

Large Row-Constrained Supersaturated Designs for High-throughput Screening

Byran Smucker

Department of Public Health Sciencies, Division of Biostatistics Henry Ford Health, Detroit, MI

June 17, 2025

Nonclinical Biostatistics Conference, Rutgers University

This work is a team effort

Large Row-Constrained Supersaturated Designs for High-throughput Screening

Byran J. Smucker* ¹, Stephen E. Wright¹, Isaac Williams¹, Richard C. Page², Andor J. Kiss³, Surendra Bikram Silwal², Maria Weese⁴, and David J. Edwards⁵

¹Department of Statistics, Miami University, Oxford, OH, 45056
²Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056

 $^3{\rm Center}$ for Bioinformatics and Functional Genomics, Miami University, Oxford, OH, 45056

⁴Department of Information Systems & Analytics, Miami University, Oxford, OH, 45056

⁵Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, Richmond, VA, 23284

This work is a team effort

Brian Ahmer, PhD, The Ohio State University, Department of Microbiology

Meng Wu, PhD, The Ohio State University, Medicinal Chemistry Shared Resource - High-Throughput Screening Core

Emily Rego, The Ohio State University, Department of Microbiology

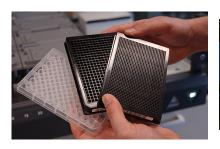
Zhihong Lin, PhD, The Ohio State University, Medicinal Chemistry Shared Resource - High-Throughput Screening Core

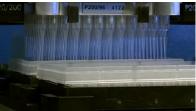
Outline

- Introduction
- 2 Constrained Row Screening (CRowS) Designs
- 3 Applications
- 4 Conclusion
- Extra Slides

Outline

- Introduction
- Constrained Row Screening (CRowS) Designs
- 3 Applications
- 4 Conclusion
- 5 Extra Slides

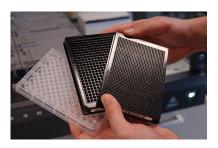



High Throughput Screening

Used in drug discovery and chemical biology.

High Throughput Screening

Used in drug discovery and chemical biology.



https://en.wikipedia.org/wiki/Microplate

High Throughput Screening

Used in drug discovery and chemical biology.

https://en.wikipedia.org/wiki/Microplate

Later, we'll discuss two examples related to the problem of antibiotic-resistant bacteria.

Take-Home Message

In many high-throughput screening campaigns, **pooling** multiple compounds per well will improve hit rates and reduce false positives.

HTS Design and Analysis Approaches

Typical: One-compound-one-well (OCOW). Relatively simple in terms of statistical design and analysis.

HTS Design and Analysis Approaches

Typical: One-compound-one-well (OCOW). Relatively simple in terms of statistical design and analysis.

Proposed: Constrained Row Screening (CRowS), which treats HTS as a multi-factor experimental design problem.

HTS Design and Analysis Approaches

Typical: One-compound-one-well (OCOW). Relatively simple in terms of statistical design and analysis.

Proposed: Constrained Row Screening (CRowS), which treats HTS as a multi-factor experimental design problem.

- Each compound is treated as a factor with two levels (absent, present)
- Each well is treated as an independent experimental unit
- Each well receives multiple compounds, but no more than c compounds per well
- The number of compounds k can be more than the number of wells n, so use machinery of supersaturated designs

Supersaturated Designs

Two-level supersaturated designs (SSDs) use n < k runs to study k factors.

Supersaturated Designs

Two-level supersaturated designs (SSDs) use n < k runs to study k factors. Here is a toy n = 6, k = 9 example:

SSDs generate data to estimate $\mathbf{y} = \beta_0 \mathbf{1} + X \boldsymbol{\beta} + \boldsymbol{\epsilon}$, where X is **HENRY** FORD

Supersaturated Designs

Two-level supersaturated designs (SSDs) use n < k runs to study k factors. Here is a toy n = 6, k = 9 example:

SSDs generate data to estimate $\mathbf{y} = \beta_0 \mathbf{1} + X \boldsymbol{\beta} + \boldsymbol{\epsilon}$, where X is $n \times k$. We use the Lasso to estimate $\boldsymbol{\beta}$.

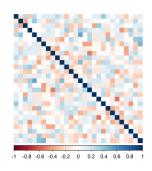
Standard Supersaturated Design Criterion, $UE(s^2)$

Let $L = [\mathbf{1}, X]$ and S = L'L with elements s_{ii} .

Unconditional $E(s^2)$ -criterion:

$$\mathsf{UE}(s^2) = \binom{k+1}{2}^{-1} Q(X)$$

where
$$Q(X) = \sum_{0 \le i < j \le k} s_{ij}^2$$
.


Standard Supersaturated Design Criterion, $UE(s^2)$

Let $L = [\mathbf{1}, X]$ and S = L'L with elements s_{ij} .

Unconditional $E(s^2)$ -criterion:

$$\mathsf{UE}(s^2) = \binom{k+1}{2}^{-1} Q(X)$$

where
$$Q(X) = \sum_{0 \le i < j \le k} s_{ij}^2$$
.

S matrix for a 16×28 $UE(s^2)$ -optimal design

Pooling in the Literature

Pooling multiple compounds in a single well has been previously proposed and studied (e.g., see reviews by Kainkaryam and Woolf 2009).

Elkin et al. (2015) calls pooling "controversial ... with a long history of limited success" but shows a successful example of a two compounds/well campaign.

Some recent works have proposed new pooling procedures: Ji et al. (2023) and Liu et al. (2024). Both use statistical methods to screen; neither study their approaches as supersaturated designs, nor do they compare with competing methods.

FORD

Outline

- Introduction
- 2 Constrained Row Screening (CRowS) Designs
- 3 Applications
- 4 Conclusion
- Extra Slides

CRowS Designs

We say an $n \times k$ design X is a Constrained Row Screening design if $n \leq k$, $[X]_{ij} = x_{ij}$, and the design solves the following optimization problem:

$$\min \ UE(s^2) \tag{1}$$

s.t.
$$x_{ij} \in \{-1,1\} \ \forall i,j$$
 (2)

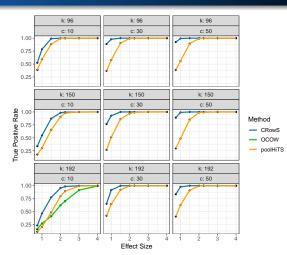
$$\sum_{j=1}^{k} x_{ij} \le 2c - k \ \forall i \tag{3}$$

where c is the maximum number of compounds/well.

CRowS Designs

We say an $n \times k$ design X is a Constrained Row Screening design if $n \leq k$, $[X]_{ij} = x_{ij}$, and the design solves the following optimization problem:

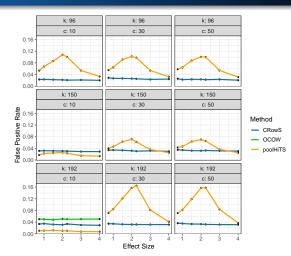
$$\min \ UE(s^2) \tag{1}$$


s.t.
$$x_{ij} \in \{-1, 1\} \ \forall i, j$$
 (2)

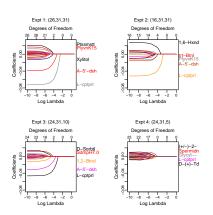
$$\sum_{j=1}^{k} x_{ij} \le 2c - k \ \forall i \tag{3}$$

where c is the maximum number of compounds/well. We construct designs using a coordinate-exchange type algorithm.

Comparisons: True Positive Rate



Comparisons: False Positive Rate


Outline

- Introduction
- Constrained Row Screening (CRowS) Designs
- 3 Applications
- 4 Conclusion
- Extra Slides

Detecting Inhibitors of Metallo- β -lactamases

- Working with Rick Page's lab at Miami University
- Goal to find inhibitors of enzyme that causes bacterial resistance to antibiotics
- Four mini-experiments, spiked with a known inhibitor, L-captopril

Brian Ahmer's lab at The Ohio State University.

Brian Ahmer's lab at The Ohio State University.

MtID is an enzyme some bacteria use to process mannitol; without it, bacteria weaken or die when mannitol is present.

Brian Ahmer's lab at The Ohio State University.

MtID is an enzyme some bacteria use to process mannitol; without it, bacteria weaken or die when mannitol is present.

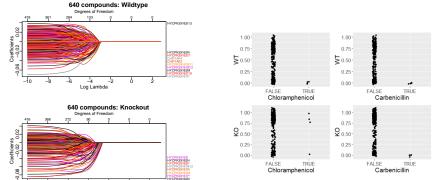
The lab developed a knockout strain without MtID for several different bacterial species.

Brian Ahmer's lab at The Ohio State University.

MtID is an enzyme some bacteria use to process mannitol; without it, bacteria weaken or die when mannitol is present.

The lab developed a knockout strain without MtlD for several different bacterial species.

Goal: identify compounds that hit on Wildtype but not on Knockout


Pilot Studies with 320 Wells

Check to make sure we can correctly detect a known hit, and check how aggressively we can reasonably screen.

Pilot Studies with 320 Wells

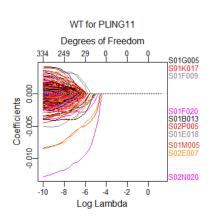
Log Lambda

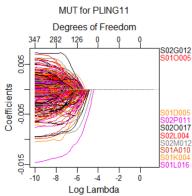
Check to make sure we can correctly detect a known hit, and check how aggressively we can reasonably screen.

CntP1A04==Chloramphenicol and CntP1A03==Carbenicillen

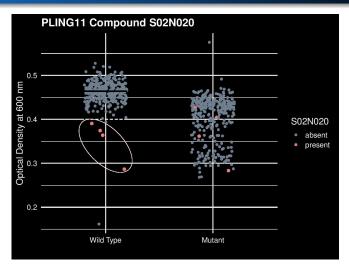
HENRY

FORD


Initial 10,000+ Compound Screen


METHOD

- **1** Plan the pools using a CRowS design
- Construct the pools using a liquid handling system
- Obtain and clean the assay data
- Generate an initial hit list using the Lasso
- Trim hit list as desired by isolating compounds that show consistent inhibition across replications



Out of 16 "PLINGs", PLING 11 is notable

S02N020 from PLING 11 is promising

Outline

- Introduction
- Constrained Row Screening (CRowS) Designs
- 3 Applications
- 4 Conclusion
- Extra Slides

Summary of Work

Our contributions:

- CRowS, a statistically principled and high-quality solution to the pooling problem in HTS
- 2 a new class of *row-constrained* supersaturated designs motivated by these applications

Summary of Work

Our contributions:

- CRowS, a statistically principled and high-quality solution to the pooling problem in HTS
- ② a new class of *row-constrained* supersaturated designs motivated by these applications

Challenges:

- Application-specific success
- ② Interactions?

Summary of Work

Our contributions:

- CRowS, a statistically principled and high-quality solution to the pooling problem in HTS
- ② a new class of *row-constrained* supersaturated designs motivated by these applications

Challenges:

- Application-specific success
- ② Interactions?

Ongoing and future work: more applications; comparisons with other methods; handling interactions; theoretical development to better understand and construct the designs

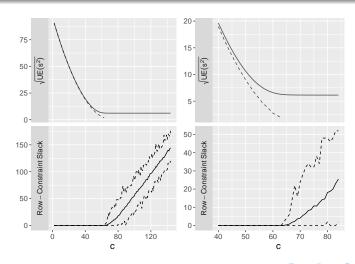
HENRY FORD

Thank you!

Byran Smucker: bsmucke1@hfhs.org

Find me on Twitter/X (@ByranSmucker) and LinkedIn

arXiv preprint: "Large Row-Constrained Supersaturated Designs for High-throughput Screening" (Smucker et al. 2024)



Outline

- Introduction
- Constrained Row Screening (CRowS) Designs
- 3 Applications
- 4 Conclusion
- 5 Extra Slides

Features of Row-Constrained SSDs: (n = 96, k = 144)

