
. X L4
interest witger | [0 0r
=TT

MS_AOT  SAM2.1 SAM2.1++

| O Predicted mask QAIternaﬁve mask

T - ¢

- 1
SAM2.1@© and SAM2.1++(): Performance in presence of distractors

Figure: Example of distractor detection
from Videnovic et al 2024



‘ Algorithm Overview: Memory Management

o Update distractor resolving memory (DRM) when valid predictions meet size and consistency thresholds.
o  Current object size is between 90-110% of its average size in the last 10 frames
o The minimum loU between the chosen mask and the union of the chosen and alternative masks < 0.9
o Update high quality memory (HQM) when:
o  Current object size is between 90-110% of its average size in the last 10 frames
o The loU between frames for the chosen mask is > 0.9

o Purge old DRM or HQM frames (> 10 seconds)



‘ Algorithm Overview: Track Recovery

After >3 missed detections for an object, enter recovery mode
Purges memory frames in the last ~5 seconds and disables geometric filters for that object

Exit recovery mode after 5 consecutive valid frames.
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Single-Object Performance on the DiDi Dataset

Our model performs similar to SAM2.1/SAM2.1++ on the
single-object case, trading accuracy (mean loU) for
robustness (proportion of frames where the tracker does
not completely lose the target).

Accuracy Robustness

Our Model 0.707 0.96
SAM2.1++ 0.727 0.944
SAM2.1 0.72 0.887

Figure: A simple video from DiDi
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‘ Evaluation Dataset: DanceTrack

* Multi-object tracking dataset emphasizing
uniform appearance and diverse motion
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Dancelrack Performance

* HOTA: higher order tracking accuracy,
geometric mean of detection accuracy and
association accuracy

* IDF1: F1 score of correct identity
predictions, harmonic mean of precision
and recall

Methods Publication |[HOTA|IDF1
SORT ICIP2016 |47.9 |50.8
DeepSORT ICIP2017 |45.6 |47.9
FairMOT lJCV2021 [39.7 |40.8
CenterTrack ECCV2020 |41.8 |35.7
QDTrack CVPR2021 [45.7 |44.8
GTR CVPR2022 48.0 |50.3
ByteTrack ECCV2022 |47.3 |52.5
MOTR ECCV2022 54.2 |51.5
SUSHI CVPR2023 |63.3 |63.4
MOTRv2 CVPR2022 69.9 |71.7
ColTrack ICCV2023 |72.6 |74.0
FineTrack CVPR2023 |52.7 |59.8
OC-SORT CVPR2023 |54.6 |54.6
DiffMOT CVPR2024 62.3 |63.0
Hybrid-SORT AAAI2024 [65.7 |67.4
AED arXiv2024 |[66.6 |69.7
MOTIP arXiv2024 (73.7 |79.4
SAM2MOT arXiv2025 (75.8 |83.9
Our method Ours 65.3 [90.6




‘ Why do we care about robustness that much?

* Our method is excellent at preserving the identities of objects, but may drop tracks more than other models

* This is by design, as we prefer missing data with a possibility of object reacquisition to incorrect data or identity confusion

*  Consider how identity confusion between paws, ears, etc would affect the DeepLabCut results below
* A few identity confusions can destroy your metrics and biomarker utility

Video: Example of DeeplLabCut Pose
Estimation (from the DLC website)



Multi-Object Exampl: Ballet
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