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Motivation

Two methodological revolutions over the past few decades

1 randomized experiments (field/lab/survey)
2 machine learning

Causal machine learning (causal ML)

1 estimation of heterogeneous treatment effects
2 development of individualized treatment rules

Experimental evaluation of causal ML

1 ML algorithms may not work well in practice
2 assumption-free uncertainty quantification is essential

I will show how to experimentally evaluate heterogeneous treatment
effects (HTEs) discovered by generic causal ML
An important step before trusting and utilizing estimated HTEs

2 / 15



Motivation

Two methodological revolutions over the past few decades
1 randomized experiments (field/lab/survey)

2 machine learning

Causal machine learning (causal ML)

1 estimation of heterogeneous treatment effects
2 development of individualized treatment rules

Experimental evaluation of causal ML

1 ML algorithms may not work well in practice
2 assumption-free uncertainty quantification is essential

I will show how to experimentally evaluate heterogeneous treatment
effects (HTEs) discovered by generic causal ML
An important step before trusting and utilizing estimated HTEs

2 / 15



Motivation

Two methodological revolutions over the past few decades
1 randomized experiments (field/lab/survey)
2 machine learning

Causal machine learning (causal ML)

1 estimation of heterogeneous treatment effects
2 development of individualized treatment rules

Experimental evaluation of causal ML

1 ML algorithms may not work well in practice
2 assumption-free uncertainty quantification is essential

I will show how to experimentally evaluate heterogeneous treatment
effects (HTEs) discovered by generic causal ML
An important step before trusting and utilizing estimated HTEs

2 / 15



Motivation

Two methodological revolutions over the past few decades
1 randomized experiments (field/lab/survey)
2 machine learning

Causal machine learning (causal ML)

1 estimation of heterogeneous treatment effects
2 development of individualized treatment rules

Experimental evaluation of causal ML

1 ML algorithms may not work well in practice
2 assumption-free uncertainty quantification is essential

I will show how to experimentally evaluate heterogeneous treatment
effects (HTEs) discovered by generic causal ML
An important step before trusting and utilizing estimated HTEs

2 / 15



Motivation

Two methodological revolutions over the past few decades
1 randomized experiments (field/lab/survey)
2 machine learning

Causal machine learning (causal ML)
1 estimation of heterogeneous treatment effects

2 development of individualized treatment rules

Experimental evaluation of causal ML

1 ML algorithms may not work well in practice
2 assumption-free uncertainty quantification is essential

I will show how to experimentally evaluate heterogeneous treatment
effects (HTEs) discovered by generic causal ML
An important step before trusting and utilizing estimated HTEs

2 / 15



Motivation

Two methodological revolutions over the past few decades
1 randomized experiments (field/lab/survey)
2 machine learning

Causal machine learning (causal ML)
1 estimation of heterogeneous treatment effects
2 development of individualized treatment rules

Experimental evaluation of causal ML

1 ML algorithms may not work well in practice
2 assumption-free uncertainty quantification is essential

I will show how to experimentally evaluate heterogeneous treatment
effects (HTEs) discovered by generic causal ML
An important step before trusting and utilizing estimated HTEs

2 / 15



Motivation

Two methodological revolutions over the past few decades
1 randomized experiments (field/lab/survey)
2 machine learning

Causal machine learning (causal ML)
1 estimation of heterogeneous treatment effects
2 development of individualized treatment rules

Experimental evaluation of causal ML

1 ML algorithms may not work well in practice
2 assumption-free uncertainty quantification is essential

I will show how to experimentally evaluate heterogeneous treatment
effects (HTEs) discovered by generic causal ML
An important step before trusting and utilizing estimated HTEs

2 / 15



Motivation

Two methodological revolutions over the past few decades
1 randomized experiments (field/lab/survey)
2 machine learning

Causal machine learning (causal ML)
1 estimation of heterogeneous treatment effects
2 development of individualized treatment rules

Experimental evaluation of causal ML
1 ML algorithms may not work well in practice

2 assumption-free uncertainty quantification is essential

I will show how to experimentally evaluate heterogeneous treatment
effects (HTEs) discovered by generic causal ML
An important step before trusting and utilizing estimated HTEs

2 / 15



Motivation

Two methodological revolutions over the past few decades
1 randomized experiments (field/lab/survey)
2 machine learning

Causal machine learning (causal ML)
1 estimation of heterogeneous treatment effects
2 development of individualized treatment rules

Experimental evaluation of causal ML
1 ML algorithms may not work well in practice
2 assumption-free uncertainty quantification is essential

I will show how to experimentally evaluate heterogeneous treatment
effects (HTEs) discovered by generic causal ML
An important step before trusting and utilizing estimated HTEs

2 / 15



Motivation

Two methodological revolutions over the past few decades
1 randomized experiments (field/lab/survey)
2 machine learning

Causal machine learning (causal ML)
1 estimation of heterogeneous treatment effects
2 development of individualized treatment rules

Experimental evaluation of causal ML
1 ML algorithms may not work well in practice
2 assumption-free uncertainty quantification is essential

I will show how to experimentally evaluate heterogeneous treatment
effects (HTEs) discovered by generic causal ML

An important step before trusting and utilizing estimated HTEs

2 / 15



Motivation

Two methodological revolutions over the past few decades
1 randomized experiments (field/lab/survey)
2 machine learning

Causal machine learning (causal ML)
1 estimation of heterogeneous treatment effects
2 development of individualized treatment rules

Experimental evaluation of causal ML
1 ML algorithms may not work well in practice
2 assumption-free uncertainty quantification is essential

I will show how to experimentally evaluate heterogeneous treatment
effects (HTEs) discovered by generic causal ML
An important step before trusting and utilizing estimated HTEs

2 / 15



Overview of the Proposed Methodology

1 Scenario I: Estimate and evaluate with separate datasets

choose an ML algorithm
estimate the conditional average treatment effect (CATE) using an
external (possibly observational) dataset and treat it as fixed
with an experimental dataset

sort observations based on the estimated CATE
evaluate the group average treatment effect (GATES), for example,
among those who are predicted by the ML algorithm to benefit from
(or be harmed by) treatment the most

2 Scenario II: Estimate and evaluate with the same experimental dataset

choose an ML algorithm
randomly split an experimental dataset into training and evaluation
datasets
estimate CATE using the training dataset
use the evaluation dataset and estimate the GATES
flip the training and evaluation datasets and repeat
average the results and account for uncertainty due to random splits
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Setup

Notation:
n experimental units
Ti ∈ {0, 1}: binary treatment
Yi (t) where t ∈ {0, 1}: potential outcomes
Yi = Yi (Ti ): observed outcome
Xi : moderator of interest

Assumptions:

1 no interference between units:

Yi (T1 = t1, . . . ,Tn = tn) = Yi (Ti = ti )

2 randomization of treatment assignment:

{Yi (1),Yi (0)}⊥⊥Ti

3 random sampling of units:

{Yi (1),Yi (0)}
i.i.d.∼ P
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Exploration of Heterogeneous Treatment Effects

Two commonly used treatment prioritization scores

1 Conditional average treatment effect (CATE):

τ(x) = E(Yi (1)− Yi (0) | Xi = x)

2 Baseline risk:
λ(x) = E(Yi (0) | Xi = x)

Estimate a score with ML algorithm using an external dataset

f : X −→ S ⊂ R

Group Average Treatment Effect (GATES; Chernozhukov et al. 2019)

τk = E(Yi (1)− Yi (0) | pk−1 ≤ Si = f (Xi ) < pk)

for k = 1, 2, . . . ,K where pk is a quantile cutoff (p0 = −∞, pK = ∞)
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Statistical Inference for GATES

How can we make valid statistical inference for GATES without
assuming that the scores are correctly estimated by ML algorithm?

A natural difference-in-means estimator for GATES:

τ̂k =
K

n1

n∑
i=1

YiTi f̂k(Xi )−
K

n0

n∑
i=1

Yi (1 − Ti )f̂k(Xi ),

where f̂k(Xi ) = 1{Si ≥ p̂k(s)} − 1{Si ≥ p̂k−1} is the group indicator

Bias bound and exact variance are derived, accounting for the
estimation uncertainty of quantile cutoffs
Under mild regularity conditions (e.g., continuity of CATE at
thresholds), the distribution of τ̂k is asymptotically normal
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Statistical Hypothesis Tests for Subgroups

1 Nonparametric test of treatment effect homogeneity:

Null hypothesis:
H0 : τ1 = τ2 = · · · = τK .

Test statistic:
τ̂⊤Σ−1τ̂

d−→ χ2
K

where τ̂ = (τ̂1 − τ̂ , · · · , τ̂K − τ̂)⊤

2 Nonparametric test of rank-consistent treatment effect heterogeneity:

Null hypothesis:
H∗

0 : τ1 ≤ τ2 ≤ · · · ≤ τK .

Test statistic:

(τ̂ − µ∗(τ̂ ))⊤ Σ−1 (τ̂ − µ∗(τ̂ ))
d−→ χ̄2

K .

where µ∗(x) = argminµ ∥µ− x∥2
2 subject to µ1 ≤ µ2 ≤ · · · ≤ µK .
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Estimation and Evaluation Using the Same Data

Cross-fitting procedure:

1 randomly split the data into L folds: Z1, . . . ,ZL

2 estimate the score using L− 1 folds: f̂−ℓ

3 estimate GATES with the hold-out set: τ̂
(ℓ)
k (f̂−ℓ)

4 repeat the process for each ℓ and average

τ̂k(F ; n −m) =
1
L

L∑
ℓ=1

τ̂
(ℓ)
k (f̂−ℓ)

where F : Z −→ F is a generic but stable ML algorithm with
Ztrain ∈ Z and f̂Ztrain = F (Ztrain) ∈ F

Estimand: average performance of F

τk(F ; n −m)

= EZn−m
train

[E{Yi (1)− Yi (0) | pk−1(f̂Zn−m
train

) ≤ f̂Zn−m
train

(Xi ) < pk(f̂Zn−m
train

)}].

Unbiasedness: E(τ̂k(F ; n −m)) = τk(F ; n −m)

Finite-sample (conservative) variance estimator
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Simulation Study

A highly nonlinear specification from the 2016 ACIC competition

58 covariates (3 categorical, 5 binary, 27 counts, 13 continuous)
sample size: n = 4802
use empirical distribution of Xi as true distribution

Machine learning algorithms

Causal forest and Lasso
L = 5 and also use 5-fold cross validation for tuning

Fixed score (see the paper) and estimated one with cross-fitting
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Simulation Results: Bias and Coverage

n = 100 n = 500 n = 2500
bias s.d. coverage bias s.d. coverage bias s.d. coverage

Causal Forest
τ̂1 −0.05 2.97 94.0% −0.01 1.57 95.6% −0.01 0.59 97.7%
τ̂2 −0.06 2.58 95.9 −0.04 1.08 98.2 0.01 0.54 98.6
τ̂3 −0.01 2.56 96.7 −0.05 1.06 97.7 0.02 0.47 98.1
τ̂4 −0.12 2.87 97.4 0.05 1.15 97.9 −0.01 0.51 98.6
τ̂5 0.14 3.45 94.1 0.00 1.62 96.0 −0.01 0.62 98.3
LASSO
τ̂1 −0.13 3.20 97.6% −0.03 1.49 96.0% −0.00 0.67 96.0%
τ̂2 0.04 2.28 97.5 −0.07 1.03 97.9 −0.02 0.59 98.9
τ̂3 −0.13 2.35 96.6 −0.02 1.00 97.9 0.04 0.49 97.5
τ̂4 −0.00 2.54 96.8 0.04 1.17 96.8 0.03 0.64 97.2
τ̂5 0.11 3.62 96.2 0.05 1.81 95.0 0.02 0.70 95.3

Reduction in standard errors compared with fixed F of the same
evaluation size is more than 50% in some cases
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Simulation Results: Size and Power of Tests

n = 100 n = 500 n = 2500
rejection median rejection median rejection median

rate p-value rate p-value rate p-value
Causal Forest
Homogeneity 1.4% 0.79 4.6% 0.71 51.4% 0.04
Rank-consistency 1.4% 0.70 0.8% 0.85 0.0% 0.98
LASSO
Homogeneity 0.6% 0.88 1.8% 0.85 9.0% 0.66
Rank-consistency 1.0% 0.72 0.6% 0.77 0.2% 0.89

Heterogeneous but rank-consistent effects

More conservative and lower power than fixed case
When sample size is large, cross-fitting yields higher power
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Empirical Application

Randomized Intervention for Children with Vesicoureteral Reflux
(RIVUR) Trial

Double-blind RCT evaluating whether daily antimicrobial prophylaxis
prevents recurrence of UTIs
UTIs: urine flows backward from bladder to ureters/kidneys

Data

Sample size: n1 = 302, n0 = 305 (total n = 607)
Outcome: recurrence of UTIs at 2-year follow-up; we use −Y so
positive effect = fewer UTIs
7 pre-treatment covariates: demographics, tests, and prior conditions

Setup

ML algorithms: Causal Forest, BART, and LASSO
Sample-splitting: 67% training, 33% evaluation
Cross-fitting: 3 folds; tuning via 5-fold CV within training sets
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GATES Estimates (in % Decrease in UTI Recurrence)

τ̂1 (%) τ̂2 (%) τ̂3 (%) τ̂4 (%) τ̂5 (%)
Sample-splitting

Causal Forest −0.1 −0.0 9.9 9.9 9.9
[−19.7, 19.5] [−14.0, 13.9] [−9.3, 29.2] [−13.8, 33.6] [−13.7, 33.5]

BART −5.2 20.0 5.0 −5.1 14.8
[−26.9, 16.6] [1.4, 38.6] [−4.7, 14.7] [−22.1, 11.9] [−13.2, 42.9]

LASSO 0.0 9.9 −0.1 9.9 9.9
[−14.0, 13.9] [−9.4, 29.3] [−19.7, 19.5] [−13.9, 33.7] [−13.0, 32.8]

Cross-fitting
Causal Forest 3.2 −5.1 −3.4 14.7 26.2

[−8.7, 15.1] [−26.5, 16.4] [−22.2, 15.4] [0.1, 29.2] [7.2, 45.1]
BART −1.8 −5.0 11.4 9.8 21.2

[−15.5, 11.9] [−13.4, 3.5] [−10.3, 33.0] [−5.7, 25.2] [3.8, 38.6]
LASSO −1.7 −1.5 3.2 11.4 21.2

[−13.9, 10.4] [−23.4, 26.4] [−11.6, 17.9] [−4.8, 27.7] [−4.6, 47.0]

Stat. significant effects found only with cross-fitting

Causal Forest: 40% of patients benefit; BART: 20%
LASSO fails to identify any group with significant benefit
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Results of Hypothesis Tests

Causal Forest BART LASSO
stat p-value stat p-value stat p-value

Sample-splitting
Homogeneous Treatment Effects 1.45 0.918 5.16 0.397 1.45 0.918
Rank-consistent Treatment Effects 0.00 0.990 3.78 0.222 0.511 0.845
Cross-fitting
Homogeneous Treatment Effects 12.5 0.029 13.7 0.020 6.38 0.271
Rank-consistent Treatment Effects 0.97 0.727 0.17 0.920 0.01 0.993

Causal Forest and BART reject homogeneity under cross-fitting

No algorithm rejects rank-consistency
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Concluding Remarks

Causal machine learning (ML) is rapidly becoming popular

estimation of heterogeneous treatment effects (HTEs)
development of individualized treatment rules (ITRs)

Safe deployment of causal ML requires uncertainty quantification

experimental evaluation of HTEs and ITRs
no modeling assumption
no resampling (computationally efficient)
applicable to any complex causal ML algorithms
good small sample performance

Open source software: evalITR: Evaluating Individualized Treatment
Rules at CRAN https://CRAN.R-project.org/package=evalITR

More information:
https://www.michaellz.com/machine-learning-inference
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