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Drug-Induced Liver Injury (DILI)

* Liverinjury due to prescription and nonprescription medications

* DILIis a major concern for drug developers, regulators, and clinicians
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Adverse drug events that have led to withdrawal from the
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[Stevens and Baker 2009]
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Other; 41%

Drugs withdrawn from global market due to toxicity

1990-2010 (n=39)
From: EvaluatePharma; CDER; Tufts Center for Drug Discovery



PRECLINICAL DEVELOPMENT & SAFETY
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Drug-Induced Liver Injury (DILI)

T

Drug uptake (1) Mitochondrial impairment

(2) Inhibition of biliary efflux

3) Lysosomal impairment

4) Reactive metabolites

* Chemical stress
* Oxidative stress

Metabolism * Protein modification

Accumulation
Endoplasmic reticulum stress
(6) Immune system

* Innate
* Adaptive

Clearance * Inflammation

DILI mechanisms

Weaver et al. (2020)
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Diverse clinical

presentations of DILI

* Acute fatty liver with
lactic acidosis

* Acute hepatic necrosis

* Acute liver failure

* Acute viral hepatitis-like
liver injury

* Autoimmune-like hepatitis

* Bland cholestasis

* Cholestatic hepatitis

¢ Cirrhosis

* Immuno-allergic hepatitis

* Nodular regeneration

» Nonalcoholic fatty liver

* Sinusoidal obstruction
syndrome

* Vanishing bile duct
syndrome

Clinical phenotypes




REVIEWS Drug Discovery Today *Volume 21, Number 4+ April 2016

Categorizing DILI

Most . DlLIrank: the largest reference drug
COE:]'CL'e'm ¢ list ranked by the risk for developing
192 drugs | drug-induced liver injury in humans
Ambi Minjun Chen’, Ayako Suzuki’, Shraddha Thakkar', Ke Yu', Chuchu Hu'
guous and Weida Tong' @CmssMark
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https://www.fda.gov/science-research/liver-toxicity-knowledge-base-ltkb/drug-induced-liver-injury-rank-dilirank-dataset

No Overall Agreement

* Thereis no universally accepted framework for
categorizing drugs based on their potential to cause
drug-induced liver injury (DILI).

* Asanexample, despite being placed in a Most DILI-
concern category, acetaminophen is widely
considered one of the safest and most commonly
used over-the-counter medications when taken at
recommended dosages.

* Liver-Tox book: LiverTox - NCBI Bookshelf (nih.gov)

* Provides overview of hepatotoxicity for about 1000 drugs

i ER
N

A
LiverTox

livertox.nih.gov
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https://www.ncbi.nlm.nih.gov/books/NBK547852/

Predicting Drug-Induced Liver Injury

* Predicting drug-induced organ injury in early drug development is a multi-dimensional problem

* Requires multifaceted assays and compound-related information

/™ Pharmacokinetic

Physicochemical

In Vitro assays

Properties Properties
e Cytotoxicity (IC50) e Molecular weight (MW) * Total plasma C_,,
e Mitochondrial toxicity e Lipophilicity (cLogP) e Total daily dose
(HepG2 Glu/Gal ratio) e Spatial complexity (fsp3) e Liver inlet concentration
* Bile Salt Export Pump e lonization state (acid, base, e Fraction unbound
(BSEP) inhibition (|C50) or neutra[)

e Statistical approaches which integrate data from different sources
- make the decision-making process faster, data driven, and more efficient

J&J Innovative Medicine



METHODS



Methods Evaluated within J&J

Single endpoint:

 Organoids/ 3D cell (e.g. Fas et al. 2025)

Multiple heterogeneous endpoints:

* In-vitro assays, physicochemical properties, pharmacokinetic properties (this talk)
* Omics: RNAseq, proteomics

* Off-target binding (e.g. Rao et al. 2023)

e Chemical structure (SMILES)
 AI/ML methods (e.g. LLM)
* In-silico predictions (e.g. Seal et al. 2024)

J&J Innovative Medicine



Multiparametric Approaches to DILI Prediction

Aleo et al. 2020 Williams et al. 2020 Martin et al. 2022
» Decision rules-based method that »  Considers DILI severity-class as an ordinal >  Treats DILl as binary: N|L-DILI vs. M-DILI
provides a quantitative DILI-risk variable o _ >  ML-based method that provides a quantitative
>  Uses a scoring system based on safety » Bayesian statistical model that provides a DILI-risk
margins (ICx/Cmax) quantitative DILI risk >  Provides cut-point to separate M-DILI from the

Determines probabilities of each DILI
severity class
»  Separates three DILI severity classes from

»  Provides cut-points to separate M- >
DILI from N-DILI and L-DILI

two other classes.

each other.
Scoring System Bayesian Ordinal Logistic Regression (BOLR) Random Forest
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DILI severity
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Scoring System (Aleo et al. 2020)

Scoring of Drugs Based on Activity in Core Mechanistic Assays

Threshold (ICs0/Cmax,tota value) Based Scoring
Assay Category <1 >1 - >10- >50- | >100 Assay
<10 <50 <100 (Test Limits / %CV)*
Cytotoxicity .
(”I:HLF. or Hvesz) 4 3 2 l 0 (300 uM / 27 or 29%)
Mitochondrial
Dysfunction 4 3 2 ] 0 (25 UM / 18%)
(inhibition)
Mitochondrial
Dysfunction 4 3 2 1 0 (100 pM / 40%)
(uncoupling)
BSEP Inhibition 4 3 2 1 0 | (100/200 pM / 34/48%)
HepG: Glu/Gal Ratio Scoring
>3 >2-<3 <2
Aifechendrin (300 uM / 21% glucose
Dysfunction J 2 0
y and 31% galactose)
(cellular)

“%CV = Percent coefficient of variation (interday) of positive controls (average).

Scoring of Drugs Based

on Physicochemical Property Models

Rule of Two Model Scoring Approach?!

Rule of Two
(total daily dose=100 mg YES=4,NO=0
and cLogP>3)

Partition Model Scoring Approach?
Acids cLogP>2.5 =4, OTHERWISE 0
Bases -p[MDDJ? > -3.49 and cLogP>1.1 =4, OTHERWISE 0
Neutrals -p[MDD] > -4.07 and Fsp*» <0.29 = 4

or
-p[MDD] > -4.07 and Fsp® >0.29 and cLogP >1.0 =4
OTHERWISE 0
Total Score: <3 = No-DILI
4-7 =
=8 = Most-DILI

Example: Loratadine is an antihistamine and categorized as N-DILI| by FDA.

Assay HepG2 THLE Glu/Gal Inhibition Uncoupler BSEP Cmax
Value 67.04 38.73 1.3 >25 >100 28.671 0.068 Score=0
Normalized by Cmax 986.01 569.56 - - - 421.63 l
lonization -PMDD cLogP Fsp3
Neutral 3.981 5.051 0.364 Score=4 — Total Score: 0 + 4 =

J&J Innovative Medicine
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Optimized Scoring System

Limitations of cut-points proposed by Aleo et al.
* Fixed scoring logic = cannot be adapted to specific objectives

» Specific to their dataset and assays = may not generalize well

Proposal: Optimize cut-points
 Challenging optimization problem
» discrete jumps at cut-points

» complex relationship between endpoints

* Optimize for a specific objective
» flexibility in objective function needed
» example: maximize balanced accuracy

Solution: Genetic algorithm

J&J Innovative Medicine
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Genetic Algorithm

Derivative free optimization algorithm

Crossover

Fitness
Function
Calculation

Population

Initialization

Survivor
Selection

J&J Innovative Medicine

N\

Mutation

By Pasimi - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=37611586

Terminate &

Return Best
Solution

13


https://commons.wikimedia.org/w/index.php?curid=37611586

Fithess Function

* Misclassifying Extreme cases to opposite class (i.e., No-DILI as Most-DILI & Most-DILI as No-DILI)
should be avoided

- Need for constraints: add penalty term to fitness function

* Goal: optimize balanced accuracy, while adhering to two constraints:
- 80% of L/M-DILI correctly classified
- 85% of N/L-DILI correctly classified

Note: false positive is considered worse than false negative (i.e. stopping a possible promising compound early)

J&J Innovative Medicine
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Bayesian Ordinal Logistic Regression (Williams et al. 2020)

Chemical Research in Toxicology
. - X BSEP + ~N
BSpher X Spher +
High i Bries x THP1  + z
Yinseholds 12 vmnlissssashassnmastnitnmnyd st B x Glu + 5
(estimated — Med = > =
T RPN - ) Bew.cat X Glu/Gal + 8
Low I Betoge x ClogP +
B X BA
BCmax X Cmax * /
Unobserved DILI severity 5
underlying score (observed BBSEP:Spher x BSEP x Spher + oo
continuous risk ordered g §_
(predicted from categorical S
model) outcome ) U )
Y Y
Unknown Assay and
parameters other data
(estimated from
data)

Figure 1. Bayesian predictive model. Clinically characterized DILI positive and negative compounds are classified according to their DILI severity
score. Assays (BSEP, Spheroid, THP1, interaction effects, etc.) are used to estimate the unknown /3 values, which quantify the strength and direction of
the relationship between the assay values and DILI severity, allowing prediction of the underlying continuous severity.

J&J Innovative Medicine
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Bayesian Ordinal Logistic Regression (Williams et al. 2020)

Statistical model:

Severity, ~ OrderedLogistic(7;, ¢1, ¢a)
logit(n;) = X4 X 3
1, cg ~ Normal(0, 20)
35 ~ Laplace(p, o)
1t ~ Normal(0, 2)
o ~ HalfNormal(0, 0.5)

(1)

Here, 7); 18 the continuous prediction of DILI severity, and /3; are the regression coefficients. The model
considers two-way interactions of all predictors except for logl0.cmax. The model is fitted in Stan [2]
via the R package rstan [6].

J&J Innovative Medicine 16



Bayesian Ordinal Logistic Regression (Williams et al. 2020)

08 4

06

Amber: medium DILI risk |

04

PIOILI) » 95% C1

Bayesian DILI Prediction of novel compounds

Low DILI risk

J&J Innovative Medicine
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Random Forest (Martin et al. 2022)

* Optimize ROC AUC

* Downsamplingtod

eal with class imbalance

250

DILI -
_Full Dataset (569 Drugs)

500

Most

121

750 1000

Ambiguous Unknown
201 266

TK Dataset (384 Drugs)

Kp (384)
FU,'IVL"( (252) Fu.hum (QSAR)
FU,BSA (32 5) Fu,alnm

Kpuu (384) = Fu,lwer/ Fu,BS.I?\ : Kp

J&J Innovative Medicine

Safety Dataset (279 Drugs)

THLE (352)

BSEP (342)
impusd] _ HePG2 Glu/Gal (319)
meued|  HepG2 72hr (313)
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RESULTS



Performance Metrics

Actual DILI class

Non-DILI DILI

@

g Non-DILI True Negative (TN) False Negative (FN)

o

3

2

o DILI False Positive (FP) True Positive (TP)

a

Specificity — TN Sensitipity = TP p B TP +TN
pecificity = pp—py | Sensuity = o gy | ACCUTacy = o e T FP A TN

J&J Innovative Medicine
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Comparison of Original and Optimized Cut-points

Table 1: Cut-points from Aleo et al. (2019) and optimized cutpoints obtained using GA for
multi-class DILI from Aleo et al. (2019) and binary DILI from Martin et al., 2022.

Cutpoint Aleo et al. Optimized (Aleo et al.) Optimized (Martin et al.)
CPlipophilicity, acid 2.50 0.07 3.08
CPlipophilicity, base 1.10 3.70 3.25
CPlipophilicity, neutral 1.00 0.20 3.81
CPgp? 0.29 0.55 0.64
CP—p[MDD), base -3.49 -3.61 -3.26
CP_p[MDD] neutral -4.07 -3.82 -4.22
CpG]ujGa]_ll 2.00 0.94 2.97
CpG]ufGa],,Q 3.00 2.69 4.63
CPIC 0.1 1.00 0.61 4.06
CPIC 0.2 10.00 11.14 20.95
CPIC0.3 50.00 14.75 37.55
CPIC 0.4 100.00 70.29 68.16
CPScore,1 4.00 3.15 -
CPScore,2 8.00 7.18 3.30

Cross-validated results (averaged over runs)

J&J Innovative Medicine



Performance

Table 2: Performance Metrics for Different Methods: Multi-class Aleo

Mothod ' Accuracy ' I\-‘Iisclassiﬁcation' BA
N-DILT L[L-DILT M-DILI N as M-DILI M as N-DILI

RF 0.70 0.47 0.61 0.07 0.07 0.59

0SS 0.72 0.46 0.57 0.04 0.10 0.58

SS 0.76 0.45 0.50 0.00 0.17 0.57

RF + OSS (agree)  0.83 0.49 0.70 0.02 0.07 0.67

RF + SS (agree) 0.86 0.55 0.69 0.00 0.07 0.70

Table 3: Performance Metrics for Different Methods: binary Martin

Method Sensitivity  Specificity PPV NPV BA
RF 0.74 0.59 0.52 082 0.67
0SS 0.60 0.64 0.50 0.74 0.62
SS 0.14 0.97 0.71 0.66 0.55
RF + OSS (agree) 0.76 0.66 0.57 085 0.71
RF + SS (agree) 0.40 0.95 0.76 0.82 0.68

Cross-validated results (averaged over runs)

J&J Innovative Medicine

Agreement between methods
increases reliability of predictions
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Agreement Between Methods

Table 4: Proportion of compounds for which the two methods agreed on the predicted class
in Aleo et al.

Method N-DILT L-DILI M-DILI
1 RF + GA 0.71 0.54 0.63
2 RF + Aleo 0.69 0.42 0.58

Table 5: Proportion of compounds for which the two methods agreed on the predicted class
in Martin et al.

Method N or L-DILI M-DILI
1 RF + GA 0.69 0.67
2 RF + Aleo 0.60 0.37

J&J Innovative Medicine



Feature Importance in Random Forest Model
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Results Optimized Scoring System

Troglitazone o

Rosiglitazone =

Compound

Pioglitazone =

o
=

10 15
Score

. BSEP . HepG2 Mito THLE

Uncoupler

Endpoint Mito
. Glu/Gal . Inhibition Partition model

Figure 2: Computed DILI score for Pioglitazone, Rosiglitazone, and Troglitazone with the

contribution of each endpoint to this score. The shaded areas show different predicted classes
based on the optimized cutpoints.

J&J Innovative Medicine
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Results Bayesian Ordinal Logistic Regression

1.0 1
: |
. 1
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| 02 -
]
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0.0 0.2 0.4 0.6 0.8 1.0 Pioglitazone Rosiglitazone Troglitazone

DILI severity
(Williams et al. 2020)

Figure 4. Performance of the model on compounds with high molecular similarity and identical therapeutic indications,
but different potential for hepatotoxicity. The order of severity of clinical hepatotoxicity is pioglitazone < rosiglitazone <
troglitazone. Distribution color indicates the true DILI category. Graphs on the left show the posterior distributions

(estimated continuous DILI severity), and bar graphs on the right show the predictions (posterior predictive distributions).
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Take Home Messages

DILI is a complex, multifactorial process
Interpretability of predictions is a key requirement

Optimized Scoring System combines expert knowledge with data-driven optimization

U O 0O O

Using different prediction methods and checking agreement increases robustness

J&J Innovative Medicine
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