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High Throughput Screening

Used in drug discovery and chemical biology.

https://en.wikipedia.org/wiki/Microplate

Later, we’ll discuss two examples related to the problem of
antibiotic-resistant bacteria.
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Take-Home Message

In many high-throughput screening campaigns,
pooling multiple compounds per well will improve

hit rates and reduce false positives.

6 / 26



Introduction
Constrained Row Screening (CRowS) Designs

Applications
Conclusion
Extra Slides

HTS Design and Analysis Approaches

Typical: One-compound-one-well (OCOW). Relatively simple in
terms of statistical design and analysis.

Proposed: Constrained Row Screening (CRowS), which treats HTS
as a multi-factor experimental design problem.

Each compound is treated as a factor with two levels (absent,
present)

Each well is treated as an independent experimental unit

Each well receives multiple compounds, but no more than c
compounds per well

The number of compounds k can be more than the number of
wells n, so use machinery of supersaturated designs
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Supersaturated Designs

Two-level supersaturated designs (SSDs) use n < k runs to study
k factors.

Here is a toy n = 6, k = 9 example:

X =



−1 −1 −1 1 1 1 1 1 −1
1 1 −1 1 1 1 −1 −1 1
−1 −1 1 1 −1 −1 −1 1 1
1 −1 −1 1 −1 −1 1 −1 −1
−1 1 1 −1 −1 1 −1 −1 −1
1 1 −1 −1 −1 1 1 1 1


SSDs generate data to estimate y = β01+ Xβ + ϵ, where X is
n × k . We use the Lasso to estimate β.
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Standard Supersaturated Design Criterion, UE(s2)

Let L = [1,X ] and S = L
′
L with

elements sij .

Unconditional E (s2)-criterion:

UE(s2) =

(
k + 1

2

)−1

Q(X )

where Q(X ) =
∑

0≤i<j≤k s
2
ij .

S matrix for a 16× 28
UE(s2)-optimal design

9 / 26



Introduction
Constrained Row Screening (CRowS) Designs

Applications
Conclusion
Extra Slides

Standard Supersaturated Design Criterion, UE(s2)

Let L = [1,X ] and S = L
′
L with

elements sij .

Unconditional E (s2)-criterion:

UE(s2) =

(
k + 1

2

)−1

Q(X )

where Q(X ) =
∑

0≤i<j≤k s
2
ij . S matrix for a 16× 28

UE(s2)-optimal design

9 / 26



Introduction
Constrained Row Screening (CRowS) Designs

Applications
Conclusion
Extra Slides

Pooling in the Literature

Pooling multiple compounds in a single well has been previously
proposed and studied (e.g., see reviews by Kainkaryam and Woolf
2009).

Elkin et al. (2015) calls pooling “controversial ... with a long
history of limited success” but shows a successful example of a two
compounds/well campaign.

Some recent works have proposed new pooling procedures: Ji et al.
(2023) and Liu et al. (2024). Both use statistical methods to
screen; neither study their approaches as supersaturated designs,
nor do they compare with competing methods.
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CRowS Designs

We say an n × k design X is a Constrained Row Screening design
if n ≤ k , [X ]ij = xij , and the design solves the following
optimization problem:

min UE (s2) (1)

s.t. xij ∈ {−1, 1} ∀i , j (2)

k∑
j=1

xij ≤ 2c − k ∀i (3)

where c is the maximum number of compounds/well.

We
construct designs using a coordinate-exchange type algorithm.
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Comparisons: True Positive Rate
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Comparisons: False Positive Rate
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Detecting Inhibitors of Metallo-β-lactamases
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Working with Rick Page’s
lab at Miami University

Goal to find inhibitors of
enzyme that causes bacterial
resistance to antibiotics

Four mini-experiments,
spiked with a known
inhibitor, L-captopril
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Searching for New Antimicrobials

Brian Ahmer’s lab at The Ohio State University.

MtlD is an enzyme some bacteria use to process mannitol; without
it, bacteria weaken or die when mannitol is present.

The lab developed a knockout strain without MtlD for several
different bacterial species.

Goal: identify compounds that hit on Wildtype but not on
Knockout
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Pilot Studies with 320 Wells

Check to make sure we can correctly detect a known hit, and
check how aggressively we can reasonably screen.
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Initial 10,000+ Compound Screen

METHOD

1 Plan the pools using a CRowS design

2 Construct the pools using a liquid handling system

3 Obtain and clean the assay data

4 Generate an initial hit list using the Lasso

5 Trim hit list as desired by isolating compounds that show
consistent inhibition across replications
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Out of 16 “PLINGs”, PLING 11 is notable
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S02N020 from PLING 11 is promising

21 / 26



Introduction
Constrained Row Screening (CRowS) Designs

Applications
Conclusion
Extra Slides

Outline

1 Introduction

2 Constrained Row Screening (CRowS) Designs

3 Applications

4 Conclusion

5 Extra Slides

22 / 26



Introduction
Constrained Row Screening (CRowS) Designs

Applications
Conclusion
Extra Slides

Summary of Work

Our contributions:

1 CRowS, a statistically principled and high-quality solution to
the pooling problem in HTS

2 a new class of row-constrained supersaturated designs
motivated by these applications

Challenges:

1 Application-specific success

2 Interactions?

Ongoing and future work: more applications; comparisons with
other methods; handling interactions; theoretical development to
better understand and construct the designs
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Thank you!

Byran Smucker: bsmucke1@hfhs.org

Find me on Twitter/X (@ByranSmucker) and LinkedIn

arXiv preprint: “Large Row-Constrained Supersaturated Designs
for High-throughput Screening” (Smucker et al. 2024)
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Features of Row-Constrained SSDs: (n = 96, k = 144)
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