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How do we efficiently sort compounds in the preclinical 
phase? 
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Preclinical



How do we obtain actionable data from in vivo studies?
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Video: A Rotarod test



What’s the Utility of Digital Biomarkers In Vivo? 
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• Bring the experiment to the animal, not the 

animal to the experiment
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Figure: A Home Cage Monitoring System
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Other reasons to use digital biomarkers 

• Digital biomarkers enable longitudinal measurements for low researcher effort. 

• Adaptive designs. We can use cues to know when to enroll an animal in a study, for example when its 

behavioral phenotype is sufficiently altered. 

• Magnify the phenotype (model window) 

• Greater chance to detect a noticeable treatment effect

• …and reverse digital translation



What digital metrics are useful in humans? 
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• Biomarker Choice

• Does the biomarker describe an important correlate of the pathology we are exploring?
• What evidence does that correlate provide? 

• Value Demonstration

• Does the biomarker add new evidence, complement current evidence, or neither? 
• How do we gain consensus from preclinical and clinical teams? 

• Data Engineering and Analysis 

• Can we turn additional data into better evidence?
• How do we follow good statistical practices in our design and analysis? 

Challenges in Digital Biomarker Development
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• Activity <> metabolic expenditure & frailty indices.

• Respiration <> pulmonary toxicity & ALS progression.

• Temperature <> inflammation

• Sleep architecture <> neurodegeneration & sleep

• Supports DIVA goal of biomarkers with clear 

mechanism ties

Targeted Biomarkers through Supervised ML 

• Use annotated frames or multimodal ground truth 

• NNs for frame-wise detection; Transformers for 

temporal context; pose-based classifiers using 

key-point kinematics

• Analytical validation: AUROC vs. expert labels, 

distance from expert label 



From Video to Digital Biomarker



• Many home-cage/other systems out there

• Top-, side-, multi-view cameras remove 

occlusions

• IR illumination keeps circadian cycle 

undisturbed

• Automated QC: focus drift, occlusion 

detection

• V5 “Verification” requirement: prove raw 

signal fidelity over study duration

Video Acquisition & Verification

Figure: Video from YouTube of a Home 
Cage Monitoring System



• Early home-cage systems (e.g., HomeCageScan, EthoVision unsupervised modules) relied on background subtraction + blob 
tracking

• Breakthroughs: LEAP (2018), DeepLabCut (2018) made key-point tracking feasible with ~hundreds of labelled frames

• These pose coordinates enabled engineered kinematic features (gait speed, limb angle) and density -based clustering (UMAP + 
HDBSCAN) to separate behaviors.

• Unsupervised: 
• MoSeq (Datta 2017) used depth + a HMM to identify sub-second motifs in behavior
• VAME (Luxem 2022) trained VAEs on pose to discover motifs in freely moving mice
• B-SOID clusters pose data then trains a supervised model to predict cluster membership on new data

• Supervised: 
• DeepEthogram (Bohnslav 2021) uses CNNs previously trained for human action recognition to predict specific behaviors

A Brief History of Home-Cage Analytics



• Tracking by detection: SORT/DeepSORT (2016-2017) use Kalman filter + Hungarian matching to match tracks to detected 

objects; DeepSORT added appearance features

• ByteTrack (2021) added a second association step for low confidence detections, assessing their similarities with tracklets

• Joint detection and embedding trackers were popular in the early 2020s

• Transformer based trackers, such as those based on Segment Anything 2 like SAM2MOT (2025), are now popular 

• Other trackers such as ConsistencyTrack (2024) frame tracking as a denoising problem

A Review of Multi-Object Tracking Tools



• Released in 2018, DeepLabCut performs pose estimation 

with ~hundreds of labelled frames

• Uses pre-trained ResNet models to predict keypoints in 

animals 

• Easy to train, but quality is sometimes insufficient for more 

complex markers

DeepLabCut & Markerless Pose Estimation

Video: Example of DeepLabCut Pose 
Estimation (from the DLC website)



• Utilize DeepLabCut predictions to prompt a modified version of 

SAM 2 to track specific parts of the animal more accurately

• Predict bouts of interest (e.g. movement); stratified sample equally 
from these bouts and other times

• Use stable keypoint predictions to initialize tracking with a larger 
model

• Uses Segment Anything 2 as a base model, but adds various 

problem-specific features 

• Distractor-resolving, high-quality, and dynamic memory for multiple 
objects

• Geometric constraints 
• Unique implementation of Kalman filtering

Our Analysis Pipeline

SAM2-based Workflow for Object Tracking



• Mask Propagation & Candidate Generation:

• The SAM 2 predictor takes previous-frame masks as prompts → propagates to next frame, yielding 3 

candidate masks per object 

• We have 𝑎𝑖= 𝑓 𝑥𝑖|𝑚 𝑎𝑘, 𝑝1 , where

•  𝑎𝑖 is the mask for frame i

•  𝑥𝑖 are the features from frame i 

• 𝑚 𝑎𝑘, 𝑝1  are memory embeddings based on the prompts from frame 1 and a certain amount of previous masks

• Memory embeddings are generated from 

• Spatial feature maps (image embeddings from past frames) 

• Object Pointers (mask features from mask decoder)

• Model implements cross-attention between current frame features and memory bank

Algorithm Overview: Mask Generation 

Figure: SAM 2 Architecture (from the SAM 2 paper, 2024)



o Kalman Filter Validation: 
▪ For each object, run a constant-velocity Kalman filter on bounding box center 

▪ Use high process noise and initial uncertainty to reflect animal movement

▪ Compare candidate bounding boxes against the Kalman filter’s predicted position using IoUs

▪ Object could either be overlapping with the previous frame or overlapping with KF prediction; if no valid masks generated, 

discard track

o Geometric Validation: 
▪ Compute closest points between object masks (using FAISS on CPU or GPU)

▪ Construct shape features (distance, angles) based on these points

▪ Validate current geometric relationships against historical statistics

▪ Criteria can be mean + 3SD of the last ~10 seconds or based off of known cutoffs

Algorithm Overview: Mask Validation



• Concept: ’distractors’ come into view before 

segmentation 

• Objects that are similar to the one of interest

• Use largest connected component of 

alternative masks from SAM 2; if IoU < 

threshold, add frame to memory  

• Separation suggests a mask of a different 
thing vs. a low quality mask for the object of 
interest

Distractor-Aware Memory for SAM 2 (Videnovic 2024)

Figure: Example of distractor detection 
from Videnovic et al 2024



o Update distractor resolving memory (DRM) when valid predictions meet size and consistency thresholds.

o Current object size is between 90-110% of its average size in the last 10 frames

o The minimum IoU between the chosen mask and the union of the chosen and alternative masks < 0.9

o Update high quality memory (HQM) when:
o Current object size is between 90-110% of its average size in the last 10 frames

o The IoU between frames for the chosen mask is > 0.9

o Purge old DRM or HQM frames (> 10 seconds)

Algorithm Overview: Memory Management



• After ≥3 missed detections for an object, enter recovery mode

• Purges memory frames in the last ~5 seconds and disables geometric filters for that object

• Exit recovery mode after 5 consecutive valid frames. 

Algorithm Overview: Track Recovery 



Evaluation Dataset: DiDi 

I had to cut 
our internal 
eval datasets 
from this talk 
 



Single-Object Performance on the DiDi Dataset
• Our model performs similar to SAM2.1/SAM2.1++ on the 

single-object case, trading accuracy (mean IoU) for 

robustness (proportion of frames where the tracker does 

not completely lose the target). 

Accuracy Robustness
Our Model 0.707 0.96
SAM2.1++ 0.727 0.944
SAM2.1 0.72 0.887

Figure: A simple video from DiDi



Single-Object Example: Dog



• Multi-object tracking dataset emphasizing 
uniform appearance and diverse motion

Evaluation Dataset: DanceTrack



DanceTrack Performance

26

Methods Publication HOTA IDF1

SORT ICIP2016 47.9 50.8

DeepSORT ICIP2017 45.6 47.9

FairMOT IJCV2021 39.7 40.8

CenterTrack ECCV2020 41.8 35.7

QDTrack CVPR2021 45.7 44.8

GTR CVPR2022 48.0 50.3

ByteTrack ECCV2022 47.3 52.5

MOTR ECCV2022 54.2 51.5

SUSHI CVPR2023 63.3 63.4

MOTRv2 CVPR2022 69.9 71.7

ColTrack ICCV2023 72.6 74.0

FineTrack CVPR2023 52.7 59.8

OC-SORT CVPR2023 54.6 54.6

DiffMOT CVPR2024 62.3 63.0

Hybrid-SORT AAAI2024 65.7 67.4

AED arXiv2024 66.6 69.7

MOTIP arXiv2024 73.7 79.4

SAM2MOT arXiv2025 75.8 83.9

Our method Ours 65.3 90.6

• HOTA: higher order tracking accuracy, 

geometric mean of detection accuracy and 

association accuracy

• IDF1: F1 score of correct identity 

predictions, harmonic mean of precision 

and recall 



• Our method is excellent at preserving the identities of objects, but may drop tracks more than other models

• This is by design, as we prefer missing data with a possibility of object reacquisition to incorrect data or identity confusion

• Consider how identity confusion between paws, ears, etc would affect the DeepLabCut results below 

• A few identity confusions can destroy your metrics and biomarker utility

Why do we care about robustness that much?

Video: Example of DeepLabCut Pose 
Estimation (from the DLC website)



Multi-Object Example: Ballet
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