Statistical Inference for Heterogeneous Treatment Effects Discovered by Generic Machine Learning in Randomized Experiments

Michael Lingzhi Li

Harvard University

June 16th, 2025

NCB Conference

Joint work with Kosuke Imai (Harvard University)

• Two methodological revolutions over the past few decades

- Two methodological revolutions over the past few decades
 - randomized experiments (field/lab/survey)

- Two methodological revolutions over the past few decades
 - randomized experiments (field/lab/survey)
 - 2 machine learning

- Two methodological revolutions over the past few decades
 - randomized experiments (field/lab/survey)
 - 2 machine learning
- Causal machine learning (causal ML)

- Two methodological revolutions over the past few decades
 - randomized experiments (field/lab/survey)
 - 2 machine learning
- Causal machine learning (causal ML)
 - estimation of heterogeneous treatment effects

- Two methodological revolutions over the past few decades
 - randomized experiments (field/lab/survey)
 - 2 machine learning
- Causal machine learning (causal ML)
 - estimation of heterogeneous treatment effects
 - ② development of individualized treatment rules

- Two methodological revolutions over the past few decades
 - randomized experiments (field/lab/survey)
 - 2 machine learning
- Causal machine learning (causal ML)
 - estimation of heterogeneous treatment effects
 - 4 development of individualized treatment rules
- Experimental evaluation of causal ML

- Two methodological revolutions over the past few decades
 - randomized experiments (field/lab/survey)
 - 2 machine learning
- Causal machine learning (causal ML)
 - estimation of heterogeneous treatment effects
 - ② development of individualized treatment rules
- Experimental evaluation of causal ML
 - ML algorithms may not work well in practice

- Two methodological revolutions over the past few decades
 - randomized experiments (field/lab/survey)
 - 2 machine learning
- Causal machine learning (causal ML)
 - estimation of heterogeneous treatment effects
 - ② development of individualized treatment rules
- Experimental evaluation of causal ML
 - ML algorithms may not work well in practice
 - assumption-free uncertainty quantification is essential

- Two methodological revolutions over the past few decades
 - randomized experiments (field/lab/survey)
 - 2 machine learning
- Causal machine learning (causal ML)
 - estimation of heterogeneous treatment effects
 - 2 development of individualized treatment rules
- Experimental evaluation of causal ML
 - ML algorithms may not work well in practice
 - 2 assumption-free uncertainty quantification is essential
- I will show how to experimentally evaluate heterogeneous treatment effects (HTEs) discovered by generic causal ML

- Two methodological revolutions over the past few decades
 - randomized experiments (field/lab/survey)
 - 2 machine learning
- Causal machine learning (causal ML)
 - estimation of heterogeneous treatment effects
 - 2 development of individualized treatment rules
- Experimental evaluation of causal ML
 - ML algorithms may not work well in practice
 - assumption-free uncertainty quantification is essential
- I will show how to experimentally evaluate heterogeneous treatment effects (HTEs) discovered by generic causal ML
- An important step before trusting and utilizing estimated HTEs

Scenario I: Estimate and evaluate with separate datasets

- Scenario I: Estimate and evaluate with separate datasets
 - choose an ML algorithm

- Scenario I: Estimate and evaluate with separate datasets
 - choose an ML algorithm
 - estimate the conditional average treatment effect (CATE) using an external (possibly observational) dataset and treat it as fixed

- Scenario I: Estimate and evaluate with separate datasets
 - choose an ML algorithm
 - estimate the conditional average treatment effect (CATE) using an external (possibly observational) dataset and treat it as fixed
 - with an experimental dataset

- Scenario I: Estimate and evaluate with separate datasets
 - choose an ML algorithm
 - estimate the conditional average treatment effect (CATE) using an external (possibly observational) dataset and treat it as fixed
 - with an experimental dataset
 - sort observations based on the estimated CATE

- Scenario I: Estimate and evaluate with separate datasets
 - choose an ML algorithm
 - estimate the conditional average treatment effect (CATE) using an external (possibly observational) dataset and treat it as fixed
 - with an experimental dataset
 - sort observations based on the estimated CATE
 - evaluate the group average treatment effect (GATES), for example, among those who are predicted by the ML algorithm to benefit from (or be harmed by) treatment the most

- Scenario I: Estimate and evaluate with separate datasets
 - choose an ML algorithm
 - estimate the conditional average treatment effect (CATE) using an external (possibly observational) dataset and treat it as fixed
 - with an experimental dataset
 - sort observations based on the estimated CATE
 - evaluate the group average treatment effect (GATES), for example, among those who are predicted by the ML algorithm to benefit from (or be harmed by) treatment the most
- Scenario II: Estimate and evaluate with the same experimental dataset

- Scenario I: Estimate and evaluate with separate datasets
 - choose an ML algorithm
 - estimate the conditional average treatment effect (CATE) using an external (possibly observational) dataset and treat it as fixed
 - with an experimental dataset
 - sort observations based on the estimated CATE
 - evaluate the group average treatment effect (GATES), for example, among those who are predicted by the ML algorithm to benefit from (or be harmed by) treatment the most
- Scenario II: Estimate and evaluate with the same experimental dataset
 - choose an ML algorithm

- Scenario I: Estimate and evaluate with separate datasets
 - choose an ML algorithm
 - estimate the conditional average treatment effect (CATE) using an external (possibly observational) dataset and treat it as fixed
 - with an experimental dataset
 - sort observations based on the estimated CATE
 - evaluate the group average treatment effect (GATES), for example, among those who are predicted by the ML algorithm to benefit from (or be harmed by) treatment the most
- Scenario II: Estimate and evaluate with the same experimental dataset
 - choose an ML algorithm
 - randomly split an experimental dataset into training and evaluation datasets

- Scenario I: Estimate and evaluate with separate datasets
 - choose an ML algorithm
 - estimate the conditional average treatment effect (CATE) using an external (possibly observational) dataset and treat it as fixed
 - with an experimental dataset
 - sort observations based on the estimated CATE
 - evaluate the group average treatment effect (GATES), for example, among those who are predicted by the ML algorithm to benefit from (or be harmed by) treatment the most
- Scenario II: Estimate and evaluate with the same experimental dataset
 - choose an ML algorithm
 - randomly split an experimental dataset into training and evaluation datasets
 - estimate CATE using the training dataset

- Scenario I: Estimate and evaluate with separate datasets
 - choose an ML algorithm
 - estimate the conditional average treatment effect (CATE) using an external (possibly observational) dataset and treat it as fixed
 - with an experimental dataset
 - sort observations based on the estimated CATE
 - evaluate the group average treatment effect (GATES), for example, among those who are predicted by the ML algorithm to benefit from (or be harmed by) treatment the most
- Scenario II: Estimate and evaluate with the same experimental dataset
 - choose an ML algorithm
 - randomly split an experimental dataset into training and evaluation datasets
 - estimate CATE using the training dataset
 - use the evaluation dataset and estimate the GATES

- Scenario I: Estimate and evaluate with separate datasets
 - choose an ML algorithm
 - estimate the conditional average treatment effect (CATE) using an external (possibly observational) dataset and treat it as fixed
 - with an experimental dataset
 - sort observations based on the estimated CATE
 - evaluate the group average treatment effect (GATES), for example, among those who are predicted by the ML algorithm to benefit from (or be harmed by) treatment the most
- Scenario II: Estimate and evaluate with the same experimental dataset
 - choose an ML algorithm
 - randomly split an experimental dataset into training and evaluation datasets
 - estimate CATE using the training dataset
 - use the evaluation dataset and estimate the GATES
 - flip the training and evaluation datasets and repeat

- Scenario I: Estimate and evaluate with separate datasets
 - choose an ML algorithm
 - estimate the conditional average treatment effect (CATE) using an external (possibly observational) dataset and treat it as fixed
 - with an experimental dataset
 - sort observations based on the estimated CATE
 - evaluate the group average treatment effect (GATES), for example, among those who are predicted by the ML algorithm to benefit from (or be harmed by) treatment the most
- Scenario II: Estimate and evaluate with the same experimental dataset
 - choose an ML algorithm
 - randomly split an experimental dataset into training and evaluation datasets
 - estimate CATE using the training dataset
 - use the evaluation dataset and estimate the GATES
 - flip the training and evaluation datasets and repeat
 - average the results and account for uncertainty due to random splits

Setup

- Notation:
 - n experimental units
 - $T_i \in \{0,1\}$: binary treatment
 - $Y_i(t)$ where $t \in \{0,1\}$: potential outcomes
 - $Y_i = Y_i(T_i)$: observed outcome
 - X_i : moderator of interest

Setup

- Notation:
 - n experimental units
 - $T_i \in \{0,1\}$: binary treatment
 - $Y_i(t)$ where $t \in \{0,1\}$: potential outcomes
 - $Y_i = Y_i(T_i)$: observed outcome
 - X_i: moderator of interest
- Assumptions:
 - no interference between units:

$$Y_i(T_1 = t_1, ..., T_n = t_n) = Y_i(T_i = t_i)$$

2 randomization of treatment assignment:

$$\{Y_i(1), Y_i(0)\} \perp \!\!\! \perp T_i$$

random sampling of units:

$$\{Y_i(1), Y_i(0)\} \stackrel{\text{i.i.d.}}{\sim} \mathcal{P}$$

• Two commonly used treatment prioritization scores

- Two commonly used treatment prioritization scores
 - Conditional average treatment effect (CATE):

$$\tau(\mathsf{x}) \ = \ \mathbb{E}(Y_i(1) - Y_i(0) \mid \mathsf{X}_i = \mathsf{x})$$

- Two commonly used treatment prioritization scores
 - Conditional average treatment effect (CATE):

$$\tau(\mathsf{x}) = \mathbb{E}(Y_i(1) - Y_i(0) \mid \mathsf{X}_i = \mathsf{x})$$

Baseline risk:

$$\lambda(x) = \mathbb{E}(Y_i(0) \mid X_i = x)$$

- Two commonly used treatment prioritization scores
 - Conditional average treatment effect (CATE):

$$\tau(\mathsf{x}) \ = \ \mathbb{E}(Y_i(1) - Y_i(0) \mid \mathsf{X}_i = \mathsf{x})$$

2 Baseline risk:

$$\lambda(\mathsf{x}) = \mathbb{E}(Y_i(0) \mid \mathsf{X}_i = \mathsf{x})$$

Estimate a score with ML algorithm using an external dataset

$$f: \mathcal{X} \longrightarrow \mathcal{S} \subset \mathbb{R}$$

- Two commonly used treatment prioritization scores
 - Conditional average treatment effect (CATE):

$$\tau(\mathsf{x}) \ = \ \mathbb{E}(Y_i(1) - Y_i(0) \mid \mathsf{X}_i = \mathsf{x})$$

2 Baseline risk:

$$\lambda(x) = \mathbb{E}(Y_i(0) \mid X_i = x)$$

Estimate a score with ML algorithm using an external dataset

$$f: \mathcal{X} \longrightarrow \mathcal{S} \subset \mathbb{R}$$

Group Average Treatment Effect (GATES; Chernozhukov et al. 2019)

$$\tau_k = \mathbb{E}(Y_i(1) - Y_i(0) \mid p_{k-1} \le S_i = f(X_i) < p_k)$$

for $k=1,2,\ldots,K$ where p_k is a quantile cutoff $(p_0=-\infty,\,p_K=\infty)$

• How can we make valid statistical inference for GATES without assuming that the scores are correctly estimated by ML algorithm?

- How can we make valid statistical inference for GATES without assuming that the scores are correctly estimated by ML algorithm?
- A natural difference-in-means estimator for GATES:

$$\hat{\tau}_{k} = \frac{K}{n_{1}} \sum_{i=1}^{n} Y_{i} T_{i} \hat{f}_{k}(X_{i}) - \frac{K}{n_{0}} \sum_{i=1}^{n} Y_{i} (1 - T_{i}) \hat{f}_{k}(X_{i}),$$

where $\hat{f}_k(\mathsf{X}_i) = 1\{S_i \geq \hat{p}_k(s)\} - 1\{S_i \geq \hat{p}_{k-1}\}$ is the group indicator

- How can we make valid statistical inference for GATES without assuming that the scores are correctly estimated by ML algorithm?
- A natural difference-in-means estimator for GATES:

$$\hat{\tau}_k = \frac{K}{n_1} \sum_{i=1}^n Y_i T_i \hat{f}_k(X_i) - \frac{K}{n_0} \sum_{i=1}^n Y_i (1 - T_i) \hat{f}_k(X_i),$$

where
$$\hat{f}_k(\mathsf{X}_i) = 1\{S_i \geq \hat{p}_k(s)\} - 1\{S_i \geq \hat{p}_{k-1}\}$$
 is the group indicator

 Bias bound and exact variance are derived, accounting for the estimation uncertainty of quantile cutoffs

- How can we make valid statistical inference for GATES without assuming that the scores are correctly estimated by ML algorithm?
- A natural difference-in-means estimator for GATES:

$$\hat{\tau}_k = \frac{K}{n_1} \sum_{i=1}^n Y_i T_i \hat{f}_k(X_i) - \frac{K}{n_0} \sum_{i=1}^n Y_i (1 - T_i) \hat{f}_k(X_i),$$

where
$$\hat{f}_k(\mathsf{X}_i) = 1\{S_i \geq \hat{p}_k(s)\} - 1\{S_i \geq \hat{p}_{k-1}\}$$
 is the group indicator

- Bias bound and exact variance are derived, accounting for the estimation uncertainty of quantile cutoffs
- Under mild regularity conditions (e.g., continuity of CATE at thresholds), the distribution of $\hat{\tau}_k$ is asymptotically normal

Nonparametric test of treatment effect homogeneity:

- Nonparametric test of treatment effect homogeneity:
 - Null hypothesis:

$$H_0: \ \tau_1=\tau_2=\cdots=\tau_K.$$

- Nonparametric test of treatment effect homogeneity:
 - Null hypothesis:

$$H_0: \ \tau_1 = \tau_2 = \cdots = \tau_K.$$

• Test statistic:

$$\hat{\boldsymbol{\tau}}^{\top} \boldsymbol{\Sigma}^{-1} \hat{\boldsymbol{\tau}} \stackrel{d}{\longrightarrow} \chi_{K}^{2}$$

where
$$\hat{\boldsymbol{\tau}} = (\hat{\tau}_1 - \hat{\tau}, \cdots, \hat{\tau}_K - \hat{\tau})^{\top}$$

- Nonparametric test of treatment effect homogeneity:
 - Null hypothesis:

$$H_0: \ \tau_1 = \tau_2 = \cdots = \tau_K.$$

• Test statistic:

$$\hat{\pmb{\tau}}^\top \pmb{\Sigma}^{-1} \hat{\pmb{\tau}} \ \stackrel{\textit{d}}{\longrightarrow} \ \chi_K^2$$
 where $\hat{\pmb{\tau}} = (\hat{\tau}_1 - \hat{\tau}, \cdots, \hat{\tau}_K - \hat{\tau})^\top$

Nonparametric test of rank-consistent treatment effect heterogeneity:

- Nonparametric test of treatment effect homogeneity:
 - Null hypothesis:

$$H_0: \ \tau_1 = \tau_2 = \cdots = \tau_K.$$

Test statistic:

$$\hat{\boldsymbol{\tau}}^{\top} \boldsymbol{\Sigma}^{-1} \hat{\boldsymbol{\tau}} \stackrel{d}{\longrightarrow} \chi_K^2$$

where
$$\hat{\boldsymbol{\tau}} = (\hat{\tau}_1 - \hat{\tau}, \cdots, \hat{\tau}_K - \hat{\tau})^{\top}$$

- Nonparametric test of rank-consistent treatment effect heterogeneity:
 - Null hypothesis:

$$H_0^*: \tau_1 \leq \tau_2 \leq \cdots \leq \tau_K.$$

- Nonparametric test of treatment effect homogeneity:
 - Null hypothesis:

$$H_0: \ \tau_1 = \tau_2 = \cdots = \tau_K.$$

Test statistic:

$$\hat{\boldsymbol{\tau}}^{\top} \boldsymbol{\Sigma}^{-1} \hat{\boldsymbol{\tau}} \stackrel{d}{\longrightarrow} \chi_K^2$$

where
$$\hat{\boldsymbol{\tau}} = (\hat{\tau}_1 - \hat{\tau}, \cdots, \hat{\tau}_K - \hat{\tau})^{\top}$$

- Nonparametric test of rank-consistent treatment effect heterogeneity:
 - Null hypothesis:

$$H_0^*: \tau_1 \leq \tau_2 \leq \cdots \leq \tau_K.$$

Test statistic:

$$(\hat{ au} - \mu^*(\hat{ au}))^ op \Sigma^{-1} \, (\hat{ au} - \mu^*(\hat{ au})) \stackrel{d}{\longrightarrow} ar{\chi}_{\mathcal{K}}^2.$$

where
$$\mu^*(\mathbf{x}) = \operatorname{argmin}_{\mu} \|\mu - \mathbf{x}\|_2^2$$
 subject to $\mu_1 \leq \mu_2 \leq \cdots \leq \mu_K$.

• Cross-fitting procedure:

- Cross-fitting procedure:
 - lacksquare randomly split the data into L folds: $\mathcal{Z}_1,\ldots,\mathcal{Z}_L$

- Cross-fitting procedure:
 - **1** randomly split the data into L folds: $\mathcal{Z}_1, \ldots, \mathcal{Z}_L$
 - 2 estimate the score using L-1 folds: $\hat{f}_{-\ell}$

- Cross-fitting procedure:
 - **1** randomly split the data into L folds: $\mathcal{Z}_1, \ldots, \mathcal{Z}_L$
 - 2 estimate the score using L-1 folds: $\hat{f}_{-\ell}$
 - ullet estimate GATES with the hold-out set: $\hat{ au}_k^{(\ell)}(\hat{f}_{-\ell})$

- Cross-fitting procedure:
 - **1** randomly split the data into L folds: $\mathcal{Z}_1, \ldots, \mathcal{Z}_L$
 - 2 estimate the score using L-1 folds: $\hat{f}_{-\ell}$
 - **3** estimate GATES with the hold-out set: $\hat{ au}_k^{(\ell)}(\hat{f}_{-\ell})$
 - lacktriangle repeat the process for each ℓ and average

$$\hat{\tau}_k(F; n-m) = \frac{1}{L} \sum_{\ell=1}^{L} \hat{\tau}_k^{(\ell)}(\hat{f}_{-\ell})$$

where $F: \mathcal{Z} \longrightarrow \mathcal{F}$ is a generic but stable ML algorithm with $\mathcal{Z}_{\mathsf{train}} \in \mathcal{Z}$ and $\hat{f}_{\mathcal{Z}_{\mathsf{train}}} = F(\mathcal{Z}_{\mathsf{train}}) \in \mathcal{F}$

- Cross-fitting procedure:
 - **1** randomly split the data into L folds: $\mathcal{Z}_1, \ldots, \mathcal{Z}_L$
 - 2 estimate the score using L-1 folds: $\hat{f}_{-\ell}$
 - **3** estimate GATES with the hold-out set: $\hat{ au}_k^{(\ell)}(\hat{f}_{-\ell})$
 - lacktriangle repeat the process for each ℓ and average

$$\hat{\tau}_k(F; n-m) = \frac{1}{L} \sum_{\ell=1}^{L} \hat{\tau}_k^{(\ell)}(\hat{f}_{-\ell})$$

where $F: \mathcal{Z} \longrightarrow \mathcal{F}$ is a generic but stable ML algorithm with $\mathcal{Z}_{\mathsf{train}} \in \mathcal{Z}$ and $\hat{f}_{\mathcal{Z}_{\mathsf{train}}} = F(\mathcal{Z}_{\mathsf{train}}) \in \mathcal{F}$

• Estimand: average performance of F

$$\tau_k(F; n-m) = \mathbb{E}_{\mathcal{Z}_{\text{train}}^{n-m}} [\mathbb{E}\{Y_i(1) - Y_i(0) \mid p_{k-1}(\hat{f}_{\mathcal{Z}_{\text{train}}^{n-m}}) \leq \hat{f}_{\mathcal{Z}_{\text{train}}^{n-m}}(X_i) < p_k(\hat{f}_{\mathcal{Z}_{\text{train}}^{n-m}})\}].$$

- Cross-fitting procedure:
 - **1** randomly split the data into L folds: $\mathcal{Z}_1, \ldots, \mathcal{Z}_L$
 - 2 estimate the score using L-1 folds: $\hat{f}_{-\ell}$
 - **3** estimate GATES with the hold-out set: $\hat{\tau}_k^{(\ell)}(\hat{f}_{-\ell})$
 - lacktriangle repeat the process for each ℓ and average

$$\hat{\tau}_k(F; n-m) = \frac{1}{L} \sum_{\ell=1}^{L} \hat{\tau}_k^{(\ell)}(\hat{f}_{-\ell})$$

where $F: \mathcal{Z} \longrightarrow \mathcal{F}$ is a generic but stable ML algorithm with $\mathcal{Z}_{\mathsf{train}} \in \mathcal{Z}$ and $\hat{f}_{\mathcal{Z}_{\mathsf{train}}} = F(\mathcal{Z}_{\mathsf{train}}) \in \mathcal{F}$

• Estimand: average performance of F

$$\tau_{k}(F; n-m) = \mathbb{E}_{\mathcal{Z}_{\text{train}}^{n-m}} [\mathbb{E}\{Y_{i}(1) - Y_{i}(0) \mid p_{k-1}(\hat{f}_{\mathcal{Z}_{\text{train}}^{n-m}}) \leq \hat{f}_{\mathcal{Z}_{\text{train}}^{n-m}}(X_{i}) < p_{k}(\hat{f}_{\mathcal{Z}_{\text{train}}^{n-m}})\}].$$

• Unbiasedness: $\mathbb{E}(\hat{\tau}_k(F; n-m)) = \tau_k(F; n-m)$

- Cross-fitting procedure:
 - **1** randomly split the data into L folds: $\mathcal{Z}_1, \ldots, \mathcal{Z}_L$
 - 2 estimate the score using L-1 folds: $\hat{f}_{-\ell}$
 - **3** estimate GATES with the hold-out set: $\hat{\tau}_k^{(\ell)}(\hat{f}_{-\ell})$
 - lacktriangle repeat the process for each ℓ and average

$$\hat{\tau}_k(F; n-m) = \frac{1}{L} \sum_{\ell=1}^{L} \hat{\tau}_k^{(\ell)}(\hat{f}_{-\ell})$$

where $F: \mathcal{Z} \longrightarrow \mathcal{F}$ is a generic but stable ML algorithm with $\mathcal{Z}_{\mathsf{train}} \in \mathcal{Z}$ and $\hat{f}_{\mathcal{Z}_{\mathsf{train}}} = F(\mathcal{Z}_{\mathsf{train}}) \in \mathcal{F}$

• Estimand: average performance of F

$$\tau_{k}(F; n-m) = \mathbb{E}_{\mathcal{Z}_{\text{train}}^{n-m}} [\mathbb{E}\{Y_{i}(1) - Y_{i}(0) \mid p_{k-1}(\hat{f}_{\mathcal{Z}_{\text{train}}^{n-m}}) \leq \hat{f}_{\mathcal{Z}_{\text{train}}^{n-m}}(X_{i}) < p_{k}(\hat{f}_{\mathcal{Z}_{\text{train}}^{n-m}})\}].$$

- Unbiasedness: $\mathbb{E}(\hat{\tau}_k(F; n-m)) = \tau_k(F; n-m)$
- Finite-sample (conservative) variance estimator

• A highly nonlinear specification from the 2016 ACIC competition

- A highly nonlinear specification from the 2016 ACIC competition
 - 58 covariates (3 categorical, 5 binary, 27 counts, 13 continuous)

- A highly nonlinear specification from the 2016 ACIC competition
 - 58 covariates (3 categorical, 5 binary, 27 counts, 13 continuous)
 - sample size: n = 4802

- A highly nonlinear specification from the 2016 ACIC competition
 - 58 covariates (3 categorical, 5 binary, 27 counts, 13 continuous)
 - sample size: n = 4802
 - use empirical distribution of X_i as true distribution

- A highly nonlinear specification from the 2016 ACIC competition
 - 58 covariates (3 categorical, 5 binary, 27 counts, 13 continuous)
 - sample size: n = 4802
 - use empirical distribution of X_i as true distribution

Machine learning algorithms

- A highly nonlinear specification from the 2016 ACIC competition
 - 58 covariates (3 categorical, 5 binary, 27 counts, 13 continuous)
 - sample size: n = 4802
 - use empirical distribution of X_i as true distribution

- Machine learning algorithms
 - Causal forest and Lasso

- A highly nonlinear specification from the 2016 ACIC competition
 - 58 covariates (3 categorical, 5 binary, 27 counts, 13 continuous)
 - sample size: n = 4802
 - use empirical distribution of X_i as true distribution

- Machine learning algorithms
 - Causal forest and Lasso
 - ullet L=5 and also use 5-fold cross validation for tuning

- A highly nonlinear specification from the 2016 ACIC competition
 - 58 covariates (3 categorical, 5 binary, 27 counts, 13 continuous)
 - sample size: n = 4802
 - use empirical distribution of X_i as true distribution

- Machine learning algorithms
 - Causal forest and Lasso
 - \bullet L=5 and also use 5-fold cross validation for tuning

• Fixed score (see the paper) and estimated one with cross-fitting

Simulation Results: Bias and Coverage

		n = 1	00	n = 500			n = 2500			
	bias	s.d.	coverage	bias	s.d.	coverage	bias	s.d.	coverage	
Causal Forest										
$\hat{\tau}_{1}$	-0.05	2.97	94.0%	-0.01	1.57	95.6%	-0.01	0.59	97.7%	
$\hat{ au}_2$	-0.06	2.58	95.9	-0.04	1.08	98.2	0.01	0.54	98.6	
$\hat{ au}_{3}$	-0.01	2.56	96.7	-0.05	1.06	97.7	0.02	0.47	98.1	
$\hat{ au}_{ extsf{4}}$	-0.12	2.87	97.4	0.05	1.15	97.9	-0.01	0.51	98.6	
$\hat{ au}_{5}$	0.14	3.45	94.1	0.00	1.62	96.0	-0.01	0.62	98.3	
LASSO										
$\hat{ au}_1$	-0.13	3.20	97.6%	-0.03	1.49	96.0%	-0.00	0.67	96.0%	
$\hat{ au}_2$	0.04	2.28	97.5	-0.07	1.03	97.9	-0.02	0.59	98.9	
$\hat{ au}_{3}$	-0.13	2.35	96.6	-0.02	1.00	97.9	0.04	0.49	97.5	
$\hat{ au}_{ extsf{4}}$	-0.00	2.54	96.8	0.04	1.17	96.8	0.03	0.64	97.2	
$\hat{ au}_{5}$	0.11	3.62	96.2	0.05	1.81	95.0	0.02	0.70	95.3	

• Reduction in standard errors compared with fixed F of the same evaluation size is more than 50% in some cases

Simulation Results: Size and Power of Tests

	n =	100	n =	500	n = 2500	
	rejection	median	rejection	median	rejection	median
	rate	<i>p</i> -value	rate	<i>p</i> -value	rate	<i>p</i> -value
Causal Forest						
Homogeneity	1.4%	0.79	4.6%	0.71	51.4%	0.04
Rank-consistency	1.4%	0.70	0.8%	0.85	0.0%	0.98
LASSO						
Homogeneity	0.6%	0.88	1.8%	0.85	9.0%	0.66
Rank-consistency	1.0%	0.72	0.6%	0.77	0.2%	0.89

• Heterogeneous but rank-consistent effects

Simulation Results: Size and Power of Tests

	n =	100	n =	500	n = 2500	
	rejection	median	rejection	median	rejection	median
	rate	<i>p</i> -value	rate	<i>p</i> -value	rate	<i>p</i> -value
Causal Forest						
Homogeneity	1.4%	0.79	4.6%	0.71	51.4%	0.04
Rank-consistency	1.4%	0.70	0.8%	0.85	0.0%	0.98
LASSO						
Homogeneity	0.6%	0.88	1.8%	0.85	9.0%	0.66
Rank-consistency	1.0%	0.72	0.6%	0.77	0.2%	0.89

- Heterogeneous but rank-consistent effects
- More conservative and lower power than fixed case

Simulation Results: Size and Power of Tests

	n =	100	n =	500	n = 2500	
	rejection	median	rejection	median	rejection	median
	rate	<i>p</i> -value	rate	<i>p</i> -value	rate	<i>p</i> -value
Causal Forest						
Homogeneity	1.4%	0.79	4.6%	0.71	51.4%	0.04
Rank-consistency	1.4%	0.70	0.8%	0.85	0.0%	0.98
LASSO						
Homogeneity	0.6%	0.88	1.8%	0.85	9.0%	0.66
Rank-consistency	1.0%	0.72	0.6%	0.77	0.2%	0.89

- Heterogeneous but rank-consistent effects
- More conservative and lower power than fixed case
- When sample size is large, cross-fitting yields higher power

 Randomized Intervention for Children with Vesicoureteral Reflux (RIVUR) Trial

- Randomized Intervention for Children with Vesicoureteral Reflux (RIVUR) Trial
- Double-blind RCT evaluating whether daily antimicrobial prophylaxis prevents recurrence of UTIs

- Randomized Intervention for Children with Vesicoureteral Reflux (RIVUR) Trial
- Double-blind RCT evaluating whether daily antimicrobial prophylaxis prevents recurrence of UTIs
- UTIs: urine flows backward from bladder to ureters/kidneys

- Randomized Intervention for Children with Vesicoureteral Reflux (RIVUR) Trial
- Double-blind RCT evaluating whether daily antimicrobial prophylaxis prevents recurrence of UTIs
- UTIs: urine flows backward from bladder to ureters/kidneys
- Data

- Randomized Intervention for Children with Vesicoureteral Reflux (RIVUR) Trial
- Double-blind RCT evaluating whether daily antimicrobial prophylaxis prevents recurrence of UTIs
- UTIs: urine flows backward from bladder to ureters/kidneys
- Data
 - Sample size: $n_1 = 302$, $n_0 = 305$ (total n = 607)

- Randomized Intervention for Children with Vesicoureteral Reflux (RIVUR) Trial
- Double-blind RCT evaluating whether daily antimicrobial prophylaxis prevents recurrence of UTIs
- UTIs: urine flows backward from bladder to ureters/kidneys
- Data
 - Sample size: $n_1 = 302$, $n_0 = 305$ (total n = 607)
 - \bullet Outcome: recurrence of UTIs at 2-year follow-up; we use -Y so positive effect = fewer UTIs

- Randomized Intervention for Children with Vesicoureteral Reflux (RIVUR) Trial
- Double-blind RCT evaluating whether daily antimicrobial prophylaxis prevents recurrence of UTIs
- UTIs: urine flows backward from bladder to ureters/kidneys
- Data
 - Sample size: $n_1 = 302$, $n_0 = 305$ (total n = 607)
 - Outcome: recurrence of UTIs at 2-year follow-up; we use -Y so positive effect = fewer UTIs
 - 7 pre-treatment covariates: demographics, tests, and prior conditions

- Randomized Intervention for Children with Vesicoureteral Reflux (RIVUR) Trial
- Double-blind RCT evaluating whether daily antimicrobial prophylaxis prevents recurrence of UTIs
- UTIs: urine flows backward from bladder to ureters/kidneys
- Data
 - Sample size: $n_1 = 302$, $n_0 = 305$ (total n = 607)
 - Outcome: recurrence of UTIs at 2-year follow-up; we use -Y so positive effect = fewer UTIs
 - 7 pre-treatment covariates: demographics, tests, and prior conditions
- Setup

- Randomized Intervention for Children with Vesicoureteral Reflux (RIVUR) Trial
- Double-blind RCT evaluating whether daily antimicrobial prophylaxis prevents recurrence of UTIs
- UTIs: urine flows backward from bladder to ureters/kidneys
- Data
 - Sample size: $n_1 = 302$, $n_0 = 305$ (total n = 607)
 - Outcome: recurrence of UTIs at 2-year follow-up; we use -Y so positive effect = fewer UTIs
 - 7 pre-treatment covariates: demographics, tests, and prior conditions
- Setup
 - ML algorithms: Causal Forest, BART, and LASSO

- Randomized Intervention for Children with Vesicoureteral Reflux (RIVUR) Trial
- Double-blind RCT evaluating whether daily antimicrobial prophylaxis prevents recurrence of UTIs
- UTIs: urine flows backward from bladder to ureters/kidneys
- Data
 - Sample size: $n_1 = 302$, $n_0 = 305$ (total n = 607)
 - Outcome: recurrence of UTIs at 2-year follow-up; we use -Y so positive effect = fewer UTIs
 - 7 pre-treatment covariates: demographics, tests, and prior conditions
- Setup
 - ML algorithms: Causal Forest, BART, and LASSO
 - Sample-splitting: 67% training, 33% evaluation

Empirical Application

- Randomized Intervention for Children with Vesicoureteral Reflux (RIVUR) Trial
- Double-blind RCT evaluating whether daily antimicrobial prophylaxis prevents recurrence of UTIs
- UTIs: urine flows backward from bladder to ureters/kidneys
- Data
 - Sample size: $n_1 = 302$, $n_0 = 305$ (total n = 607)
 - Outcome: recurrence of UTIs at 2-year follow-up; we use -Y so positive effect = fewer UTIs
 - 7 pre-treatment covariates: demographics, tests, and prior conditions
- Setup
 - ML algorithms: Causal Forest, BART, and LASSO
 - Sample-splitting: 67% training, 33% evaluation
 - Cross-fitting: 3 folds; tuning via 5-fold CV within training sets

GATES Estimates (in % Decrease in UTI Recurrence)

	$\hat{ au}_1~(\%)$	$\hat{ au}_2~(\%)$	$\hat{ au}_3~(\%)$	$\hat{ au}_4~(\%)$	$\hat{ au}_{5}$ (%)
Sample-splitting					
Causal Forest	-0.1	-0.0	9.9	9.9	9.9
	[-19.7, 19.5]	[-14.0, 13.9]	[-9.3, 29.2]	[-13.8, 33.6]	[-13.7, 33.5]
BART	-5.2	20.0	5.0	-5.1	14.8
	[-26.9, 16.6]	[1.4, 38.6]	[-4.7, 14.7]	[-22.1, 11.9]	[-13.2, 42.9]
LASSO	0.0	9.9	-0.1	9.9	9.9
	[-14.0, 13.9]	[-9.4, 29.3]	[-19.7, 19.5]	[-13.9, 33.7]	[-13.0, 32.8]
Cross-fitting					
Causal Forest	3.2	-5.1	-3.4	14.7	26.2
	[-8.7, 15.1]	[-26.5, 16.4]	[-22.2, 15.4]	[0.1, 29.2]	[7.2, 45.1]
BART	-1.8	-5.0	11.4	9.8	21.2
	[-15.5, 11.9]	[-13.4, 3.5]	[-10.3, 33.0]	[-5.7, 25.2]	[3.8, 38.6]
LASSO	-1.7	-1.5	3.2	11.4	21.2
	[-13.9, 10.4]	[-23.4, 26.4]	[-11.6, 17.9]	[-4.8, 27.7]	[-4.6, 47.0]

• Stat. significant effects found only with cross-fitting

GATES Estimates (in % Decrease in UTI Recurrence)

-					
	$\hat{ au}_1~(\%)$	$\hat{ au}_2~(\%)$	$\hat{ au}_3~(\%)$	$\hat{ au}_4~(\%)$	$\hat{ au}_5~(\%)$
Sample-splitting					
Causal Forest	-0.1	-0.0	9.9	9.9	9.9
	[-19.7, 19.5]	[-14.0, 13.9]	[-9.3, 29.2]	[-13.8, 33.6]	[-13.7, 33.5]
BART	-5.2	20.0	5.0	-5.1	14.8
	[-26.9, 16.6]	[1.4, 38.6]	[-4.7, 14.7]	[-22.1, 11.9]	[-13.2, 42.9]
LASSO	0.0	9.9	-0.1	9.9	9.9
	[-14.0, 13.9]	[-9.4, 29.3]	[-19.7, 19.5]	[-13.9, 33.7]	[-13.0, 32.8]
Cross-fitting					
Causal Forest	3.2	-5.1	-3.4	14.7	26.2
	[-8.7, 15.1]	[-26.5, 16.4]	[-22.2, 15.4]	[0.1, 29.2]	[7.2, 45.1]
BART	-1.8	-5.0	11.4	9.8	21.2
	[-15.5, 11.9]	[-13.4, 3.5]	[-10.3, 33.0]	[-5.7, 25.2]	[3.8, 38.6]
LASSO	-1.7	-1.5	3.2	11.4	21.2
	[-13.9, 10.4]	[-23.4, 26.4]	[-11.6, 17.9]	[-4.8, 27.7]	[-4.6, 47.0]

- Stat. significant effects found only with cross-fitting
- Causal Forest: 40% of patients benefit; BART: 20%

GATES Estimates (in % Decrease in UTI Recurrence)

	$\hat{ au}_1~(\%)$	$\hat{ au}_2~(\%)$	$\hat{ au}_3~(\%)$	$\hat{ au}_4~(\%)$	$\hat{ au}_5~(\%)$
Sample-splitting					
Causal Forest	-0.1	-0.0	9.9	9.9	9.9
	[-19.7, 19.5]	[-14.0, 13.9]	[-9.3, 29.2]	[-13.8, 33.6]	[-13.7, 33.5]
BART	-5.2	20.0	5.0	-5.1	14.8
	[-26.9, 16.6]	[1.4, 38.6]	[-4.7, 14.7]	[-22.1, 11.9]	[-13.2, 42.9]
LASSO	0.0	9.9	-0.1	9.9	9.9
	[-14.0, 13.9]	[-9.4, 29.3]	[-19.7, 19.5]	[-13.9, 33.7]	[-13.0, 32.8]
Cross-fitting					
Causal Forest	3.2	-5.1	-3.4	14.7	26.2
	[-8.7, 15.1]	[-26.5, 16.4]	[-22.2, 15.4]	[0.1, 29.2]	[7.2, 45.1]
BART	-1.8	-5.0	11.4	9.8	21.2
	[-15.5, 11.9]	[-13.4, 3.5]	[-10.3, 33.0]	[-5.7, 25.2]	[3.8, 38.6]
LASSO	-1.7	-1.5	3.2	11.4	21.2
	[-13.9, 10.4]	[-23.4, 26.4]	[-11.6, 17.9]	[-4.8, 27.7]	[-4.6, 47.0]

- Stat. significant effects found only with cross-fitting
- Causal Forest: 40% of patients benefit; BART: 20%
- LASSO fails to identify any group with significant benefit

Results of Hypothesis Tests

	Causal Forest		BART		LASSO	
	stat	<i>p</i> -value	stat	<i>p</i> -value	stat	<i>p</i> -value
Sample-splitting						
Homogeneous Treatment Effects	1.45	0.918	5.16	0.397	1.45	0.918
Rank-consistent Treatment Effects	0.00	0.990	3.78	0.222	0.511	0.845
Cross-fitting						
Homogeneous Treatment Effects	12.5	0.029	13.7	0.020	6.38	0.271
Rank-consistent Treatment Effects	0.97	0.727	0.17	0.920	0.01	0.993

• Causal Forest and BART reject homogeneity under cross-fitting

Results of Hypothesis Tests

	Causal Forest		BART		LASSO	
	stat	<i>p</i> -value	stat	<i>p</i> -value	stat	<i>p</i> -value
Sample-splitting						
Homogeneous Treatment Effects	1.45	0.918	5.16	0.397	1.45	0.918
Rank-consistent Treatment Effects	0.00	0.990	3.78	0.222	0.511	0.845
Cross-fitting						
Homogeneous Treatment Effects	12.5	0.029	13.7	0.020	6.38	0.271
Rank-consistent Treatment Effects	0.97	0.727	0.17	0.920	0.01	0.993

- Causal Forest and BART reject homogeneity under cross-fitting
- No algorithm rejects rank-consistency

• Causal machine learning (ML) is rapidly becoming popular

- Causal machine learning (ML) is rapidly becoming popular
 - estimation of heterogeneous treatment effects (HTEs)

- Causal machine learning (ML) is rapidly becoming popular
 - estimation of heterogeneous treatment effects (HTEs)
 - development of individualized treatment rules (ITRs)

- Causal machine learning (ML) is rapidly becoming popular
 - estimation of heterogeneous treatment effects (HTEs)
 - development of individualized treatment rules (ITRs)
- Safe deployment of causal ML requires uncertainty quantification

- Causal machine learning (ML) is rapidly becoming popular
 - estimation of heterogeneous treatment effects (HTEs)
 - development of individualized treatment rules (ITRs)
- Safe deployment of causal ML requires uncertainty quantification
 - experimental evaluation of HTEs and ITRs

- Causal machine learning (ML) is rapidly becoming popular
 - estimation of heterogeneous treatment effects (HTEs)
 - development of individualized treatment rules (ITRs)
- Safe deployment of causal ML requires uncertainty quantification
 - experimental evaluation of HTEs and ITRs
 - no modeling assumption

- Causal machine learning (ML) is rapidly becoming popular
 - estimation of heterogeneous treatment effects (HTEs)
 - development of individualized treatment rules (ITRs)
- Safe deployment of causal ML requires uncertainty quantification
 - experimental evaluation of HTEs and ITRs
 - no modeling assumption
 - no resampling (computationally efficient)

- Causal machine learning (ML) is rapidly becoming popular
 - estimation of heterogeneous treatment effects (HTEs)
 - development of individualized treatment rules (ITRs)
- Safe deployment of causal ML requires uncertainty quantification
 - experimental evaluation of HTEs and ITRs
 - no modeling assumption
 - no resampling (computationally efficient)
 - applicable to any complex causal ML algorithms

- Causal machine learning (ML) is rapidly becoming popular
 - estimation of heterogeneous treatment effects (HTEs)
 - development of individualized treatment rules (ITRs)
- Safe deployment of causal ML requires uncertainty quantification
 - experimental evaluation of HTEs and ITRs
 - no modeling assumption
 - no resampling (computationally efficient)
 - applicable to any complex causal ML algorithms
 - good small sample performance

- Causal machine learning (ML) is rapidly becoming popular
 - estimation of heterogeneous treatment effects (HTEs)
 - development of individualized treatment rules (ITRs)
- Safe deployment of causal ML requires uncertainty quantification
 - experimental evaluation of HTEs and ITRs
 - no modeling assumption
 - no resampling (computationally efficient)
 - applicable to any complex causal ML algorithms
 - good small sample performance
- Open source software: evalITR: Evaluating Individualized Treatment Rules at CRAN https://CRAN.R-project.org/package=evalITR

- Causal machine learning (ML) is rapidly becoming popular
 - estimation of heterogeneous treatment effects (HTEs)
 - development of individualized treatment rules (ITRs)
- Safe deployment of causal ML requires uncertainty quantification
 - experimental evaluation of HTEs and ITRs
 - no modeling assumption
 - no resampling (computationally efficient)
 - applicable to any complex causal ML algorithms
 - good small sample performance
- Open source software: evalITR: Evaluating Individualized Treatment Rules at CRAN https://CRAN.R-project.org/package=evalITR
- More information: https://www.michaellz.com/machine-learning-inference