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Motivation

@ Two methodological revolutions over the past few decades

@ randomized experiments (field/lab/survey)
@ machine learning

e Causal machine learning (causal ML)

@ estimation of heterogeneous treatment effects
@ development of individualized treatment rules

Experimental evaluation of causal ML

© ML algorithms may not work well in practice
@ assumption-free uncertainty quantification is essential

@ | will show how to experimentally evaluate heterogeneous treatment
effects (HTEs) discovered by generic causal ML

An important step before trusting and utilizing estimated HTEs

2/15



Overview of the Proposed Methodology

@ Scenario |: Estimate and evaluate with separate datasets

3/15



Overview of the Proposed Methodology

@ Scenario |: Estimate and evaluate with separate datasets
e choose an ML algorithm

3/15



Overview of the Proposed Methodology

@ Scenario |: Estimate and evaluate with separate datasets

e choose an ML algorithm
o estimate the conditional average treatment effect (CATE) using an
external (possibly observational) dataset and treat it as fixed

3/15



Overview of the Proposed Methodology

@ Scenario |: Estimate and evaluate with separate datasets

choose an ML algorithm

estimate the conditional average treatment effect (CATE) using an
external (possibly observational) dataset and treat it as fixed

with an experimental dataset

3/15



Overview of the Proposed Methodology

@ Scenario |: Estimate and evaluate with separate datasets

choose an ML algorithm
estimate the conditional average treatment effect (CATE) using an
external (possibly observational) dataset and treat it as fixed
with an experimental dataset
@ sort observations based on the estimated CATE

3/15



Overview of the Proposed Methodology

@ Scenario |: Estimate and evaluate with separate datasets
e choose an ML algorithm
o estimate the conditional average treatment effect (CATE) using an
external (possibly observational) dataset and treat it as fixed
e with an experimental dataset
@ sort observations based on the estimated CATE
o evaluate the group average treatment effect (GATES), for example,
among those who are predicted by the ML algorithm to benefit from
(or be harmed by) treatment the most

3/15



Overview of the Proposed Methodology

@ Scenario |: Estimate and evaluate with separate datasets
e choose an ML algorithm
o estimate the conditional average treatment effect (CATE) using an
external (possibly observational) dataset and treat it as fixed
e with an experimental dataset
@ sort observations based on the estimated CATE
o evaluate the group average treatment effect (GATES), for example,
among those who are predicted by the ML algorithm to benefit from
(or be harmed by) treatment the most

@ Scenario |l: Estimate and evaluate with the same experimental dataset

3/15



Overview of the Proposed Methodology

@ Scenario |: Estimate and evaluate with separate datasets
e choose an ML algorithm
o estimate the conditional average treatment effect (CATE) using an

external (possibly observational) dataset and treat it as fixed
e with an experimental dataset

@ sort observations based on the estimated CATE

o evaluate the group average treatment effect (GATES), for example,
among those who are predicted by the ML algorithm to benefit from
(or be harmed by) treatment the most

@ Scenario |l: Estimate and evaluate with the same experimental dataset
e choose an ML algorithm

3/15



Overview of the Proposed Methodology

@ Scenario |: Estimate and evaluate with separate datasets
e choose an ML algorithm
o estimate the conditional average treatment effect (CATE) using an

external (possibly observational) dataset and treat it as fixed
e with an experimental dataset

@ sort observations based on the estimated CATE

o evaluate the group average treatment effect (GATES), for example,
among those who are predicted by the ML algorithm to benefit from
(or be harmed by) treatment the most

@ Scenario |l: Estimate and evaluate with the same experimental dataset
e choose an ML algorithm

e randomly split an experimental dataset into training and evaluation
datasets

3/15



Overview of the Proposed Methodology

@ Scenario |: Estimate and evaluate with separate datasets

e choose an ML algorithm
o estimate the conditional average treatment effect (CATE) using an
external (possibly observational) dataset and treat it as fixed
o with an experimental dataset
@ sort observations based on the estimated CATE
o evaluate the group average treatment effect (GATES), for example,
among those who are predicted by the ML algorithm to benefit from
(or be harmed by) treatment the most

@ Scenario |l: Estimate and evaluate with the same experimental dataset
e choose an ML algorithm
e randomly split an experimental dataset into training and evaluation
datasets
e estimate CATE using the training dataset

3/15



Overview of the Proposed Methodology

@ Scenario |: Estimate and evaluate with separate datasets
e choose an ML algorithm
o estimate the conditional average treatment effect (CATE) using an
external (possibly observational) dataset and treat it as fixed
e with an experimental dataset
@ sort observations based on the estimated CATE
o evaluate the group average treatment effect (GATES), for example,
among those who are predicted by the ML algorithm to benefit from
(or be harmed by) treatment the most

@ Scenario |l: Estimate and evaluate with the same experimental dataset
e choose an ML algorithm
e randomly split an experimental dataset into training and evaluation
datasets
e estimate CATE using the training dataset
o use the evaluation dataset and estimate the GATES

3/15



Overview of the Proposed Methodology

@ Scenario |: Estimate and evaluate with separate datasets
e choose an ML algorithm
o estimate the conditional average treatment effect (CATE) using an
external (possibly observational) dataset and treat it as fixed
e with an experimental dataset
@ sort observations based on the estimated CATE
o evaluate the group average treatment effect (GATES), for example,

among those who are predicted by the ML algorithm to benefit from
(or be harmed by) treatment the most

@ Scenario |l: Estimate and evaluate with the same experimental dataset
e choose an ML algorithm
e randomly split an experimental dataset into training and evaluation
datasets
e estimate CATE using the training dataset
o use the evaluation dataset and estimate the GATES
o flip the training and evaluation datasets and repeat

3/15



Overview of the Proposed Methodology

@ Scenario |: Estimate and evaluate with separate datasets

choose an ML algorithm
estimate the conditional average treatment effect (CATE) using an
external (possibly observational) dataset and treat it as fixed
with an experimental dataset
@ sort observations based on the estimated CATE
o evaluate the group average treatment effect (GATES), for example,
among those who are predicted by the ML algorithm to benefit from
(or be harmed by) treatment the most

@ Scenario |l: Estimate and evaluate with the same experimental dataset

choose an ML algorithm

randomly split an experimental dataset into training and evaluation
datasets

estimate CATE using the training dataset

use the evaluation dataset and estimate the GATES

flip the training and evaluation datasets and repeat

average the results and account for uncertainty due to random splits
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Setup

o Notation:

n experimental units

T; € {0,1}: binary treatment

Yi(t) where t € {0,1}: potential outcomes
Y: = Yi(T;): observed outcome

X;: moderator of interest

@ Assumptions:
@ no interference between units:

Y(Ti=t,..., Ta=t,) =Yi(T: = t;)
@ randomization of treatment assignment:
{Yi(1), Yi(0)} L T
© random sampling of units:

i.i.d

{vi(1),vi(0)} "~ P
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Exploration of Heterogeneous Treatment Effects

@ Two commonly used treatment prioritization scores
© Conditional average treatment effect (CATE):

() = E(Yi(1) = Yi(0) | Xi =)

@ Baseline risk:

o Estimate a score with ML algorithm using an external dataset
f:X—ScCR
@ Group Average Treatment Effect (GATES; Chernozhukov et al. 2019)
T = E(Yi(1) = Yi(0) | pk—1 < Si = £(Xi) < p)

for k =1,2,..., K where p is a quantile cutoff (pg = —00, px = )
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Statistical Inference for GATES

@ How can we make valid statistical inference for GATES without
assuming that the scores are correctly estimated by ML algorithm?

@ A natural difference-in-means estimator for GATES:

HZYTfk —723/ i (X5),

where f(X;) = 1{S; > pi(s)} — 1{S; > pr_1} is the group indicator

@ Bias bound and exact variance are derived, accounting for the
estimation uncertainty of quantile cutoffs

@ Under mild regularity conditions (e.g., continuity of CATE at
thresholds), the distribution of 74 is asymptotically normal
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Statistical Hypothesis Tests for Subgroups

© Nonparametric test of treatment effect homogeneity:

o Null hypothesis:
Ho: m=m=---=1x.

o Test statistic:

. 1. d
TTEIT—)X%(

where ¥ = (’?‘1—?‘,“',?;(—’?')—'—

@ Nonparametric test of rank-consistent treatment effect heterogeneity:

o Null hypothesis:
Hg:71§T2§“~§TK.

o Test statistic:

. il 14 wiavy do
(F—p () =E - (F) S e
where p*(x) = argmin , [ — x||3 subject to g < pip < --- < k.
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Estimation and Evaluation Using the Same Data

o Cross-fitting procedure:
© randomly split the data into L folds: Zy,...,2;
@ estimate the score using L — 1 folds: f_,

© estimate GATES with the hold-out set: ?,EE)(fA'_g)
@ repeat the process for each ¢ and average

where F: Z — F is a generic but stable ML algorithm with
Ztrain € Z and th,,;,, = F(Ztrain) eF

o Estimand: average performance of F

Tx(F;n— m)
= Eznn[E{Yi(1) = Yi(0) | pu-1(fzp-n) < fzn-m(X;) < pr(Fzo-m)}].

train train train
e Unbiasedness: E(7x(F;n— m)) = 14«(F;n— m)
e Finite-sample (conservative) variance estimator
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Simulation Study

@ A highly nonlinear specification from the 2016 ACIC competition

e 58 covariates (3 categorical, 5 binary, 27 counts, 13 continuous)
e sample size: n = 4802
o use empirical distribution of X; as true distribution

@ Machine learning algorithms

o Causal forest and Lasso
e L =15 and also use 5-fold cross validation for tuning

o Fixed score (see the paper) and estimated one with cross-fitting
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Simulation Results: Bias and Coverage

n =100 n =500 n = 2500

bias s.d. coverage | bias s.d. coverage | bias s.d. coverage
Causal Forest
71 | —0.05 2.97 94.0% | —0.01 1.57 95.6% | —0.01 0.59 97.7%
75 | —0.06 2.58  95.9 —0.04 1.08 982 0.01 054 98.6
73| —0.01 256  96.7 —-0.056 1.06 97.7 0.02 047 98.1
74| =012 287 974 0.05 1.15 979 —0.01 051 98.6
75 0.14 345 941 0.00 1.62 96.0 —-0.01 062 983
LASSO
#1-013 320 97.6% | —0.03 1.49 96.0% | —0.00 0.67  96.0%
T 0.04 228 975 —0.07 1.03 979 —0.02 059 98.9
73 | —0.13 235 96.6 —-0.02 1.00 979 0.04 049 975
74 | —0.00 2.54 96.8 0.04 1.17 96.8 0.03 0.64 97.2
Ts 0.11 362 96.2 0.05 181 95.0 0.02 070 953

@ Reduction in standard errors compared with fixed F of the same
evaluation size is more than 50% in some cases
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Simulation Results: Size and Power of Tests

n =100 n = 500 n = 2500
rejection median | rejection median | rejection median
rate  p-value| rate  p-value| rate  p-value
Causal Forest
Homogeneity 1.4% 0.79 4.6% 0.71 | 51.4% 0.04
Rank-consistency 1.4% 0.70 0.8% 0.85 0.0% 0.98
LASSO
Homogeneity 06% 088 1.8% 085| 9.0% 066
Rank-consistency 1.0% 0.72 0.6% 0.77 0.2% 0.89

@ Heterogeneous but rank-consistent effects
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Homogeneity 1.4% 0.79 4.6% 0.71 | 51.4% 0.04
Rank-consistency 1.4% 0.70 0.8% 0.85 0.0% 0.98
LASSO
Homogeneity 06% 088 1.8% 085| 9.0% 066
Rank-consistency 1.0% 0.72 0.6% 0.77 0.2% 0.89

@ Heterogeneous but rank-consistent effects

@ More conservative and lower power than fixed case

@ When sample size is large, cross-fitting yields higher power
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Empirical Application

Randomized Intervention for Children with Vesicoureteral Reflux
(RIVUR) Trial

Double-blind RCT evaluating whether daily antimicrobial prophylaxis
prevents recurrence of UTls

UTls: urine flows backward from bladder to ureters/kidneys

o Data
o Sample size: n; =302, ny = 305 (total n = 607)
e Outcome: recurrence of UTlIs at 2-year follow-up; we use —Y so
positive effect = fewer UTls
e 7 pre-treatment covariates: demographics, tests, and prior conditions

@ Setup

e ML algorithms: Causal Forest, BART, and LASSO
o Sample-splitting: 67% training, 33% evaluation
o Cross-fitting: 3 folds; tuning via 5-fold CV within training sets
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GATES Estimates (in % Decrease in UTI Recurrence)

71 (%) 72 (%) 73 (%) 72 (%) 75 (%)
Sample-splitting
Causal Forest -0.1 -0.0 9.9 9.9 9.9
[~19.7,19.5] | [-14.0,13.9] | [-9.3,29.2] |[—13.8,33.6] |[-13.7,33.5]
BART —-5.2 20.0 5.0 —5.1 14.8
[-26.9,16.6] | [1.4,38.6] | [-4.7,14.7] |[-22.1,11.9] | [~13.2,42.9]
LASSO 0.0 9.9 -0.1 9.9 9.9
[-14.0,13.9] | [-9.4,29.3] |[-19.7,19.5] | [-13.9,33.7] | [-13.0,32.8]
Cross-fitting
Causal Forest 3.2 —-5.1 —3.4 14.7 26.2
[-8.7,15.1] |[~26.5,16.4] |[-22.2,15.4]| [0.1,29.2] | [7.2,45.1]
BART —-1.8 —5.0 11.4 9.8 21.2
[-15.5,11.9]| [-13.4,3.5] |[-10.3,33.0] | [-5.7,25.2] | [3.8,38.6]
LASSO —-1.7 —-1.5 3.2 114 21.2
[~13.9,10.4] |[-23.4,26.4] | [-11.6,17.9] | [~4.8,27.7] | [~4.6,47.0]

@ Stat. significant effects found only with cross-fitting
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Causal Forest 3.2 —-5.1 —3.4 14.7 26.2
[-8.7,15.1] |[~26.5,16.4] |[-22.2,15.4]| [0.1,29.2] | [7.2,45.1]
BART —-1.8 —5.0 11.4 9.8 21.2
[-15.5,11.9]| [-13.4,3.5] |[-10.3,33.0] | [-5.7,25.2] | [3.8,38.6]
LASSO —-1.7 —-1.5 3.2 114 21.2
[~13.9,10.4] |[-23.4,26.4] | [-11.6,17.9] | [~4.8,27.7] | [~4.6,47.0]

@ Stat. significant effects found only with cross-fitting
o Causal Forest: 40% of patients benefit; BART: 20%
e LASSO fails to identify any group with significant benefit
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Results of Hypothesis Tests

Causal Forest BART LASSO
stat p-value stat p-value stat p-value

Sample-splitting
Homogeneous Treatment Effects 1.45 0.918 5.16 0.397 1.45 0.918
Rank-consistent Treatment Effects 0.00 0.990 3.78 0.222 0.511 0.845
Cross-fitting
Homogeneous Treatment Effects 12.5 0.029 | 13.7 0.020 6.38 0.271
Rank-consistent Treatment Effects 0.97 0.727 0.17 0.920 0.01 0.993

@ Causal Forest and BART reject homogeneity under cross-fitting
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Homogeneous Treatment Effects 1.45 0.918 5.16 0.397 1.45 0.918
Rank-consistent Treatment Effects 0.00 0.990 3.78 0.222 0.511 0.845
Cross-fitting
Homogeneous Treatment Effects 12.5 0.029 | 13.7 0.020 6.38 0.271
Rank-consistent Treatment Effects 0.97 0.727 0.17 0.920 0.01 0.993

@ Causal Forest and BART reject homogeneity under cross-fitting

@ No algorithm rejects rank-consistency
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e Causal machine learning (ML) is rapidly becoming popular

o estimation of heterogeneous treatment effects (HTEs)
o development of individualized treatment rules (ITRs)

e Safe deployment of causal ML requires uncertainty quantification

experimental evaluation of HTEs and ITRs

no modeling assumption

no resampling (computationally efficient)
applicable to any complex causal ML algorithms
good small sample performance

@ Open source software: evallTR: Evaluating Individualized Treatment
Rules at CRAN https://CRAN.R-project.org/package=evallTR

@ More information:
https://www.michaellz.com/machine-learning-inference
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