

Bayesian Shelf Life and Internal Release Limit incorporating Storage Excursions

Ji Young Kim

CMC Statistics QS, SQS, Data and Quantitative Sciences Takeda Pharmaceutical Company Limited

NCB 2025, 17-Jun-2025

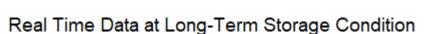
Acknowledgement

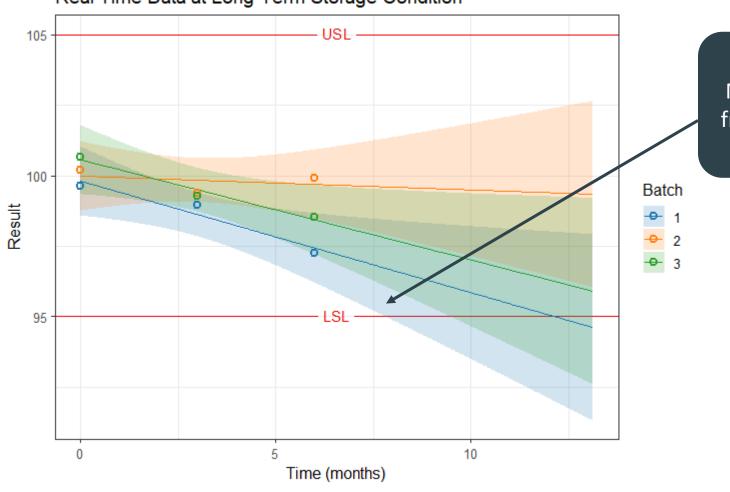
This is a joint work with

Steve Novick

Head of Nonclinical Statistics, QS, SQS, R&D Data and Quantitative Sciences Takeda Pharmaceutical Company Limited

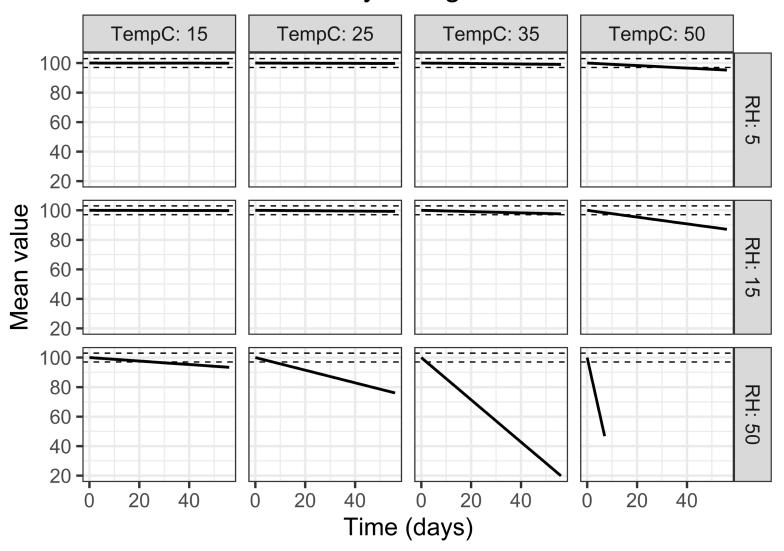
Shelf-Life




- For every drug product, an expiration
 date (shelf-life) should be indicated on
 the container label.
- Inaccurate shelf-life estimate or releasing batches that could go OOS before expiry is a risk both for patients and producers.

Shelf-life = Maximum duration at the **long-term storage** during which the mean of the attribute remains within stability specification

Mean is expected to go beyond spec from here: Shelf-life around 8 month.


"Long term condition" is chosen at the best storage condition for the product.

Eg.
Long-Term Storage at
Temperature of 5C
Relative Humidity of 30%

Accelerated Stability Studies

Full Accelerated Study Design

Accelerated stability studies are conducted to expedite the degradation to estimate the trajectory faster.

Typically, under elevated temperatures and varied levels of relative humidity

Example of storage conditions on the product labels

Vaccine Labels: Storage and
Beyond-Use Date Tracking
Source: US Centers for Disease

Control and Prevention

2024-25 Pfizer-BioNTech COVID-19 Vaccine 6 months through 4 years

Store vaccine between -90°C and -60°C (-130°F and -76°F)
Store diluent between 20°C and 25°C (68°F and 77°F)

Cap Color: Yellow

Protect From Light

Requires Mixing: Multidose vaccine vial and 0.9 sodium chloride

injection USP

Beyond-Use Time: Store unpunctured vaccine vials between:

- 2°C and 8°C (36°F and 46°F) for up to 10 weeks
- 8°C and 25°C (46°F and 77°F) for a total of 12 hours

Discard punctured vials after 12 hours.

Do not refreeze once thawed.

Updated 6/2/2025

2024-25 Spikevax (COVID-19) 12 years and older

Store between -50°C and -15°C (-58°F and 5°F)

Protect From Light

Beyond-Use Time: Store between:

- 2°C and 8°C (36°F and 46°F) for up to 60 days
- 8°C and 25°C (46°F and 77°F) for up to 12 hours

Do not refreeze once thawed

Updated 6/2/2025

Store between 2°C and 8°C (36°F and 46°F)

Protect From Light Do Not Freeze

Store between 2°C and 8°C (36°F and 46°F)

Color: Purple plunger

Protect From Light

Do Not Freeze

Beyond-Use Time: May be kept between 20°C and 25°C (68°F and 77°F) for a maximum of 8 hours.

Storage Excursions

Excursions can occur during shipping or storage

Over 50% vaccines wasted annually Loss of billions of doses! (Conditions!)

Could be different sets of excursions for different markets!

Market-Specific Excursion scenarios should be identified

 Need to better understand the excursions and their effects on shelf life and internal release limit

 Use real-time and accelerated stability data to model the whole stability system and to predict effect of excursions

Market	Temperature	Relative Humidity (%)	Duration of Storage (months)
All: Long-Term	5C	30%	15m
Α	15C	15%	0.4m
В	25C	5%	0.3m
С	25C	15%	0.2m
D	35C	30%	0.1m

Suppose that a shelf life of 15m was set for long-term storage. Can we claim that shelf life is 15 month **for all these markets**?

Excursions dramatically reduce shelf life

Real excursions could be more complex

Excursion could be a "Series" of events during shipping or storage such as

1 week at 15C/15% +

1 day at 25C/30% +

5 hours at 50C/50%.

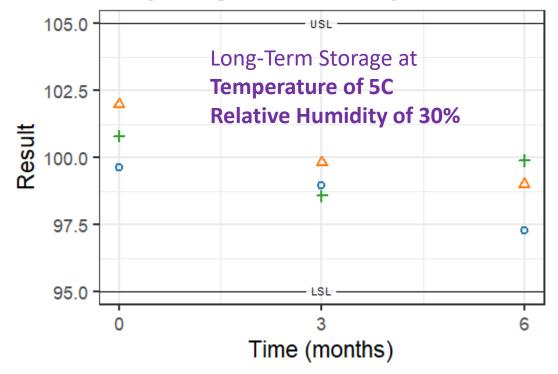
Vaccine dosing in Yemen

Total Degradation after 15 months = Long-term degradation + Sum of all degradations

Strategies

- Identify market-specific shipping process and storage conditions
- Market-specific shelf-life and internal release limit (IRL)
 - Optimal accelerated stability study design and Study Size
 - Robust statistical method to obtain the shelf life and IRL
 - Prior knowledge
- Strictly control shipping and storage to reduce excursions.

Example


Early-stage long-term stability study with accelerated stability studies

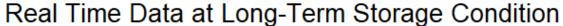
Early Stage Real Time Stability Study at Long-term Storage

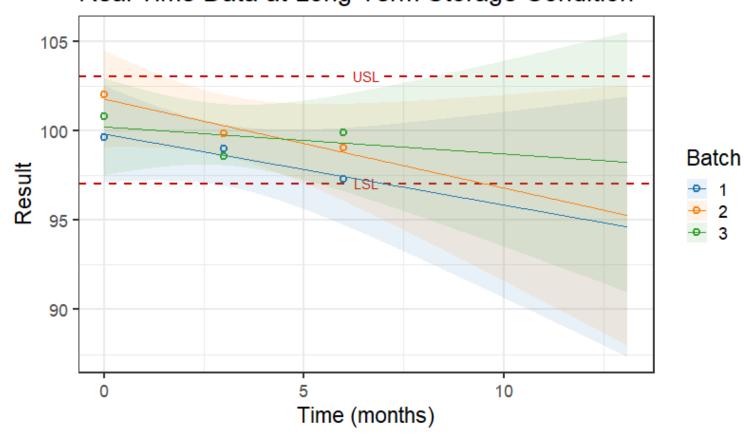
- In early stage of drug development, stability study may have progressed only a little.
- Could be only 3 batches measured up to 3 time points in the long-term storage.
- An accurate shelf-life estimation is critical for regulatory submissions as well as to assess the manufacturability of the drug.

Early Long-Term Stability Data

Batch

□ 1


△ 2


+ 3

If this is all the data we have, there is no way we can obtain a quality shelf-life estimate for excursion.

Estimate only based on long-term stability data = 0m

95% CI for mean already goes outside spec at time zero.

Accelerated stability study increases estimation precision and allows modeling for excursions

3 steps of analysis

- 1. Determine a good accelerated stability design
- 2. Estimate the mean at different conditions with credible intervals.
- 3. Incorporate excursions in the prediction of the shelf life.

1. Determine a good accelerated stability study design

Step 1. Determine a good accelerated stability design Choosing Optimal Stability Study Conditions and Time Points

Long-term Storage Condition

Temperature = 5C

Relative Humidity = 30%

Data from 3 batches at the time points of **0**, **3**, **6 months** will be available at the time of regulatory submission

Accelerated Conditions

Temperature: **15C**, **15C**, **35C**, **50C**

Relative Humidity: **5%**, **15%**, **50%**

Time Points: 0, 1, 2, 3, 4, 5, 6, 7, 14, 21, 28, 35, 42, 49, 56 Days

Assumption

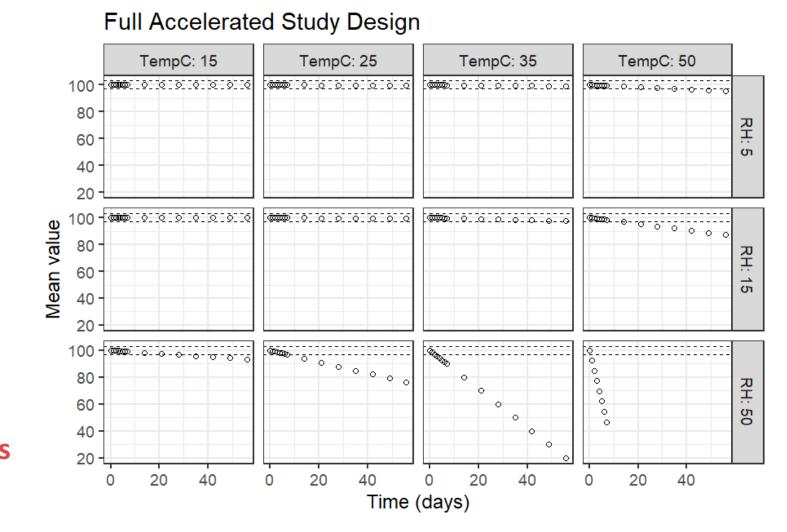
Data from each batch are assumed to follow a Zero-Order Kinetic Arrhenius Model

Full Accelerated Stability Study Design:

12 conditions×**15 time points** = **180** combinations

True parameters assumed

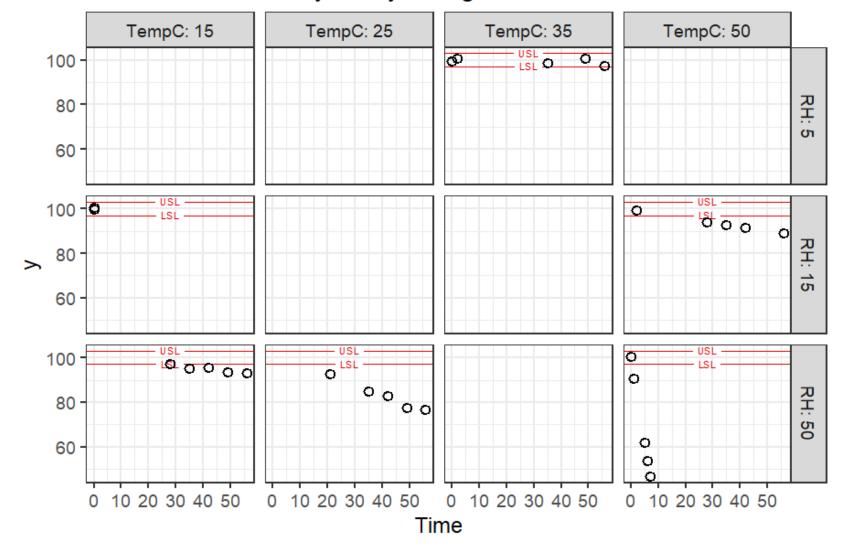
- μ_0 = initial content (t=0) = 100
- D = degradation = -0.004
- E_a = activation energy = e^{10}
- B = relative humidity term = 0.1


Specification Limit = [97, 103]

True Shelf Life (with no batch-to-batch variations) = 750 Days (About 24 months) (by solving 100 - 0.004×Time = 97)

Response is simulated:

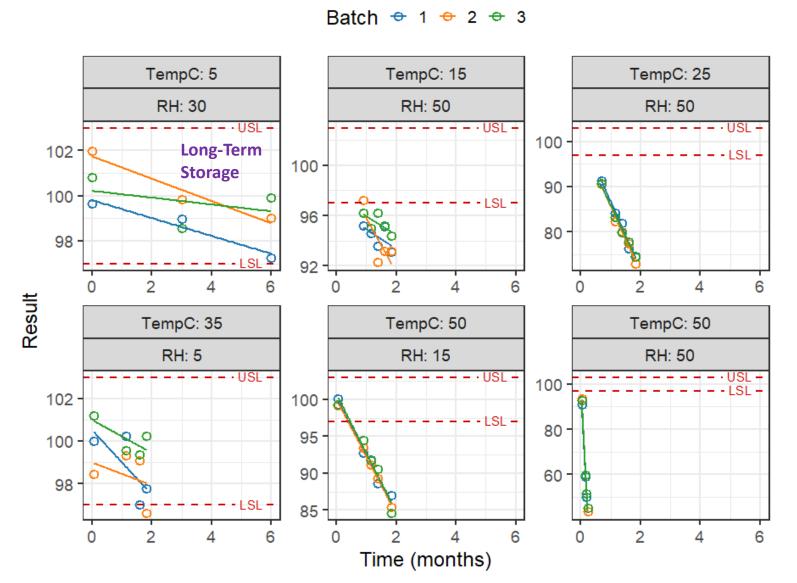
173 total combinations among 180


Need 6 conditions × 5 time points

Optimal Accelerated study design minimizing the prediction variance at the shelf life

Accelerated Stability Study Design

Design that minimizes


Objective:
$$Var(\widehat{\mu_0} + t_{SL} \times \widehat{D})$$

Same design applied to each batch

All data (Real-time and Accelerated) from 3 batches

Stability Data from 3 Batches

SD(batch effect on μ_0) = 0.3 SD(batch effect on K) = 0.2 SD(error) = 1

Time zero values are placed in the long-term data.

2. Estimate the mean at different conditions with credible intervals.

Arrhenius model

Zero-order was used in this presentation,

But same strategy can be applied to other models.

$$k_{\text{T,RH}} = \exp\left(\ln(A) - \frac{E_a}{RT} + B \cdot \text{RH}\right),$$

with parameters:

- ln(A), the natural logarithm of the pre-exponential factor A.
- E_a , the Arrhenius activation energy in kJ/mol.
- B, the moisture sensitivity of the relative humidity.
- R = 0.0083144 (kJ/mol/K), the gas constant.

Kinetic model	Differential form $f(\alpha)$	Integrated form $\alpha(t)$
Zero-order	1	kt
First-order	$1-\alpha$	$1 - \exp(-kt)$
Second-order	$(1 - \alpha)^2$	$1 - (1 + kt)^{-1}$
Third-order	$(1-\alpha)^3$	$1 - (1 + 2kt)^{-1/2}$
Power-law $(m = 1/2, 2, 3, 4)$	$m \cdot lpha^{(m-1)/m}$	$(kt)^m$
Avrami-Erofeyev ($m = 2, 3, 4$)	$m(1-\alpha)[-\ln(1-\alpha)]^{(m-1)/m}$	$1 - e^{-(kt)^m}$
Truncated Šesták-Berggren	$\alpha^m(1-\alpha)^n$	*

Chau, J., Altan, S., Burggraeve, A. et al. (2023)

Hierarchical Zero-Order Kinetic Arrhenius model

Ki

$$y_{ij} = (\mu_0 + \mathbf{b_{1i}}) + t_{j(i)} \times D \times \exp\left\{-\left(\frac{E_a}{1.987}\right)\left(\frac{1}{T_i} - \frac{1}{T_{Ref}}\right) + B(RH_i - RH_{Ref}) + \mathbf{b_{2i}}\right\} + e_{ij}$$

At Long-Term Storage :
$$y_{ij} = (\mu_0 + b_{1i}) + t_{j(i)} \times D \times \exp\{b_{2i}\} + e_{ij}$$

Parameters

- μ_0 = initial content (t=0)
- T_{Ref} = Long-Term Temp RH_{Ref} = Long Term RH

- D = degradation
- E_a = activation energy
- B = relative humidity term

Appropriate true parameter values should be chosen priori through discussions with scientists.

Data

- y_{ij} = Content (%) from i^{th} batch and j^{th} time point
- $t_{j(i)} = f^{th}$ day within f^{th} batch
- T_i = temperature (K) condition of ith batch
- RH_i = rel. humidity condition of i^{th} batch
- b_{1i} = batch intercept error term
- b_{2i} = batch slope error term

• e_{ij} = residual error term $\sim N(0, \sigma_e^2)$

Why Bayesian?

- Flexible modeling
- Exact, not approximate
- Opportunity to include prior information
- Allows for interpretable posterior inference
- Robustness when the data are sparse or of limited quality.

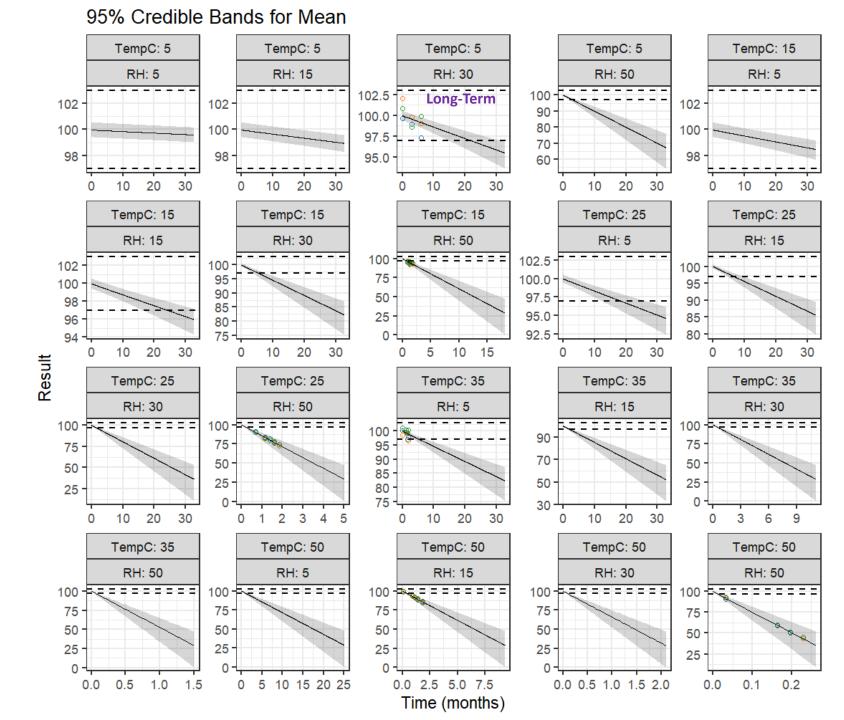
Chau, J., Altan, S., Burggraeve, A. et al.

A Bayesian Approach to Kinetic Modeling of Accelerated Stability Studies and Shelf Life Determination.

AAPS PharmSciTech 24, 250 (2023). https://doi.org/10.1208/s12249-023-02695-5

Bayesian Hierarchical Zero-Order Kinetic Arrhenius model

Vaguely Informative Priors, mimicking the early stage of drug development

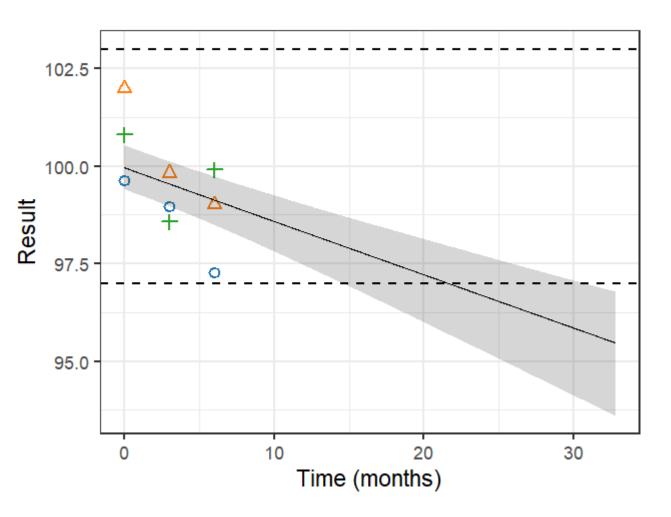

- $\mu_0 \sim N(100, 10)$
- $D \sim N(-0.0037, 1)$
- $\ln E_a \sim N(10.007, 10)$
- $B \sim N(0.1024, 10)$
- σ_e^2 ~ half-Cauchy(Scale = 0.1)

•
$$\begin{bmatrix} \sigma_{1b}^2 & \sigma_{12} \\ \sigma_{12} & \sigma_{2b}^2 \end{bmatrix}^{-1} \sim \text{Wishart} \left(Scale = \begin{bmatrix} \sigma_{1b}^2 & \sigma_{12} \\ \sigma_{12} & \sigma_{2b}^2 \end{bmatrix}, df = 3 \right)$$

These could be replaced with informative priors when available.

Predicted Stability Profiles

The design was able to estimate the mean with a 95% credible band at all conditions



Long-term storage zoomed in

Long-Term Storage without Excursions

Batch • 1 • 2 + 3

Shelf-life estimate based on long-term storage = **15 months**

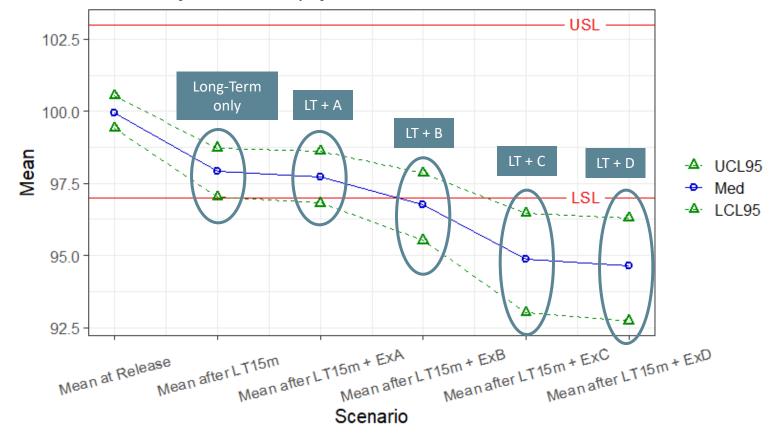
But..

What is shelf life with excursions?

3. Incorporate Excursions in the Prediction of the Shelf life.

Market-Specific Excursion scenarios should be identified

- Need to better understand the excursions and their effects on shelf life and internal release limit
- Use real-time and accelerated stability data to model the whole stability system and to predict effect of excursions


Market	Temperature	Relative Humidity (%)	Duration of Storage (months)
All: Long-Term	5C	30%	15m
Α	25C	5%	1.2m
В	35C	15%	0.8m
С	50C	15%	0.6m
D	35C	50%	0.1m

Can we say shelf life is 15 month for all these markets?

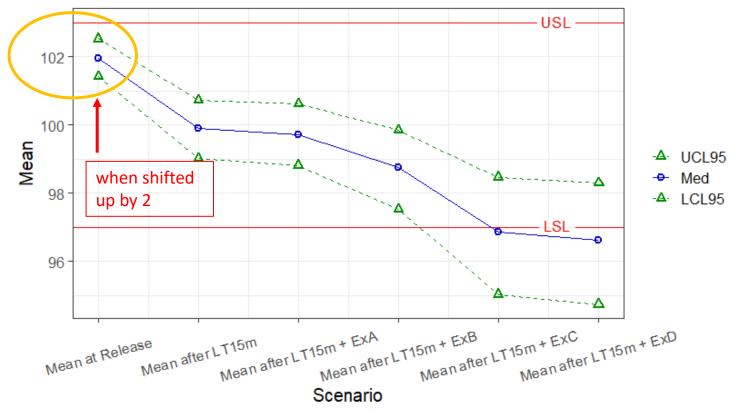
Predicted Mean after 15-month LT storage + excursions

95% Credible Interval for Mean by Excursion Scenario
Can we say 15 Month Expiry in the Container Label in All Markets A ~ D?

No market can claim 15-month expiry when excursions are likely to occur!

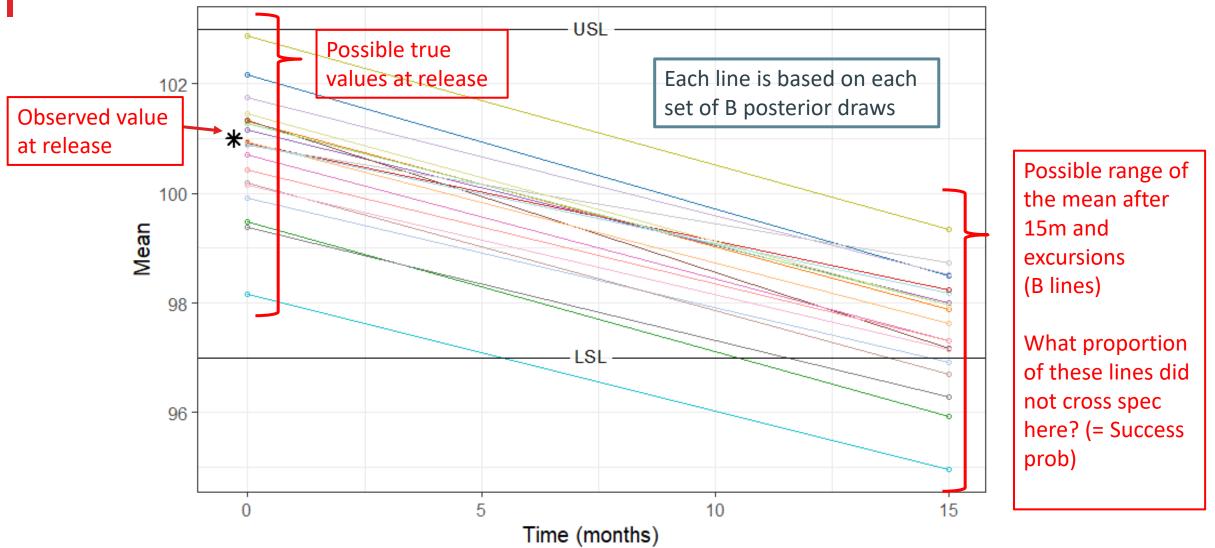
- Different expiry dates across markets?
- Or, different release limits across markets keeping the same expiry?

Setting different internal release limits



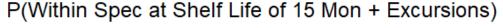
Only release high-enough batches!

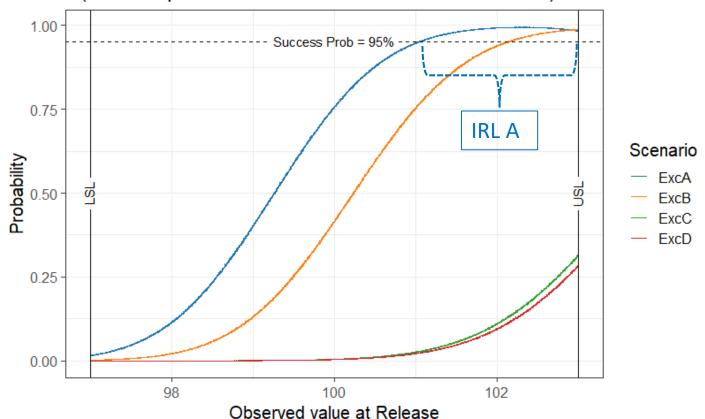
Set Internal Release Limits (IRL) for each market based on specific excursion series.


If a batch fails to fall within IRL for a market, it may still pass IRL for another market with less excursions.

95% Credible Interval for Mean by Excursion Scenario What if the batches were released at higher values?

Bayesian Internal Release Limits





Internal Release Limit (IRL): The limit for observations at Time 0 that gives a good probability (eg. 95%) of being within stability specification at the shelf life + Excursions.

Internal Release limits

To be within spec with 95% probability after 15m and excursions,

Market A:

Batches should be released between [101.0 103.0].

Market B:

Batches should be released between [102.1 103.0].

Markets C and D:

15-month shelf-life cannot be claimed.Or excursions should be strictly controlled.

Discussion

- Kinetic modeling of all conditions enhances shelf-life estimation
- As more data become available, estimation precision will improve → excursion effects can be re-assessed
- Patient and producer risk greatly reduced with refined shelf-life or shipping/storage instructions

Thank you!

Ji-young.kim@takeda.com

Better Health, Brighter Future

© 2023 Takeda Pharmaceutical Company Limited. All rights reserved.