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Notes from the editors
Holiday season is right around the corner! With the year 2023 wrapping up, hope you have all shared many pro-
ductive and happy moments with colleagues, family and friends. The recently held JSM and RISW have successfully 
made many connections for statisticians, data scientists and quantitative researchers alike. In the meantime, discussions 
about new research in all fronts were happening there. For this fall issue of the biopharmaceutical report, our theme 
is “The Artificial Intelligence Era for Biopharma”. We are joining the ongoing discussion on the role of artificial intel-
ligence and machine learning (AI/ML) in drug and device development. So let the drum roll begin!

Our featured articles that highlight this issue’s theme start with an overview of AI in the pharmaceutical industry and 
healthcare – a paradigm shift, contributed by Mark Chang (Boston University). In this article, he provided a very 
clear and unique way of distinguishing the classical statistics mindset vs the AI mindset when thinking about drug 
development. Next, the conversation continues with the review article by Yuhan Li (UIUC), Hongtao Zhang 
(Merck), Keaven Anderson (Merck), Songzi Li (Agenus) and Ruoqing Zhu (UIUC), in which they discussed 
AI in pharma for personalized sequential decision making. Our third featured article is by Kelly Zou (Viatris). She 
gave perspectives on big data, digital and artificial intelligence in a patient centric era that many of us can learn from. 
Zooming in AI/ML’s impact on a more specific area, we all know that biomarker development is oftentimes AI/
ML centric. John Kang (Merck) and Wei Wei (Merck) shared with us how to use Bayesian networks to identify 
statistically causal clinical biomarkers in high dimensional datasets. To finish off our discussions on statistical innovation 
and dose optimization from last issue, Kentaro Takeda (Astellas) and Yusuke Yamaguchi (Astellas) brought us 
an overview of dose optimization in oncology and recent developments in this field.  

For career development of clinical and non-clinical statisticians, Stan Altan (Janssen), W. Scott Clark (Eli Lilly), 
Imola Fodor (Genentech), Cyrus Hoseyni (Janssen), John Kolassa (Rutgers University), Eve Pickering 
(Pfizer) and Shanthi Sethuramen (Eli Lilly) summarized the 2023 JSM session on “Clinical and Nonclinical sta-
tistics roles in the pharmaceutical industry: how knowledge of one helps the other”. There were a lot of interesting 
questions and answers in the session that could help many members navigating careers. In addition, the Nonclinical 
Biostatistics Leaders Forum communications committee, with members Stan Altan (Janssen), W. Scott Clark 
(Eli Lilly), Katherine Giacoletti (Merck), Kristi Griffiths (Eli Lilly), John Kolassa (Rutgers University), Katja 
Remlinger (GSK), Chi-Hse Teng (Novartis), Donghui Zhang (Sanofi), shared the report on pharmaceutical 
industry survey of nonclinical statistics resources.

Later in this issue, we have summaries of two virtual discussions organized by ASA BIOP section’s Statistical Methods 
in Oncology Scientific Working group, the FDA Oncology Center of Excellence, and LUNGevity Foundation. The 
topics of these two discussions are: 1) Consideration of Criteria for Evaluation of Surrogate Endpoints, 2) Cancer 
Clinical Trial Design and Analysis Considerations in Evaluating Treatment Effect in Marker Negative Population – Part 
2. The Cell and Gene Therapy Scientific Working Group, led by Alan Y Chiang (Lyell Immunopharma), Daniel
Li (BMS) and Zhenzhen Xu (FDA), brought us the updates from their group, including the introduction and
regulatory guidelines in the space which could benefit many of our BIOP members. Next we have information for
perspective ASA fellows and nominators on the nomination process, shared by Weili He (Abbvie) on behalf of
the ASA BIOP Fellows Nomination Committee. Christina Nurse (Takeda) and Rebbeca Wilson (J&J) gave us
the pointers to the ASA BIOP section’s podcast, and a few upcoming podcasts with interesting discussion topics. As
we mentioned at the beginning here, there were many great conferences in the last few months. Our ASA BIOP
session chair Brian Millen (Biogen) brought us his recollection of JSM and RISW this year with shared photos, and
Erik Bloomquist (Merck, 2023 RISW co-chair) shared with us his recap of the RISW conference, also with photos! 
In addition to JSM and RISW, there are many other conferences with invigorating discussions. Please take a look at
the recap of 2023 Boston Pharmaceutical Symposium, shared by Jianjun Hua (Dartmouth), Zhaoyang Teng
(Servier), Gautier Paux (Sanofi), Xihao Li (UNC Chapel Hill), Kirstin Baltrusaitis (Harvard) and Wenting
Cheng (Biogen). Organizers of the 7th symposium on statistical innovation for medical product development, which
is part of the international society for biopharmaceutical statistics, gave an overview of the conference, which will
be held March 6-9 in Maryland, USA. We would like to send congratulations to the BIOP sections newest ASA fel-
lows Margaret Gamalo (Pfizer), Bo Huang (Pfizer), Xiaofeng Wang (Cleveland Clinic) Inna Perevozskaya
(GSK) and Kalyan Ghosh (Inference)! We close this issue with a list of upcoming conferences that may be of inter-
est to you. Thank you to all of our contributing authors and ASA colleagues for your continued support!
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Mark Chang, PhD, Boston University, Boston MA

Thank you for the invitation of the editorial board, I 
would like to humbly provide an overview of Artificial 
Intelligence (AI)/Machine Learning (ML) in the pharma-
ceutical Industry and Healthcare, covering the following 
topics: AI landscape in the Pharmaceutical Industry, AI 
and ML versus Classical Statistical Approaches, Chal-
lenges in Classical Statistics, AI solutions to the Chal-
lenges and Applications in Clinical Trials. Summary and 
Discussions. I have also included regulatory aspects and 
suggestions for future work. The contents are primarily 
based on two recently published books: (1) Artificial 
Intelligence for Drug Development, Precision Medicine, 
and Healthcare[1] and (2) Foundation, Architecture, and 
Prototyping of Humanized AI[2]. 

AI Landscape in the Pharmaceutical Industry
AI and ML for Drug Development have recently 
attracted great interests. According to NetBase Quid, 
2022 AI Index Report[3], the focus areas with the 
top private-investments in AI from 2017 to 2021 are 

OVERVIEW OF ARTIFICIAL INTELLIGENCE 
(AI) IN THE PHARMACEUTICAL INDUSTRY 
AND HEALTHCARE – A PARADIGM-SHIFT

medicine and healthcare, at nearly $30 billion, followed 
closely by Data Management. Nearly 18,000 publica-
tions can be found in medical AI at PubMed.com; publi-
cations in the top 3 research areas, pathology, radiology, 
and surgery, have reached over 8,000 (Figure 1).

Today, AI research and applications cover the entire 
landscape of the pharmaceutical Industry, from Drug 
Discovery to Preclinical Research, Clinical Trials, Phar-
macovigilance, and Drug Manufacturing (Figure 2). 

AI applications include quantitative structure-activ-
ity relationships (QSARs) in drug discovery[4], cancer 
prediction using microarray data[5], deep learning for 
medical image analysis[6], healthcare[7], clinical tri-
als[8], and drug safety monitoring[9]. AI methods for 
gene expression data analysis can be used for disease 
diagnosis and prognosis and have provided opportuni-
ties for early effective treatment and optimal treatment 
for individual patients based on their disease stage and 
other characteristics. Cancer is a worldwide genetic-
related disease, which imposes significant mortality 
and cost. Cancer has been characterized as a heteroge-
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neous disease consisting of many different subtypes. 
The early diagnosis and prognosis of a cancer type 
have become a necessity in cancer research, as these 
can facilitate the subsequent clinical management of 
patients. The importance of classifying cancer patients 
into high- or low-risk groups has led to much research 
in AI methods to model the progression and treatment 
of cancerous conditions.

AI research in healthcare can help physicians make 
better clinical decisions or even replace human judg-
ment in certain functional areas of healthcare. The 
increasing availability of healthcare data and the rapid 
development of big data analytic methods have made 
possible the recent successful applications of AI in 
healthcare[7]. In addition to the popular deep learning 
neural network strategies for structured data, natural 
language processing for unstructured data, such as 
that in physicians’ notes, deep learning such as par-
ticularly convolutional neural networks (CNNs) and 
recurrent neural networks (RNNs), have been used to 
improve the accuracy of disease diagnosis. They can 
analyze medical images such as X-rays, MRIs, and 
CT scans to detect conditions like cancer, pneumonia, 

and diabetic retinopathy. AI systems can provide up-
to-date medical information from publications and 
large patient populations to assist physicians making 
real-time inferences, for health risk alerts and health 
outcome prediction, and in reducing diagnostic and 
therapeutic errors.

The applications of AI in clinical trials include 
stochastic decision processes for clinical develop-
ment programs and similarity-based machine learn-
ing, but these are limited today. To solve this problem 
effectively requires a paradigm shift: a focus on the 
prediction of drug effects (efficacy and safety) instead 
of type-I error control. Similarity-based machine 
learning (SBML) provides a powerful AI approach for 
small and big data in clinical trials and in scientific 
discoveries generally[8].

In drug safety and pharmacovigilance, Sparkes, 
among other researchers, discusses the role of arti-
ficial intelligence within pharmacovigilance and 
medical information[10]. Last but not least, (elec-
tronic) data collection, fusion, and sharing all play 
an integral and critical part in successful applica-
tions of AI technologies.
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AI Applications in the medical field are summarized 
via the tree diagram (Figure 3), including drug discov-
ery, drug development, and healthcare. Details, includ-
ing R-code and extensive references, can be found in 
Chang’s book[1].

AI/ML versus Classical Statistics
ML is the core AI, focusing on the data model part 
instead of user-interfaces. ML and Classical Statis-
tics (CS)  have many similar aspects, but AI/ML is 
clearly not equal to statistics. Here are some subtle 
differences: (1) AI/ML emphasizes learning and pre-
diction, whereas classical statistics often focuses on 
type-I error rate; thus CS tends to use all data to get a 
minimal p-value, while ML splits available data into 
training and validation/evaluation sets, (2) CS and 
ML both deal with uncertainty, but the former focuses 
on the mathematical approach and probability distri-
butions, while the latter is mainly algorithm-based, 
(3) ML takes its main aim at real world experiences 
with an unclearly defined target population, while CS 
often performs under an ideal assumed probability 

distribution for the target population, (4) AI/ML can 
often deal with big and unstructured data, CS does 
not, (5) Data mining, NLP, technology and design 
platforms are also topics in ML, but not in CS, and 
(6) AI and ML encourage continuous exploration, 
whereas CS limits reusability of data due to multi-
plicity problems in hypothesis testing (Figure 4).

ML methods can be classified into five general 
categories: supervised, unsupervised, reinforcement, 
evolutionary, and swarm intelligence learning meth-
ods (Figure 5).

A typical task for supervised learning is classifica-
tion, e.g., noting when there is disease or no disease. 
In supervised learning, the learner will give a response 
y based on an input x and will be able to compare his 
response y to the target (correct) response. In other 
words, the “learner” presents an answer y for each x 
in the training sample, and the supervisor provides 
either the correct answer or an error associated with the 
learner’s answer. The term learning here refers to the 
learner (a model) adjusting its parameters to reduce the 
error by using the training dataset. The trained AI model 
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can be used for future predictions. Supervised learning 
has been used in disease diagnosis, drug safety signal 
detection, and other medical fields[11][12].

Two typical tasks of unsupervised learning are docu-
ment clustering and information retrieval. In unsuper-
vised learning, the learner receives no feedback from 
the supervisor at all. Instead, the learner’s task is to re-
represent the inputs in a more efficient way, for instance, 
as clusters or with a reduced set of dimensions. Unsuper-
vised learning is based on the similarities and differences 
among input patterns. The goal is to find hidden struc-
tures in unlabeled data without the help of a supervisor 

providing a correct answer. In drug development, unsu-
pervised learning is often used for data preprocessing 
before adopting supervised learning[13][14].

Reinforcement learning (RL) concerns how a learner 
should take actions in an environment so as to maximize 
some notion of long-term reward. RL gets feedback 
from real-world experiences; its algorithms attempt to 
find a policy (or a set of action rules) that maps states of 
the world to the actions the learner should take in those 
states. Unlike supervised learning, in RL the correct 
input-output pairs are never presented. Furthermore, 
there is a focus on on-line performance, which involves 
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finding a balance between exploration of uncharted ter-
ritory and exploitation of one’s current knowledge. RL 
has been suggested for drug development programs, 
including design molecular structures with desired 
properties, autonomous clinical trials in oncology, and 
a clinical development planning[1][15][16].

Biological evolution can be viewed as a learning 
process: how biological organisms have offspring and 
adapt to their environment can improve the probability 
of the species’ survival and success. Inspired by such 
biological evolutionary mechanisms, genetic program-
ming (GP) was developed. In GP, computer programs 
are encoded as a set of genes that are then modified 
(evolved) using an evolutionary algorithm. The meth-
ods used to encode a computer program in an artificial 
chromosome and to evaluate its fitness with respect 
to the predefined task are central in the GP technique. 
Ghaheri et al. introduced the genetic algorithm and its 
applications in medicine and  provided a comprehen-
sive review of the applications of genetic algorithms in 
medicine in 15 different areas, including disease screen-
ing, diagnosis, treatment planning, pharmacovigilance, 
prognosis, and health care management[1][17].

 Systems in which organized behavior arises with-
out a centralized controller or leader are called self-
organized systems. The intelligence possessed by a 
self-organized system is called Swarm Intelligence (SI) 
or Collective Intelligence. Artificial SI is an emerging 
field of biologically inspired artificial intelligence char-
acterized by micro motives and macro behavior. A good 
example of Swarm Intelligence is that of ant colonies, 
which optimally and adaptively forage for food. Ants 
are able to determine the shortest path leading to a food 
source simply by following pheromones. This works 
only because the shortest path will have more ant traffic 
and stronger pheromone scents than other paths. A new 
docking algorithm called PLANTS (Protein-Ligand 
ANTSystem) is developed based on ant colony opti-
mization, to facilitate structure-based drug design[18]. 
An artificial ant colony is employed to find a minimum 
energy conformation of the ligand in the protein's bind-
ing site[1][17].

Challenges in Classical Statistics Calling for AI/ML
We now discuss the challenges we are facing in CS 

and the benefits of switching to the AI/ML paradigm. 
In the first dilemma in decision-making, I will show 
the practical invalidity of virtually all one-sided rank 
tests and further illustrate that the so-called right choice 
in our daily life could be just an illusion. In the second 

paradox, we will show how CS can arrive at completely 
opposite conclusions from the same data collected from 
the same patients when different clinical trial designs 
are used. The third paradox is to reveal the controver-
sies in CS interpreting the effect of each patient charac-
teristic. All these suggest the need for a paradigm shift 
from CS to AI/ML. 

A Shocking Paradox in Decision-Making 
Each of us has to make many choices in our lives, from 
the trivial to life-changing. Choices can be emotional 
or rational. Here we are interested in the latter, rational 
choices. We illustrate our point with Efron’s intransitive 
dice (Figure 6).

Efron’s dice are the four dice A, B, C and D with the 
following numerals on their six faces: A displaying {4, 
4, 4, 4, 0, 0}, B with {3, 3, 3, 3, 3, 3}, C having {6, 6, 2, 
2, 2, 2}, and D, {5, 5, 5, 1, 1, 1}. It can be easily proved 
that die A beats die B; B beats C; C beats D, and D beats 
A, all with the same probability of 2/3. Therefore, the 
four dice are equally good.

Now imagine if the numbers represent the evaluation 
scores of the four social systems (or products, medical 
interventions) at six different times or aspects. If we are 
provided with social system options A, B and C without 
knowing the existence of option D, we might think A is 
the right choice, but actually the four choices are equally 
good. The conclusion can be applied to our decision-
making in other situations, such as medical treatments 
of a certain disease. In this case, different dice may 
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present different treatments A, B, C, and D, whereas the 
face values of a die may indicate the responses of dif-
ferent patients to that treatment. Without knowing the 
possible treatment D, we would conclude A is the best 
treatment after we run a clinical trial. However, in fact, 
all four treatments can be equally good. These examples 
seem to make us completely lose confidence in virtually 
any decision we have made or are going to make in our 
daily life. Therefore, the ‘right’ decision might be just 
an illusion in the eyes of the decision-maker[2][19]. 
Note that the effect of any medical treatment and com-
parison conclusions are independent of the availability 
of other treatments, as long as they theoretically exist. 

There are many other sets of intransitive dice consist-
ing of three or more dice.  For instance, the set of three 
dice, Red {3, 3, 3, 3, 3, 6}, Blue {2, 2, 2, 5, 5, 5}, and 
Olive {1, 4, 4, 4, 4, 4} is intransitive. Intransitive dice do 
not have to be 6-faced and the numbers do not have to be 
integers. The set of dice of {1, 4, 4, 4},  {2, 2, 5, 5}, and 
{3, 3, 3, 6}, and the set of {1, 1, 4, 4, 4, 4, 4, 4}, {2, 2, 2, 
2, 5, 5, 5, 5}, and {3, 3, 3, 3, 3, 3, 6, 6} are two more sets 
of intransitive dice. We can replace 2 by a number such 
as 2.3 or 2.8, or even by a random variable distributed 
between 2 and 3, without any impact on the conclusion.

This paradox implies that virtually all one-sided rank 
methods that are commonly used in clinical trials  prac-
tically fail miserably since a one-sided rank-test can at 
most tell treatment  groups involved are different but 
cannot tell which one is better. 

Unresolved Simpson’s Paradox in Clinical 
Trials with Classical Statistics
We are going to use Simpson’s paradox to show you 
that we could arrive at completely opposite (but both 
statistically significant) conclusions on medical treat-
ment effects based on a very same set of data from the 
same patients.

Suppose we have options to run a randomized 
clinical trial with two different treatments on the 
same patients: Option 1, a single large trial with male 
and female patients and Option 2, the same patients 
but treated in two gender-specific trials (Figure 7). 
Given the data in Figure 6, if Option 1 is chosen, we 
will conclude that the Test drug is significantly worse 
than Control with response rate 79% versus 83% (p < 
0.005), respectively. However, if Option 2 is chosen, 
with the same data as in Option 1 we will arrive at a 
completely opposite conclusion: Test drug has statisti-
cally significantly better effects in the both females 
(74% vs 67% with p < 0.005) and the males (93% vs 
87% with p < 0.005). 

Would you conclude that the Test drug fails when 
Option 1 is actually adopted, or will you do subgroup 
analyses? Remember, the population can be further 
divided into smaller groups based on other charac-
teristics of the patients. When should such subgroup 
analyses be stopped? The same dilemma can arise in 
multiregional (global) trials, in which different regions 
will show different treatment effects[19][20]. 
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Paradox in Interpreting Effects from 
Statistical Modelling
Controversies in the interpretation of Associative or 
Causal Effects arise when using a classical statistical 
model, since the effects will depend on attributes (inde-
pendent variables) engaged. For instance, to study how 
the lower body height will affect the body weight, we 
use the initial model (Figure 8) that includes the attri-
butes upper body height (H2) and lower body height 
(H3), and a random error (RE). This initial model can 
be mathematically rewritten as Model 2, and further 
reduced to Model 3 with attributes: the height H1 and 
the lower body height H3. We have to point out that 
Model 1 and Model 3 are mathematically equivalent. 
However, the interpretations of how much H3 affects 
the weight can be very different. Using Model 1, we 
would conclude that “every inch increase in the lower 
body will lead to an a3 pound increase in body weight”, 
while using Model 3, we would conclude with: “every 
inch increase in the lower body will lead to an a3-a2 
pound increase in body weight”. Even when the models 
fit to the data perfectly (RE = 0), different models will 
lead to different conclusions regarding the effect of a 
given factor/attribute. The effect of an attribute depends 
generally on the mathematical form chosen!  

 As pointed out by Chang[2], the reason that differ-
ent models give different interpretations of the effects 
of individual attributes is because the attributes can be 
associated (H1 has already included H3). Likewise, in 
life sciences we often study how phenotypes (human 
behaviors) depend on genotypes, while genotypes are 
associated. Such associations make the interpretation of 

attribute-effect subjective, depending on what genes or 
other attributes one wants to be included in the model.  

We can easily list more controversies in CS, for 
example in hypothesis-test-based adaptive trials, an 
interim smaller p-value can fail to reject the null 
hypothesis, while a larger p-value at the final analysis 
can reject the null hypothesis. 

AI Solutions and Applications in Clinical Trials
The controversies we have discussed above can 

be overcome or reduced through AI/ML, such as 
similarity-based ML approaches (SBML). Before we 
introduce SBML techniques, we discuss the similarity-
principle[1][16][19].

Similarity Principle Based ML
The similarity principle is a hidden principle that we 
most commonly use, whether consciously or subcon-
sciously, in our lives every day. The principle can 
be stated as: similar things or individuals will likely 
behave similarly, and the more similar they are the more 
similarly they behave. Here are three simple examples 
from drug discovery, preclinical research, and clinical 
trials: (1) ligands with similar structures will behave 
similarly or have a similar mechanism of action,  (2) 
the effectiveness of a drug on patients can be some-
what predicted based on its effects on animals, and (3) 
future patients who are similar in disease, gender, and 
age to the clinical trial patients will likely have similar 
responses to the medical intervention.

We all might agree that to qualify as a true scientific 
discovery, a finding must be verifiable. Otherwise, it 
cannot be called science. However, as history is unique, 
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no two events are identical or repeat exactly; even the 
same individual (especially a living being) will change 
constantly. For this reason, we have to group similar 
things together and, considering them as approximately 
the same, study their common or overall behaviors. 
Pharmaceutical scientists treat people with the “same” 
disease to study the overall effect of a drug even though 
individual responses to the drug may be different. 
Indeed, similarity grouping is the basis for scientific 
discovery and prediction and the similarity principle is 
the backbone behind causality. 

We are now ready to illustrate SBML. In a statistical 
approach, we usually link the outcome (dependent) vari-
able) to the attributes (independent variables) directly 
using a preselected model. The success of this approach 
very  much depends on prior knowledge on the model 
selection. Even with good prior knowledge, it is still 
very difficult if not impossible to resolve the previ-
ously mentioned paradoxes.  In contrast,  SBML seeks 
to project the outcomes for patients of interest based 
on the outcomes of similar patients. Specifically, with 
SBML we are predicting a new patient’s outcome based 
on similarity-weighted observed outcomes from similar 
patients. In this approach, the key is to determine the 
similarities among patients. In daily life, such similarity 

is semi-subjectively determined based on prior knowl-
edge. In SBML the similarities are objectively deter-
mined (learned) through training and the importance of 
each attribute in similarity-determination is learned via 
so-called attribute scaling factors (Figure 9).

Mathematically, 
Future Patient Response Y = c∑nSnYn,
Similarity Score can be Sn = exp(-∑kRkdnk )
Here dn is the absolute difference between the future 

patients and the n-th patient in the k-th attribute and Rk is 
the scaling factor associated with the k-th attribute[1][8]. 

SBML shows itself to be more attributes-inclusive 
regardless of statistical significance, and more data-inclu-
sive since less relevant information will automatically be 
weighted less, and being able to deliver the right drug with 
the right amount to the right patient at the right time, natu-
rally a precision medicine approach. Figure 10 shows the 
SBML results in comparison with other statistical model-
ing approaches for a clinical trial with a rare disease[8]. 
SBML outperforms (smaller errors) all other approaches 
across a range of training sample sizes.

As we can see, SBML resolves the Simpson paradox 
by weighting data from different patients differently 
in predicting a new patient’s response based on simi-
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larities between new patients and clinical trial patients 
and by updating the conclusions as new data come in. 
SBML resolves the controversy in modeling the effect 
of an attribute by emphasizing prediction instead of 
interpreting the ill-defined attribute effects. SBML also 
reduces the chance of an intransitive-dice dilemma by 
focusing on predicting the response in each individual 
(precision medicine) instead of the effect on a hetero-
geneous patient group.   

Concerns About AI Technologies
Despite the many positive sides of AI applications, 
there are concerns about the lack of transparency and 
accountability in AI decision-making: the potential for 
biased algorithms, privacy violations, and the use of 
AI in surveillance and decision-making processes that 
could harm individuals or society. 

AI technology such as ChatGPT can easily generate 
fake news and fake data, which might lead to  pseu-
doscience that can be very difficult to detect. Because 
fake stuff is much easier to produce than  real data 
and real science, we could be buried with and eventu-
ally live in such a virtual reality. Where is the balance 
between authenticity and the right of free-speech? This 
is an imperative question we have to consider now! 

Indeed, we expect AI (recommendation systems) to aid 
our choice and decision-making, but at the same time 
we feel such systems take away some of our freedoms. 
The two-way interactions between humans and AI have 
been affecting every aspect of our lives, even unnotice-
ably our view on AI itself.  Recently, people are also 
concerned about job displacement by AI. All these con-
cerns call for regulation and oversight on AI.

Some of us may be worried about our ability to 
change so many aspects of human hardware. We com-
pletely replace malfunctioning organs with healthy 
ones, so, for example, maybe we’ll be able to use medi-
cal equipment to erase undesirable memories in the 
future. As these processes continue, are we making a 
human-machine mixed race? When does a person lose 
his or her identity in the process?  

Concerns about the potential for AI systems to 
operate beyond human control are often referred to as 
the “control problem.” Some of us start to fear: Can, 
and in what ways, might humanized AI (HAI) agents 
surpass human beings? Will we become unnecessary? 
I’d rather answer the question from a social instead 
of a technical perspective as most people have tried 
to do. During the long future course of HAI’s devel-
opment, we humans will develop emotions towards 
HAI agents as they live with us on a daily basis. 
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We will not discriminate against “anyone” because 
of race, color, gender, sexual orientation, or origin 
(machine-made or not); all that will matter are time 
and intellectual interactions, be they technical or 
emotional. The concept (connotation and denotation) 
of a human being, like all other concepts, is subject 
to the dynamics of evolution. Before we can develop 
the full capacity of HAI, our societal view - our defi-
nition - of mankind will have to experience dramatic 
modifications. HAI agents will be recognized as the 
machine-race of humankind. On one hand, HAI will 
move closer and closer to human intelligence. On 
the other hand, humankind becomes more and more 
accepting of machine-kind. The two parties will meet 
and unite in a middle way[2]. Technically, if super AI 
surpassing human beings  is possible, there is no rea-
son to believe that we all might already be super-AI 
made human beings. 

Summary and Discussion
AI/ML has been used in pharmaceutical discovery 
and development since the 1990’s[14][21]. It can help 
drug discovery and development, health management, 
improving people’s health and QOL. Recently the FDA 
reported a summary of regulatory submissions that 
involve AI and ML terms in different therapeutic areas 
(Figure 11). However, the applications of AI in clinical 
trials are limited today, and one of main reasons is that 

current statistical strategies implemented in the regula-
tory guidance are predominantly based on CS type-I 
error control. Adopting this approach, we are facing 
even bigger challenges than we’ve ever faced before. 
For, on the one hand, as the available drugs become 
ever more effective, the diminished efficacy margin for 
improvement requires an impractically larger sample 
size for clinical trials so as to control the type-I error 
and maintain a sufficient power for the hypothesis test; 
on the other hand, as awareness of disease heteroge-
neities and needs for precision medicine increase, the 
sample size available for each specific disease trial 
becomes even smaller. To solve this problem effec-
tively requires a paradigm shift: a focus on prediction 
of drug effects (efficacy and safety) instead of type-I 
error control. For this, AI/ML provides a viable solu-
tion, as we have illustrated with SBML. 

To accelerate the applications of AI/ML in the entire 
pharmaceutical industry landscape, there are additional 
barriers that need to be overcome: (1) the lack of basic 
understanding of AI technologies, (2) data privacy and 
security, (3) limited data availability and quality, (4) the 
need for regulatory clarity or guidance on AI applica-
tions. All these barriers generate concerns of business 
risk and abide a general resistance to change.

To overcome the barriers, the joint effects of 
industry, academics and government are needed. 
Among them, government guidance plays a crucial 
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role. Recently, the FDA moved toward a new, tailored 
review framework for artificial intelligence-based 
medical devices[22]. The CDER established an AI 
Steering Committee in 2020 to facilitate effective use 
and sustainment of AI in CDER’s decision-making 
and operations. Two discussion papers to spur con-
versation about AI and ML in drug development 
& manufacturing with the goal of developing and 
adopting a flexible risk-based regulatory frame-
work that promotes innovation and protects patient 
safety[23][24]. 

Strategically, to speed up AI application in clinical 
trials and reduce the cost and time to market we can 
start from existing studies and early clinical trials, 
and gradually move to new pivotal trials. In so doing 
we ought to proactively work with regulatory agen-
cies, synergizing AI with other innovative approaches 
such as precision medicine,  adaptive clinical trials, 
clinical trial simulation, real-word experiences, and 
stagewise market authorization with enhanced phar-
macovigilance. At the same time, we should exercise 
AI caution to avoid pseudoscience.

No doubt, data scientists with hand-on AI/ML 
knowledge are very much desired. Chang[1] compre-
hensively discusses different methods in supervised 
and unsupervised learning, reinforcement learning, 
evolutionary learning and swarm intelligence.  For 
most methods, each chapter of the book provides 
examples of applications using R. The chapter, Appli-
cations of AI in Medical Science and Drug Develop-
ment, is a comprehensive review of applications of 
different AI methods in drug discovery, in cancer 
prediction using microarray data, as well as in medi-
cal image analysis, healthcare, clinical trials, and drug 
safety monitoring. Many different AI methods can 
be used for the same application problems and many 
different application problems can be solved using 
the same AI method. The R programs for the book 
are available on www.statisticians.org. Beyond these 
weak AI approaches, Humanized AI (HAI) as strong 
AI, in a narrow sense, embodies the development of 
humanized assistants, especially for seniors. In a broad 
sense HAI is seen as a new race of human beings, the 
machine-race human. To stay at the forefront of HAI, 
see my recent book: Foundation, Architecture, and 
Prototyping of Humanized AI[2].
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1 Introduction
In the pharmaceutical industry, the use of artificial in-

telligence (AI) has seen consistent growth over the past

decade. This rise is attributed to major advancements

in statistical machine learning methodologies, compu-

tational capabilities and the increased availability of

large datasets. AI techniques are applied throughout

different stages of drug development, ranging from

drug discovery to post-marketing benefit-risk assess-

ment. Kolluri et al. [1] provided a review of several

case studies that span these stages, featuring key ap-

plications such as protein structure prediction, success

probability estimation, subgroup identification, and

AI-assisted clinical trial monitoring. From a regulatory

standpoint [2], there was a notable uptick in submis-

sions incorporating AI components in 2021. The most

prevalent therapeutic areas leveraging AI were oncol-

ogy (27%), psychiatry (15%), gastroenterology (12%),

and neurology (11%).

The paradigm of personalized or precision medicine

has gained significant traction in recent research, partly

due to advancements in AI techniques [3]. This shift

∗The first and second authors contribute equally.
†Corresponding author: rqzhu@illinois.edu

has had a transformative impact on the pharmaceutical

industry. Departing from the traditional “one-size-fits-

all” model, personalized medicine incorporates various

individual factors, such as environmental conditions,

lifestyle choices, and health histories, to formulate cus-

tomized treatment plans. By utilizing sophisticated

machine learning algorithms, clinicians and researchers

are better equipped to make informed decisions in

areas such as disease prevention, diagnosis, and treat-

ment selection, thereby optimizing health outcomes

for each individual [4, 5].

In this article, we explore a range of methods and

algorithms in the field of personalized medicine. While

these techniques share the overarching aim of crafting

personalized treatment plans, they differ in terms of

problem formulations and practical applications. We

delve into specific examples within the healthcare sec-

tor, categorizing them as either established in research

and practice, or as aspirational approaches with po-

tential for significant impact. The article concludes

with a discussion of pertinent challenges and outlines

avenues for future research.
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2 Methods and Applications

2.1 Optimal Treatment Sequence

Dynamic Treatment Regime Dynamic Treatment

Regime (DTR) represents a cutting-edge paradigm in

the realm of personalized medicine, aiming to tailor

medical interventions to individual patients’ evolving

health status [6]. Within the context of clinical re-

search, data concerning a DTR are usually collected

from multi-stage clinical trials or longitudinal obser-

vational studies on the disease of interest [7]. These

studies often involve a finite number of decision stages.

An optimal DTR aims to find a sequence of decision

rules that assign treatments at each stage based on a

patient’s baseline characteristics and historical infor-

mation.

Suppose we have a pre-specified finite T decision

points, indexed by t = 1, 2, . . . , T . Let St ∈ Rp repre-

sent all related patient characteristics at time t, such

as age, gender, and lab results, which may vary across

time points and reflect the patient’s current condi-

tion. The treatment given at time t is denoted by

At ∈ A, which may include drug choice and/or dosage

selected from a possible set of treatments A, which

could be either discrete or continuous. The poten-

tial treatment trajectory up to point t is denoted

by Āt = (A1, A2, . . . , At), and S̄t = (S1, S2, . . . , St)

represents the cumulative information of the patient

leading up to t. Realizations of such a treatment

path and accumulated patient data are denoted as

āt = (a1, a2, . . . , at) and s̄t = (s1, s2, . . . , st), respec-

tively.

At each decision point, we further observe an imme-

diate reward Rt that may depend on all the previous

history leading up to t. The immediate reward serves

as an indicator of the individual’s response to the se-

lected treatment, where a larger reward signifies a more

favorable response. Hence, the collected dataset is of

the form {S1
i , A

1
i , R

1
i , S

2
i , . . . , S

T
i , A

T
i , R

T
i , S

T+1
i }ni=1,

which comprises n i.i.d. trajectories with T deci-

sion points. The objective is to identify the opti-

mal DTR that maximizes the cumulative reward, i.e.,

R =
∑T

t=1 R
t, from t = 1 to T . Under certain scenar-

ios, it is also possible to only observe the final reward

R at the last stage, e.g., event-free survival or overall

survival. In either case, the goal is to maximize R by

choosing a sequence of decisions.

A DTR is defined as π = (π1, . . . , πT ), which forms

a sequence of decision rules to treat a patient over

time. The decision rule at each time point t, πt, can

be thought of as a mapping from a patient’s history S̄t

to the available treatment option set A. The optimal

DTR π∗ = (π∗
1 , π

∗
2 , . . . , π

∗
T ) is defined as the DTR that

achieves the maximum expected reward, i.e., Rπ =

E(
∑T

t=1 R
t
πt
) ≤ E(

∑T
t=1 R

t
π∗
t
) = Rπ∗ for all π.

Q-learning To estimate the optimal DTR, Q-

learning is widely used, particularly in the finite-

horizon setting where decision stages are limited and

predetermined [8, 9, 10, 11, 12]. Q-learning adopts a

backward induction mechanism, starting its estimation

at the last decision point and working its way back to

the beginning.

We begin at the final stage T and posit models

such as linear models or random forests to estimate

the QT (s̄
T , āT ) [10]. The observed cumulative reward

∑T
t=1 R

t serves as the response variable, while s̄T and

āT−1 are used as covariates. Once the model is esti-

mated, we identify the treatment π̂∗
T that maximizes

the expected reward for a patient at decision point

T , given their historical profile s̄T , āT−1. To find the

2
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optimal treatment regime, we work backward, and

treat the already-estimated Q-function value as the

new response variable for previous decision points. Fol-

lowing similar steps, we estimate π̂∗ = (π̂∗
1 , . . . , π̂

∗
T )

as the overall optimal treatment regime. For a more

comprehensive discussion, we refer readers to [7].

In a finite-horizon setting, Q-learning has gained

tremendous popularity due to its ease of implementa-

tion and overall strong performance [5]. Nonetheless,

its sensitivity to model misspecification presents a

challenge. If the posited model for Q-functions is mis-

specified, performance may suffer significantly, as the

bias would backpropagate to the very first stage. Var-

ious alternatives and variations have been proposed

to address such limitations. For instance, Advantage

Learning (A-learning, [13]) estimates the optimal DTR

by modeling the difference in outcomes between two

treatment options, making it more robust to model

misspecification [14]. Robust Q-learning [15] intro-

duces data-adaptive techniques for nuisance parame-

ter estimation, tackling both residual confounding and

efficiency loss.

There are also other notable advancements and ex-

tensions in Q-learning, such as statistical inference

for Q-learning based on the asymptotic normality of

estimators [16] and bootstrap methods [17]. [18] de-

veloped a Bayesian framework for finding the optimal

DTR to accommodate prior knowledge and measure

the uncertainty of the estimated DTR. [19] extended

original Q-learning methods to survival outcomes, and

[20] considers high-dimensional settings and variable

selection in Q-learning. For an exhaustive overview,

we direct readers to [5, 7].

Application: Treatment Regime in Perioper-

ative Setting Numerous studies have explored the

application of Q-learning and its variants in clinical

trial settings, aiming to find the optimal DTR from

clinical trial data [10, 21, 22]. To illustrate this, we con-

sider the treatment of early-stage malignant tumors,

which could be surgically removed at this stage. The

perioperative process typically begins with neoadju-

vant therapy, designed to shrink the tumor and thereby

enhance the chances of a successful surgery. Following

the operation, adjuvant therapy is administered to

prevent cancer recurrence.

We can model this as a Q-learning problem with

two decision points. The state variables might in-

clude factors such as tumor stage, resection margin

(R0/R1/R2), pathology, tumor imaging data, and pa-

tient health status. The first decision action, A1, is the

choice of neoadjuvant treatment. The second decision

action, A2, could be two-dimensional, incorporating

both the choice of adjuvant treatment and its dura-

tion (number of cycles). Event-free survival (EFS) can

serve as the final reward. By integrating the corre-

sponding covariates into the Q-learning framework, we

can estimate the optimal treatment sequence for both

the neoadjuvant and adjuvant periods, tailored to the

characteristics of individual patients.

Application: Lines of Therapies for Metastatic

Cancers When treating metastatic cancer, the typi-

cal medical practice is to treat patients with the same

drug until either the disease progresses or the pa-

tient becomes intolerant to the drug. The next-in-line

treatment is then initiated. Identifying a personalized

optimal treatment regime or sequence with the aim of

maximizing a certain metric, such as overall survival,

is of tremendous significance in healthcare. Given the

multiple decision points associated with prescribing

next-in-line treatments, such as drug choice and the

3
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time point to switch to the next-line treatment, Q-

learning becomes a natural fit for tackling this issue.

For example, Zhao et al. [21] illustrated their rein-

forcement learning (RL) model in the context of lines

of chemotherapy for metastatic non-small-cell lung

cancer (NSCLC).

Fast-forward to the era of immuno-oncology, the

narrative has evolved to focus on the personalized op-

timal sequence involving the PD-1/PD-L1 checkpoint

inhibitors: Should they be given as monotherapy or

in combination with other drugs, in what order, and

to which patients? Most major checkpoint inhibitors,

such as pembrolizumab and nivolumab, have been

evaluated either as monotherapy or in combinations in

different lines to treat patients with metastatic NSCLC.

Therefore, existing data may already hold the answers

to these questions. Applying Q-learning and other

appropriate RL methods to the aggregated data could

provide extremely valuable insights for improving the

treatment of these patients.

2.2 Adaptive Clinical Trial Design

Adaptive Clinical Trials Q-learning is primarily

concerned with estimating optimal DTR using pre-

collected datasets. However, adaptive clinical trials

require real-time, data-dependent decision making,

such as selecting treatment arms based on historical

data up to a certain cutoff point [23]. This real-time

utilization of cumulative data is known as the “online

setting”, which stands in contrast to the “offline setting”

in which pre-collected datasets are used [24].

To formalize this problem in the context of adap-

tive clinical trial design, we consider a trial with N

treatment arms. Each arm i is associated with an

unknown probability distribution Di, which describes

the treatment outcomes (efficacy or toxicity) when

assigning that particular treatment to a patient. At

each decision point t, a reward Rt is obtained from the

corresponding distribution Di when treatment arm i

is selected. The objective is to determine the recom-

mendation rule at each decision point based on the

accumulated data. This rule aims to maximize the

expected cumulative reward E[
∑T

t=1 R
t].

Such formulation transforms the adaptive design

into a multi-armed bandit (MAB) problem [25, 26].

The major challenge in solving such a problem lies in

balancing the trade-off between “exploration”, where

less-understood arms are chosen to collect more data

about their distributions, and “exploitation”, where

arms with higher observed cumulative rewards are

chosen to maximize the expected outcome [27]. There-

fore, effective solutions to the MAB problem in the

context of adaptive clinical trials must address this

exploration-exploitation dilemma to achieve optimal

patient outcomes.

Multiarmed Bandit Various methods have been

developed to tackle the MAB, such as the ϵ-greedy

algorithm [28], Thompson sampling [29], and Upper

Confidence Bound [30], among others. The ϵ-greedy

algorithm takes a straightforward approach to the

exploration-exploitation dilemma. With probability

1− ϵ, the algorithm selects the arm with the highest

empirical mean reward observed so far, known as the

“greedy” action. With probability ϵ, it randomly se-

lects an arm, thereby exploring the action space. The

parameter ϵ controls the trade-off between exploration

and exploitation. A higher ϵ promotes more explo-

ration at the cost of immediate reward, while a lower ϵ

focuses more on exploitation. Meanwhile, Thompson

sampling takes a Bayesian approach to the MAB prob-

lem. It maintains a probability distribution over the

4
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expected reward for each arm, updating these distri-

butions as more data are collected. At each round t, a

sample is drawn from each arm’s posterior distribution,

and the arm with the highest sample is selected. The

Upper Confidence Bound (UCB) algorithm selects the

arm with the highest upper confidence bound on its

expected reward. At each time step, it calculates the

upper bound for each arm using both the estimated

mean reward and its uncertainty. The arm with the

highest calculated upper bound is then selected, aim-

ing to minimize long-term regret.

ϵ-greedy is straightforward and computationally ef-

ficient but suffers from constant, often unnecessary,

exploration due to its ϵ parameter [31]. Thompson

sampling provides a more nuanced balance between

exploration and exploitation by incorporating uncer-

tainty through probabilistic models [29]. While this

leads to better performance in complex environments,

it may require greater computational resources, partic-

ularly for complex posterior distributions [32]. UCB

has strong theoretical bounds on regret and is deter-

ministic. However, it makes strong assumptions about

the reward and can be less effective in non-stationary

environments [28].

Several extensions to the original MAB algorithms

have also been proposed to address real-world chal-

lenges, such as the analysis on sample complexity of

MAB [33], MAB under dependent arms [34], MAB

with safety constraints [35, 36], and MAB with multi-

ple objectives [37]. To further incorporate the patient-

specific information to the decision-making process,

contextual bandit framework has been introduced with

additional state variables [38, 39]. Such extension

enables personalized treatment recommendations in

adaptive clinical trials.

In the pharmaceutical setting, the MAB framework

has been employed to study oncology dose-finding

and response-adaptive randomization designs. We

elaborate the first application and refer the readers to

[26] for the latter.

Application: Oncology Dose-Finding One pri-

mary objective of phase I oncology dose-finding trials

is to identify the maximum tolerated dose (MTD)

of the drug candidate to inform the dose level(s) to

be investigated in subsequent phases of development.

They start treating one cohort of patients, usually

of size 3, at the lowest provisional dose level. Upon

observing the data of the cohort, a recommendation

(escalation/stay/de-escalation) is rendered regarding

the dose level at which the next cohort of patients

should be treated according to a certain statistical

design. This process is repeated until the total sample

size is exhausted or certain pre-specified early-stopping

rules are met.

Dose-finding has been an active area of statistical

innovation. One important class of designs is the

model-based designs [40, 41, 42]. These designs postu-

late a parametric form of the dose-toxicity relationship

and utilize the cumulative data to make a dose recom-

mendation. The endpoint in most cases is a binary in-

dicator of the presence of dose-limiting toxicity (DLT)

within a certain period (e.g., 28 days). Patient-level

covariate information can be intuitively incorporated

in the model-based designs [43].

Dose-finding trials are great candidates for apply-

ing the MAB framework due to their sequential and

adaptive nature [44, 45]. Specifically, patients in the

tth cohort are assigned to dose Dt from the set of pro-

visional doses {1, . . . ,K}. The objective is to identify

the dose level that is closest to the pre-specified target
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toxicity rate θ. Mathematically, this can be expressed

as k∗ = argmink |θ − pk|, where pk is the observed

toxicity rate at dose k. We define the reward function

Rt as Rt = −|θ − p̂tDt
|, where p̂tDt

is the estimated

toxicity rate of the selected dose for cohort t. By em-

ploying suitable MAB algorithms, the optimal dose

level can be effectively identified.

In recent years, the need for precision medicine is

emerging more and more frequently with the develop-

ment of new cancer treatments like T-cell engagers and

cell therapies. Dosing of such therapies might need to

be more personalized to avoid adverse events known to

the mechanism of action, such as the cytokine release

syndrome. The contextual bandit framework can be

useful to incorporate patient-level information in this

case [39].

2.3 Mobile Health for Enhanced

Patient Management

Mobile Health (mHealth) Section 2.1 details sta-

tistical methods for estimating optimal DTRs with a

finite number of decision points. However, with the

recent advancement of sensor technologies and wear-

able devices, it has become possible to record personal

health information over an extremely long period with

the help of mHealth technologies [46]. Consequently,

leveraging such data to formulate personalized treat-

ment plans, addressing chronic diseases and various

health issues across an infinite horizon with numerous

decision points, has emerged as a prominent research

area in recent years.

To date, mHealth has been used extensively in man-

aging various health-related conditions including stress,

depression, and other chronic diseases such as dia-

betes and cardiovascular diseases. It enhances patient

monitoring and treatment for healthcare providers

[47]. In mHealth settings, the data follows a simi-

lar pattern as Section 2.1, which also consists of n

i.i.d trajectories with T decision points, in the form

of {S1
i , A

1
i , R

1
i , S

2
i , . . . , S

T
i , A

T
i , R

T
i , S

T+1
i }ni=1. Com-

pared with the finite horizon, several key differences

should be noted.

First, the Markov property is assumed under the in-

finite horizon, meaning the next state and reward

depend only on the current state and action, i.e.,

P (St+1 = st+1|S̄t = s̄t, Āt = āt) = P (St+1 =

st+1|St = st, At = at). Following the Markov prop-

erty, the policy π is a function of the current state

only, mapping it to a distribution on the action space

where π(s) = P (At = a|St = s). Finally, a discount

factor γ ∈ [0, 1) is introduced to ensure that the sum

of rewards
∑∞

k=0 γ
kRt+k remains finite. A larger γ

would place more weight on future rewards.

We generally model the whole process as a Markov

decision process (MDP). An MDP is defined as a tuple

< S,A,P, R, γ >, where S is the state space, A is

the action space, P : S × A → ∆(S) is the unknown

transitional kernel, R : S × S ×A → R is a bounded

reward function, and γ ∈ [0, 1) is the discount factor.

A policy π is a mapping from the state space to the

action space π : S → A. The goal is to find an optimal

policy π∗ that maximizes the expected discounted sum

of rewards Eπ[
∑∞

k=1 γ
k−1Rt+k|St = s].

Reinforcement Learning (RL) When the number

of decision points approaches infinity, the task of deter-

mining the optimal policy transforms into a reinforce-

ment learning (RL) problem [48]. In RL literature, we

define the value function and state-value function for

a given policy π as V π
t (s) = E[

∑∞
k=0 γ

kRt+k|St = s],

and Qπ
t (s, a) = E[

∑∞
k=0 γ

kRt+k|St = s,At = a]. The

only difference between the V -function and Q-function

6
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is whether we specify the action at time t.

Based on these definitions, we can treat both the

V -function and Q-function as measures of how good a

policy is for a patient in any given state. By finding

a policy that maximizes these quantities, we essen-

tially achieve the goal of constructing a personalized

treatment plan. However, this is not trivial given the

dynamics over a long period, which can be difficult

to model. Hence, the Bellman optimality equation

becomes an important tool.

We first define the optimal value function as V ∗(s) =

maxπ V
π(s), and the optimal Q-function is similarly

defined as Q∗(s, a) = maxπ Q
π(s, a). These func-

tions are interrelated through the equation V ∗(s) =

maxa Q
∗(s, a). The policy π∗ that maximizes these

functions is referred to as the optimal policy, denoted

by V π∗
(s) = V ∗(s) and Qπ∗

(s, a) = Q∗(s, a). Both

V ∗(s) and Q∗(s, a) are unique and must satisfy the

corresponding Bellman optimality equation [49]:

V ∗(s) = max
a

ESt+1|s,a
[
Rt + γV ∗(St+1)|St = s,At = a

]
,

Q∗(s, a) = ESt+1|s,a
[
Rt + γmax

a′
Q∗(St+1, a′)|St = s,At = a

]
.

Thus, V ∗(s) and Q∗(s, a) serve as the fixed points of

their respective Bellman optimality equations, and π∗

can be solved accordingly.

One major challenge in solving the Bellman opti-

mality equation arises when the dataset is collected

under a policy that diverges from the optimal policy

π∗, while the Bellman optimality equation requires

that actions be generated based on π∗ to be valid [50].

Such distribution mismatch is the dominant case in

mHealth setting and introduces both theoretical and

computational challenges in finding the optimal policy.

To tackle these challenges, Greedy Gradient Q-

learning (GGQ) [51] and V-learning [52] have been de-

veloped, formulating estimation equations based on the

Q-function and V-function, respectively. GGQ has the

advantage of enabling the construction of confidence

intervals for the mean outcome difference between the

optimal policy and any alternative policies. However,

its estimation equation contains a non-smooth max

operator, making estimation difficult without large

amounts of data [6]. Furthermore, GGQ consistently

selects the best arm at each decision stage, often re-

sulting in sub-optimal outcomes in complex dynamic

environments [53]. In contrast, V-learning adopts

a stochastic policy distribution and avoids the non-

smooth max operator, leading to more stable optimiza-

tion. The stochastic policy class also makes V-learning

more robust in the face of unexpected situations [54].

While V-learning’s stochastic policy class offers flex-

ibility in action selection, it can degenerate into a

uniform distribution in a large action space. To miti-

gate this, pT-learning was introduced, confining the

support set to near-optimal actions at each decision

point and allowing sparsity control through a tuning

parameter [54]. Extending this, the Quasi-optimal

Learning framework adapts the method to continuous

action spaces, making it applicable to challenges such

as optimal dose-finding over an infinite horizon [55].

Application: Glucose Management for Diabetes

Glucose management in diabetes is a key mHealth

application. By continuously monitoring the glucose

level, food intake, and physiological information, a

series of just-in-time interventions, such as insulin

injection, can be delivered to patients to improve long-

term health outcomes [56]. An application example

is the OhioT1DM study [57], featuring 12 Type 1

Diabetes patients with continuous glucose monitoring

(CGM) data, self-reported activity logs such as meal

intakes and sleep status, and insulin injection dosages

and timing over eight weeks. Figure 1 provides a

7
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Figure 1: OhioT1DM Data: A longitudinal observation
of a patient

snapshot of the fluctuation of glucose level, insulin

injections, meals, exercise, and heart rate of a patient

during a 100 hour time interval.

As glucose dynamics can vary significantly between

individuals, clinicians aim to personalize insulin injec-

tion doses based on each patient’s health status [58].

Our objective is to develop a personalized treatment

policy that optimally controls glucose levels for each

individual.

We define the state variables as health status mea-

surements for individual patients, and the action space

refers to the insulin injection dose levels at each deci-

sion point. The glycemic index serves as the reward

function, measuring the proximity of glucose levels

to the normal range [59]. By applying methods like

V-learning, pT-learning, and Quasi-optimal learning,

we can determine an optimal policy for controlling

each patient’s glucose levels. Implementation details

are available in [52, 54, 55].

3 Discussion
We have introduced a wide range of methods and

algorithms in personalized medicine. Under a finite

horizon, methods like Q-learning and its variants, as

well as MAB algorithms, have matured considerably in

finding optimal DTRs and guiding the design of clinical

trials. Nevertheless, these finite-horizon models have

underlying assumptions that could be further relaxed

to enhance their applicability.

Confounding and causality are critical issues in pol-

icy learning. Current methods often assume a fully ob-

servable environment; however, the true policy may be

influenced by unmeasured confounders such as genetic

factors [24]. Incorporating recent advances in causal

inference to address these unmeasured confounders

[60, 61] has emerged as a promising research direction

[62, 63, 64].

In offline settings like Q-learning, where data is pre-

collected and no online interaction with the environ-

ment occurs, algorithms may suffer from inadequate

coverage of state-action pairs. This can lead to impre-

cise estimations of value functions [50, 65]. Hence, the

pessimism principle is advised to limit the learned pol-

icy from visiting poorly-covered states, ensuring safety

and avoiding undesired behaviors [66, 67]. Balancing

pessimism and policy optimality represents another

interesting research avenue [68].

Furthermore, the performance of an estimated DTR

is assessed by its value function. Thus, it’s essential

to quantify uncertainties and conduct statistical infer-

ences related to the value function. This challenge is

closely tied to an emerging field of research known as

off-policy evaluation (OPE), which aims to evaluate

the value of a certain policy based on data generated

from a different policy [69]. Notably, constructing con-

fidence intervals for these value functions [70, 71] and

evaluating the value disparity between a particular

policy and the optimal one are also pivotal research

questions [72].

Under infinite horizons, in addition to the challenges

present in finite horizons, further issues emerge that re-

quire extensive investigation. For example, the Markov

property is a fundamental assumption under an infi-

8
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nite horizon. In mHealth settings, however, outcomes

may be influenced by decisions made before the imme-

diately preceding time point. Developing methods to

test the validity of the Markov property [73], and to

address violations in the data-generating process, is

an important extension to existing frameworks.

Lastly, survival data is common in mHealth appli-

cations. Such data often includes treatment and co-

variate information that may be censored in follow-up

stages, complicating policy learning. Although recent

advancements in optimal policy estimation have been

made within the survival data framework [19, 74, 75],

adapting these approaches to an infinite horizon re-

mains a challenge.
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1. A New Era of Statistics and Data Science 
in Healthcare
Nowadays, the healthcare industry has seen a rapidly 
emerging fields through statistical and technologi-
cal advancements. The key ingredient is data science, 
where big data, real-world data (RWD), digital innova-
tion, and artificial intelligence (AI) are key elements. 

“Artificial intelligence (AI) and machine learning are 
critical to the U.S. Department of Health and Human Ser-
vices (HHS) in accomplishing our mission to enhance the 
health and well-being of all Americans.” [1] 

Specifically, AI “enables computer systems to perform 
tasks normally requiring human intelligence.” Within the 
scope of AI, machine learning (ML) is “a type of artificial 
intelligence, gives computers the ability to learn without 
being programmed by humans.” Within the scope of ML, 
“deep learning (DL) systems learn from large amounts of 
data to subsequently recognize and classify related, but 
previously unobserved, data.” [2] 

On the other hand, the European Commission pro-
posed the first EU regulatory framework for AI. The 
proposed regulatory framework on AI included a number 
of specific objectives: “ensure that AI systems placed on 
the Union market and used are safe and respect existing 
law on fundamental rights and Union values; ensure legal 
certainty to facilitate investment and innovation in AI; 
enhance governance and effective enforcement of exist-
ing law on fundamental rights and safety requirements 
applicable to AI systems; facilitate the development of a 
single market for lawful, safe and trustworthy AI applica-
tions and prevent market fragmentation.” [3]

Recently, in the latest amendments to the Commis-
sion’s proposal, the European Parliament would like to 
see that “AI systems are overseen by people, are safe, 
transparent, traceable, non-discriminatory, and envi-
ronmentally friendly.” Given the broad spectrums of 
AI applications, the definition of AI can be “designed 
to be technology-neutral, so that it can apply to the AI 

PERSPECTIVES OF THE MOST VALUABLE DATA & 
INSIGHTS INITIATIVE AWARD WINNER

systems of today and tomorrow.” [4] “The EU wants 
to regulate AI to ensure better conditions for the devel-
opment and use of this innovative technology. AI can 
create many benefits in improved healthcare and other 
aspects in terms of social determinants of health [5, 6]

2. Big Data and Real-World Data  
in Healthcare
To conduct sophisticated analyses or apply complex algo-
rithms, the input data, ideally of high quality, are critical. 
As scientific discoveries and methodologies continue to 
advance, RWD and their companion technologies, such 
as digital and AI, which often employ statistical methods 
and data science tools, offer powerful ways for pharma-
ceutical industry to generate evidence. 

Since the 21st Century Cures Act in 2016, the U.S. 
Food and Drug Administration has defined real-world 
evidence (RWE) as “evidence generated from real-world 
data (RWD) outside randomized controlled trials (RCTs).” 
Subsequently, “real-world evidence (RWE) is the clinical 
evidence about the usage and potential benefits or risks 
of a medical product derived from analysis of RWD.” [7] 

The European Commission, on the other hand, is 
establishing an overarching and comprehensive European 
Health Data Space (EHDS) for the purpose of regulation. 
The EHDS “is a health specific ecosystem comprised of 
rules, common standards and practices, infrastructures and 
a governance framework…” Its aims include: “empower-
ing individuals through increased digital access to and 
control of their electronic personal health data, at national 
level and EU-wide, and support to their free movement, 
as well as fostering a genuine single market for electronic 
health record systems, relevant medical devices and high 
risk AI systems; providing a consistent, trustworthy and 
efficient set-up for the use of health data for research, 
innovation, policy-making and regulatory activities.” [8]

Central to and critical for generating and harnessing 
big data and RWD, as well as for adopting and deploy-
ing AI is digital medicine, which “describes a field, 
concerned with the use of technologies as tools for 
measurement, and intervention in the service of human 
health.” Below can be why digital medicines can be ripe 
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for the adoption of AI, since “digital medicine products 
are driven by high-quality hardware and software that 
support the practice of medicine broadly, including 
treatment, recovery, disease prevention, and health 
promotion for individuals and across populations.” [9]

3. An Award-Winning Book
We have recently published a book "Real-World Evi-
dence in a Patient-Centric Digital Era", that provided 
methods, perspectives, examples, and insights on the 
innovative application of RWE to meet patient needs and 
improve healthcare, with a focus on the pharmaceutical 
industry. [10, 11] The authors have presented an overview 
of key analytical issues and best practices. Special atten-
tion is paid to the development, methodologies, and other 
salient features of the statistical and data science tech-
niques that are customarily used to generate real- world 
evidence. It provides a review of key topics and emerging 
trends in cutting- edge data science and health innova-
tion. Several key highlights and special features include 
the following: (1) Provided an overview of statistical and 
analytic methodologies in RWE to generate insights on 
healthcare, with a special focus on the pharmaceutical 
industry. (2) Examined timely topics of high relevance 
to industry such as bioethical considerations, regulatory 

standards, and compliance requirements. (3) Highlighted 
emerging and current trends and provides guidelines for 
best practices. (4) Illustrated methods through examples 
and use- case studies to demonstrate impact. (5) Provided 
guidance on software choices and digital applications for 
successful analytics. [10]

Table 1 lists the topics in the entire book. Through 
extensive multi-year efforts, this cutting-edge project 
is a timely development for the biopharmaceutical 
medical researchers, health technology innovators, data 
scientists, epidemiologists, population health analysts, 
health economists, outcomes researchers, policymakers, 
and analysts in the healthcare industry.

This book was jointly written by several authors and co-
edited by Drs. Kelly H. Zou, PhD, PStat®, FASA, Lobna 
A. Salem, MD, MBA, and Amrit Ray, MD, MBA. [10] 
The authors have won Reuters Events Pharma USA’s Most 
Valuable Data & Insights Initiative Award. Announce-
ments by Reuters Events Pharma USA also included being 
the finalists of two additional awards, including digital 
innovation and partnerships in emerging markets. [11]

4. AI Algorithms and Applications in Pharma
In three recent publications, we have explored com-
monly used algorithms in the data science community, 

Table 1. List of topics in Zou et al. (2022) . [10]

Chapter Topic

Preface Real-world evidence and digital innovation to combat noncommunicable diseases

1 Real World Evidence Generation

2 Applications of RWE for Regulatory Uses

3 Ethics & Bioethics

3 Real- World Data, Big Data and Artificial Intelligence: Recent Development and Emerging Trends  
in the European Union

4 Patient centricity and Precision Medicine

5 Health Information Technology

6 Digital Health Technologies and Innovations

7 Economic Analysis and Outcome Assessment

8 Partnerships and Collaborations

9 Global Perspective: China Big Data Collaboration to Improve Patient Care

10 The Future of Patient-Centric Data-Driven Healthcare
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as well as the type of AI examples in the pharm industry, 
as well as best practices in digital innovations through 
“bring your own device” (BYOD) designs. [12-14]
5. Benefits and Impact via Patient-Centricity 
In terms of benefits through innovative patient-centric 
statistical and data science methodologies and algorithms, 

practitioners may evaluate medication adherence, patient 
preference, patient voice, patient journey, and precision 
medicine, and patient engagements to better understand 
the complex set of predictors and behaviors of patients 
within the healthcare system. To adequately explore and 
make inferences on these outcomes, a high-quality data 

Figure 1. Commonly used ML algorithms. [12]
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framework is necessary, especially for regulatory use, 
given the fact that RWD is typically from routine clinical 
practice with varying degrees of “messiness” within such 
data. [15] For example, adherence to medication is one 
of the most complex behaviors of patients. Strategies for 
measuring and improving adherence require innovative 
and sophisticated “beyond-pill” solutions, which new 
technologies may help. [16]

Finally, RCTs alone may not adequately address the 
complex intersection of many diseases and comorbid 
conditions, which are patient centric and require us to find 
alternate ways of getting evidence to support such gaps. 

[17] Big data, RWD, digital and AI can support patients 
for generalizability across the spectrum of various charac-
teristics and comorbid conditions, by taking into account 
the tradeoff between potential benefits and risks, as well as 
the data privacy rules such as Health Insurance Portability 
and Accountability Act of 1996 (HIPAA) in the United 
States, [18] General Data Protection Regulation (GDPR) 
in the European Union, [19] cross-border data transfers, 
[20] and an AI bill of rights. [21] Most recently, The U.S. 
White House’s executive order on AI reshapes the uses of 
AI in healthcare, ranging from drug/therapy research to 
hospital/clinical care.  AI will play increasing roles in the 6 

 

 

Figure 2. Commonly used ML algorithms in the pharmaceutical industry. [13] 
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Figure 3. Best practices in digital applications via BYOD designs. [14] 
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biopharma industry, along with issues associated with eth-
ics, transparency and trustworthiness. [22]
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Abstract
Biomarkers are critical in predicting patient’s clinical 
response, and therefore are an integral part of rational 
development of drug and medical devices. While the 
advancement of technology creates unprecedented oppor-
tunity to perform biomarker discovery using novel data 
modalities such as single cell RNA seq, proteomics, etc., 
innovative statistical methods are often also required to 
analyze these complex datasets. In this paper, we present 
a graphical model (Bayesian network) based causal infer-
ence framework for high dimensional clinical biomarker 
discovery. In addition, under the Bayesian network analy-
sis paradigm, we also present the metric CCRR (Condi-
tional Causal Relative Risk) and the inference procedure 
to determine its statistical significance, which can be easily 
implemented using standard software packages such as R.

Introduction 
Biomarkers are critical to the rational development of drug 
and medical devices [1].  A predictive biomarker is defined 
as a molecular, histologic, radiographic, or physiologic 
characteristics that is predictive of the propensity of an 
individual or group of individuals to experience a favor-
able or unfavorable effect from the exposure to a medical 
product or environmental agent; whereas a prognostic bio-
marker is used to identify the likelihood of a clinical event, 
disease recurrence, or disease progression in patients with 
a disease or medical condition of interest [2].

Predictive biomarkers can play an important role in 
the devising enrichment strategies in the design and con-
duct of clinical trials, particularly in the pre-registration 
stage of drug development. Prioritizing enrollment of 
participants with desirable baseline levels of a predictive 
biomarker enables detection of a clearer treatment effect 
by enriching subgroups of subjects that are more likely to 
benefit from the treatment [3]. 

Prognostic biomarkers are regularly used to set trial 
entry and exclusion criteria to identify higher-risk 
populations. Incorporation of prognostic biomarkers 
into clinical trial design could increase the statistical 
power of a trial by increasing the number of events 
rather than the sample size.

USING BAYESIAN NETWORK TO IDENTIFY 
STATISTICALLY CAUSAL CLINICAL BIOMARKERS 
IN HIGH DIMENSIONAL DATASETS

While the importance of a biomarker strategy during 
clinical development is widely recognized, robust identifi-
cation of candidate biomarkers remains a challenging task. 
First, the complexity of human disease such as cancer is 
reflected in the diverse molecular and phenotypic finger 
prints of individual patients [4]. As a result, a large num-
ber of possible covariates, such as patient demographic 
information and laboratory assay results (e.g. high dimen-
sional genomic data) are often required to be explored 
for the discovery of novel clinical biomarkers. The high 
dimensionality of feature space, compounded by the small 
sample size (N) for the available translational/clinical trial 
datasets used by the pharmaceutical industry to discover 
clinical biomarkers, poses tremendous challenges in the 
proper control of statistical type I and type II errors. 

To overcome the analytical challenges introduced by 
the small N of the clinical biomarker discovery cohort, 
observational datasets such as Real-world evidence 
(RWE), have gained much momentum in the scientific 
community for biomarker identification. However, obser-
vational studies are often subject to confounding factors 
if the expression of biomarkers is significantly associated 
(due to random chance or due to underlying biology) with 
demographic variables that are also predictive of clinical 
response. In the presence of confounding factors, statisti-
cal methods such as propensity score matching [5] are 
required to select the subset of candidate biomarkers that 
are directly influencing the response of interest indepen-
dent of the confounding variables, and hence more likely 
to be replicated in the future validation exercise. 

Traditional confounder adjustment methods such 
as propensity score are widely used for confirma-
tory biomarker studies, where there is only one single 
well defined treatment/exposure variable (i.e. the bio-
marker of interest). However, in high dimensional bio-
marker discovery studies, where every feature should 
be treated as a potential exposure variable and needs 
to be adjusted for the associated confounders, methods 
such as propensity score adjustment often can not be 
directly applied. Alternatively, graphical model based 
de-confounding strategies such as Bayesian networks 
can be used as the basis for an alternative set of non-
experimental, statistical techniques for causal inference 
in the high dimensional biomarker discovery setting. 
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First formalized and developed by [6], Bayesian 
networks have now become widely applied in the 
social and natural science applications. By definition, 
a Bayesian network is a representation of a joint prob-
ability distribution, which consists of two components: 
E, which is a directed acyclic graph (DAG) whose ver-
tices correspond to the random variables X1, …, Xn; 
and θ, which describes a conditional distribution for 
each variable, given its parents in E. Together, these 
two components specify a unique distribution on X1, 
…, Xn. The graph E represents conditional indepen-
dence assumptions that allow the joint distribution to 
be factorized, economizing the number of parameters. 
The graph E encodes the Markov assumption, which 
states that each variable Xi is independent of its non-
descendants, given its parents in E [7].

To fully specify a joint distribution, we also need to 
specify each of the conditional probabilities in product 
form. If each variable X and its parents U1, …, UK 
are treated as continuous variables, a natural choice 
for multivariate continuous distributions is Gaussian 
distributions, which can be represented in a Bayesian 
network by using linear Gaussian conditional densities. 
Alternatively, features can also be encoded into ordinal 
variables, in which case, a multinomial distribution will 
be used. Although Bayesian networks are generally 
considered to encapsulate conditional dependencies 
(and independencies) between variables rather than nec-
essarily implying causal relationships between them, 
a causal interpretation can be ascribed to a Bayesian 
network under certain assumptions [7-11].

In this paper, we apply a Bayesian network based 
approach to perform de-novo biomarker discovery 
using the Accelerating Medicines Partnership-Alzheim-
er’s Disease [12] proteomics dataset with the aim of 
identifying Alzheimer’s Disease associated prognostic 
protein biomarkers in the presence of confounders.

Data and Methods

AMP-AD Proteomics Dataset

516 dorsolateral prefrontal cortex (DLPFC) tissues from 
control, asymptomatic AD (AsymAD), and AD brains 
from the Religious Orders Study and Memory and Aging 
Project (ROSMAP) [13-15] and the Banner Sun Health 
Research Institute [16] by TMT-MS-based quantitative 
proteomics [17]. After data processing and outlier removal, 
a total of 488 subjects (n=182 AD, 200 AsymAD, and 106 
controls) and 7863 proteins are used to construct a Bayes-
ian network for protein biomarker discovery in predicting 

AD severity score, CERAD (Consortium to Establish a 
Registry for Alzheimer’s) score. [18]

The set of patient-level confounding variables 
included in this study include: APOE genotype [19] 
(categorical), gender (binary), postmortem interval 
(PMI, continuous), study cohort (binary), and age at 
death (continuous).

Network Construction
The nodes fed into the Bayesian network contain the 
following variables: patient level confounding variables 
(APOE genotype , gender,  PMI, study cohort , and age 
at death), the response variable to be predicted (CERAD 
score),  and the expression values for 7863 proteins. The 
conditional likelihood of the variables given their parents 
is represented in a Bayesian network by using linear 
Gaussian conditional densities. To avoid biologically unin-
terpretable directional edges in the network, we ban the 
following edges from appearing in the network: (1) edges 
that point from CERAD score to proteins, and (2) edges 
that connect CERAD score to confounding variables. 

Network Optimization
We optimize the Bayesian network using a Monte Carlo 
Markov chain. The steps are as follows: First, a random 
network structure using all the variables is initialized. 
Next, a node from the network is randomly selected. 
Then, one of the following three operations is performed 
on the selected node: (1) adding an edge between the 
selected node and a potential parent node if the selected 
node has no parents; (2) deleting the edge from an exist-
ing parent; or (3) reversing the direction of the edge 
between the selected node and one of its existing parents. 
Finally, the post-operational likelihood for the selected 
node is calculated. To do this, a random number from the 
continuous  uniform distribution (0, 1) is chosen; if the 
random number is smaller than the Metropolis-Hasting 
criterion, then the new network configuration is accepted; 
otherwise, we revert back to the original configuration. 
After the initialization step, the process is repeated many 
times until the network likelihood stabilizes.
Network Confidence Score Derivation and 
Consensus Network Generation 

First, an ensemble of 200 networks are generated 
through bootstrap sampling of the original data. Next, 
a list of all possible edges and the associated nodes 
(i.e. in the form of Node A-> Node B)  across all the 
bootstrap networks is created. The statistical confidence 
of each unique edge (i.e. a directional relationship 



BIOPHARMACEUTICAL REPORT FALL 2023 35

exists between the two nodes) on the list is estimated 
by counting the number of times it appears among the 
200 bootstrap networks. More formally, the confidence 
score for an edge f is calculated as:

 where f(Gi) = 1 if and only if edge f can be extracted 
from the network constructed from bootstrap data set Gi. 
In our analysis, a cutoff of 30% (i.e., edges that appear 
in at least 60 out of the 200 replicates) is applied to the 
confidence score to select the confident edges. Finally, 
a consensus network is constructed by concatenating all 
the edges that survive the confidence score thresholding 
procedure described above. (Figure 1)

Biomarker Prioritization by Conditional Causal 
Relative Risk (CCRR)
Although the consensus network provides a visu-
ally appealing representation of the complex interplay 
among predictor variables (proteins and patient level 

confounding variables) in jointly driving the outcome of 
interest; additional statistical methods need to be imple-
mented to query the network and to extract a subset of 
proteins from the network for downstream validation, 
based on the evidence of their causal association with 
the outcome variable (e.g. CERAD score).

While it is tempting to select only proteins that are 
directly connected to the outcome variable as candidate 
biomarkers for the downstream validation experiments, 
this approach suffers from several major limitations. 
First, the cut point to define the edge confidence score 
threshold (e.g. 30% used for the example described in 
this paper)  in constructing the final consensus network 
can be subjective, resulting in a somewhat arbitrary 
selection of candidate biomarkers. Second,  proteins that 
are indirectly connected to the outcome variable could 
still exert significant effect, and sometimes, might have 
more desirable properties (e.g. easier to design targeting 

Figure 1: the consensus network generated from the AMP-AD proteomics dataset based on 200 bootstrap samples and the edge confidence 
threshold of 30%.  Green nodes represent proteins, red node represents outcome variable (CERAD score), and blue nodes represent patient 
level confounding variables. In this dataset, none of the confounding variables survives the 30% edge confidence threshold. 
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probes from an assay development perspective) than 
those proteins that are directly connected to the outcome 
variable. Therefore, it is important to define a statistical 
metric to quantify the causal effect for any protein to the 
response of interest regardless of its distance to the out-
come variable on the network. 

We implement a graph based Conditional Causal 
Relative Risk (CCRR) metric to rank proteins based 
on their statistically causal relationship with outcome 
variable. More specifically, an ensemble of N (e.g. 200) 
networks are first generated through bootstrap sampling 
of the original data. Then, within each of the bootstrap 
network, a total number of P in-silico “knock-in” and 
“knock-out” experiments are carried out on the target 
protein, to quantify its causal effect (e.g. CCRR) on 
the outcome variable, leveraging the local conditional 
dependencies of this protein with its neighbor proteins 
as well as with the outcome variable (as captured by the 
Bayesian network), 

To illustrate how CCRR metric is calculated, consider 
the Bayesian network presented in Figure 2, which rep-
resents an estimated Bayesian network from one of the 
N bootstrap samples.  Prot.  A to Prot. D are the four 
protein nodes, and Y is the outcome variable of inter-
est. In this toy example, the objective is to estimate the 
CCRR of protein C on the outcome variable Y.  We first 
perform graph mutilation [23] to remove the subgraph 
that sits upstream of protein C, as perturbing the expres-
sion of protein C will have no impact on its upstream 

proteins. In the remaining sub network (as represented 
by the green oval), a total of P simulations are conducted. 
In each of the P simulations, we first manually set the 
expression level of protein C to “low”.  Next, based on 
the conditional dependencies captured by the estimated 
Bayesian network,  we sample an instance of the protein 
expression D from the posterior conditional distribution 
P(D0|C=low). Propagating forward, the same procedure 
will be used to generate an instance of outcome vari-
able Y based on the previously simulated instance of 
D0  and the posterior distribution of P(Y|D0) (again from 
the estimated Bayesian network). Following these steps, 
P(Y=CERAD high|C=low) can be calculated by simply 
counting the number of times the simulated Y equals to 
high CERAD score, divided by the total number of simu-
lations P. Similarly, P(Y= CERAD high |C=high), or the 
probability of having high CERAD score when protein C 
is “knocked in” can also be generated. 

CCRR is then defined as

Finally, the distribution of CCRR for protein C can 
be estimated by aggregating the CCRR values across all 
N bootstrap samples, from which we can calculate the 
mean and the standard error (SE) parameters.

We apply the procedures outlined above to calculate 
the mean CCRR and the associated standard error for all 
proteins in the AMP-AD data. To prioritize the proteins 

Figure 2: illustration of  CCRR calculation for protein C (Prot. C) on the outcome variable Y in one of the bootstrap samples.  Left 
panel: given the estimated Bayesian network structure in this bootstrap sample, graph mutation is first performed to remove subgraph 
upstream of protein C, forward propagation simulation is then carried out in the remaining subgraph (enclosed in the green oval) to 
calculate CCRR of protein C on Y. Right panel: pseudo code for CCRR calculation for the toy Bayesian network on the left.
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for downstream experimental validation, the candidate 
proteins are ranked by (1) the absolute value of mean log2 
(CCRR) and (2) the absolute value of the CCRR z score 
(i.e. mean / standard error). Figure 3 below summarizes the 
top ranked proteins based the mean log2 (CCRR) value. 
Finding Literature Support for Candidate 
Biomarkers Identified from Bayesian Network 
Analysis

It is worth noting that the “causal” relationships identi-
fied from the Bayesian network analysis merely capture 
statistical causality (i.e. conditional independence), and 
not necessarily the true biological causality. Therefore 
it is strongly recommended to establish solid literature 
support on the list of candidate biomarkers prior to 
executing expensive experimental validations using 
technologies such as CRISPR [20].

Discussion
Identification of prognostic and predictive biomarkers 
has become an integral part of drug development as 
the importance of precision and personalized medi-
cine is increasingly recognized by the scientific com-
munity. A number of clinical biomarkers have been 
approved as companion diagnostics for cancer treat-
ments, such as the PD-L1 protein expression [21] for 
pembrolizumab (Keytruda).

While the advancement of technology creates 
unprecedented opportunity to perform biomarker 
discovery using novel data modalities such as single 
cell RNA seq, proteomics, etc., innovative statistical 
methods are often required to analyze these com-
plex datasets. In this paper, we present a graphical 
model (Bayesian network) based causal inference 
framework for high dimensional clinical biomarker 
discovery. Unlike the traditional propensity score 
method which requires the specification of one 
exposure variable before confounder adjustments 
can be applied, and therefore is more suitable for 
biomarker confirmation studies; Bayesian network 
adopts a data driven approach to automatically per-
form multivariate de-confounding using all variables 
simultaneously, and  hence is appropriate for de-novo 
discovery. One common challenge of using Bayes-
ian network for biomarker discovery is the lack of 
robust metrics that can quantify the degree of causal 
association between candidate biomarkers and the 
clinical response. In this paper, we also describe a 
metric CCRR (Conditional Causal Relative Risk) 
and its inference procedure to determine statistical 
significance. CCRR can be easily implemented using 
standard software packages such as R.

As retrospectively collected multi-omics datasets 
gradually became the mainstream data source for 

Figure 3: summary of the top ranked proteins based on the absolute value of mean log2 (CCRR) in the AMP-AD dataset. Negative  log2 
(CCRR) indicates negative association between protein expression and AD status. On the y axis, both mean and the standard errors for 
each protein’s log2 (CCRR) are plotted.
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clinical biomarker discovery, we also anticipate the 
rise of popularity in Bayesian network type of causal 
inference analysis. However, it is important to remem-
ber that the causal relationships between biomarkers 
and response variable identified via Bayesian net-
work are strictly statistical; therefore, experimental 
validation of these candidate biomarkers remains as 
the critical next step.
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Brief Overview of Dose Optimization in Oncology

Kentaro Takeda (Astellas), Yusuke Yamaguchi (Astellas)

1 INTRODUCTION

In recent years, oncology drug development has moved toward

molecular-targeted agents and immunooncology therapies.

The primary purpose of a dose-finding trial for novel anti-

cancer agents is to identify an optimal dose (OD), defined

as the tolerable dose that has adequate efficacy under unpre-

dictable dose-toxicity and dose-efficacy relationships. This

goal differs from a dose-finding trial for traditional cytotoxic

agents, which aims to determine the maximum tolerated dose

(MTD). Unlike cytotoxic agents, whose efficacy and toxic-

ity monotonically increase with dose, novel anticancer agents

can exhibit nonmonotonic patterns in their dose–efficacy rela-

tionships. For example, due to the mechanism of action, the

dose–efficacy relationship often plateaus at an intermediate

dose when exposure reaches a saturation level in the body;

therefore, a further increase in the dose level may not improve

the efficacy1. In some cases, the efficacy of the new anticancer

agent can even decrease at higher dose levels and exhibit a

bell-shaped dose–efficacy relationship2.

Sachs et al. (2016) provided evidence that non-MTD

development strategies have been successfully implemented,

including strategies for several drugs with doses substantially

lower than MTD3. Figure 1 shows a summary of the results

of the review of MTDs and approved doses. The use of these

strategies can be motivated, for example, by (i) the MTD being

above a pragmatic dose for many new targeted therapies or

(ii) safety considerations. Examples of how development can

succeed without using MTD, such as through modeling and

simulation-based methods, illustrate the impact of such strate-

gies. Zirkelbach et al. (2022) reviewed the initial approvals by

the US FDA (2019-2021) of small molecules and antibody-

drug conjugates for oncologic indications to determine the

proportion with a recommended dose at the maximum tol-

erated dose or the maximum administered dose, highlighted

strategies to integrate dose optimization into the development

of premarketing drugs, and discuss the underlying statistical

principles4.

The FDA oncology center of excellence initiated the project

Optimus to reform the paradigm of dose optimization and dose

selection in the development of oncology drugs in 20225 and

issued a draft guidance ’Optimizing the Dosage of Human

Prescription Drugs and Biological Products for the Treat-

ment of Oncologic Diseases’6. The project aims to ensure

that cancer drug doses are optimized to maximize efficacy,

safety and tolerability and to understand the pharmacokinet-

ics (PK), pharmacodynamics (PD), toxicity, and efficacy at

each dose level. For this purpose, the project Optimus recom-

mends that sponsors plan their development programs such

that the identification of the optimal dose(s) can occur prior

to or concurrently with the establishment of the drug’s safety

and effectiveness. This article provides a brief review of dose

optimization approaches in oncology.



BIOPHARMACEUTICAL REPORT FALL 2023 40

Figure 1: Summary of results from the review of MTDs and approved doses.

Roughly two thirds (48/77) of the compounds have approved doses less than MTD,

with roughly one third of them being dosed at less than one half of MTD.

2 DOSE-FINDING BASED ON EFFICACY

AND TOCXICITY

To accommodate this paradigm shift, various model-based

designs and model-assisted designs have been proposed to

identify ODs by incorporating both efficacy and toxicity

responses in early phase dose-finding trials. These designs

can be categorize as: 1) fully sequential approaches and 2)

two-stage approaches.

2.1 Fully sequential approach

Fully sequential approaches continuously update the estimate

of the toxicity and efficacy profile of each dose after each

cohort to determine the dose assignment and directly find the

OD. Therefore, fully sequential approaches could be more

efficient and often require a smaller sample size than two-

stage designs. Fully sequential approaches usually do not

have separated randomization part even though they implicitly

randomize patients among promising doses.

Various model-based designs have been proposed assuming

dose-toxicity and dose-efficacy relationship models in early

phase dose-finding trials. Braun (2002) extended the contin-

ual reassessment method by constructing a joint probability

model7. Thall and Cook (2004) proposed the efficacy-toxicity

(EffTox) trade-off design that uses logistic models with copula

to jointly model toxicity and efficacy and selects the dose based

on toxicity-efficacy desirability contours8. Bekele and Shen

(2005) proposed a dose-finding approach for correlated bivari-

ate binary toxicity and continuous efficacy outcomes9. Zhang

et al. (2006) proposed the flexible continuation ratio model and

the straightforward OD selection criteria. Yin et al. (2006) pro-

posed a curve-free method to jointly model bivariate binary

data and conducted a risk-benefit trade-off using odds ratio

contours10. Riviere et al. (2015) proposed a Bayesian phase

I/II design incorporating a plateau parameter in a proportional

hazard model for time-to-efficacy11.

To simplify the implementation of phase I/II trials, sev-

eral model-assisted designs have been proposed. Lin and

Yin (2017) proposed a simple toxicity and efficacy interval

(STEIN) design to find a safe dose with the highest efficacy12.

Takeda et al. (2018) developed the BOIN-ET design to extend

the Bayesian optimal interval (BOIN) design to phase I/II tri-

als13. Lin et al. (2020) proposed the utility-based Bayesian

optimal interval phase I/II (BOIN12) design to find OD for

immunotherapies and targeted therapies14. Li et al. (2017) pro-

posed a Bayesian adaptive toxicity and efficacy probability
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interval (TEPI) design, which took into account both the toxi-

city and efficacy outcomes within the mTPI framework15. Lin

and Ji (2021) modified the TEPI design and proposed a prob-

ability interval of toxicity and efficacy (PRINTE) design16.

Shi et al. (2021) extended the keyboard design and proposed a

utility-based toxicity probability interval (uTPI) design17.

For rule-based design, Lin and Ji (2020) proposed the joint

i3+3 (Ji3+3) design to incorporate both the simplicity and

transparency of rule-based designs18.

2.2 Two-stage approach

Two-stage approaches first detect admissible doses defined a

set of doses that satisfy the lowest prespecified safety (and effi-

cacy) requirements at stage I, followed by the identification

of an OD at stage II. Two-stage approaches often randomize

patients among admissible doses at stage II.

Pan et al. (2014) proposed a seamless dose escalation/-

expansion with adaptive randomization scheme (SEARS) to

identify an OD19. Zang and Lee (2017) proposed a two-

stage design to simultaneously evaluate the dose-toxicity and

dose-efficacy relationships. Zhou et al. (2019) proposed the

two-stage U-BOIN design, in which the trade-off between

efficacy and toxicity is measured by utility elicited from clini-

cians20. Han et al. (2021) proposed a two-stage nonparametric

(TSNP) phase I/II clinical trial design to identify OBD for

immunotherapy21.

3 LATE-ONSET

Late-onset efficacy and toxicity outcomes, where the occur-

rences of some of the treatment-related efficacy responses and

adverse events are delayed due to the nature of the treatments,

are another different toxicity characteristic for some of the new

noncytotoxic anticancer agents. It has been reported that 57%

of the toxicities of grades 3-4 occur after cycle 1 of treatment

from 36 clinical trials of molecularly targeted agents22. For

immune checkpoint inhibitors, it is well known that some of

immune-related toxicity can have delayed onset; for example,

endocrinopathies occur late and have been observed between

weeks 12 and 2423. Ignoring the feature of late-onset toxicity

in modern oncology trials will cause potential dose reduc-

tions or interruptions in subsequent trials, adding unneces-

sary uncertainties in dose optimization and delay in treatment

development. While the importance of accelerating the drug

development process is ever greater, other factors could also

delay early stage dose-finding trials; for example, most tradi-

tional designs used in early stage oncology trials require that

the efficacy and toxicity results of those patients who have

already been enrolled in the trial should be available at the

interim decision time point, and therefore do not allow sequen-

tial enrollment when previous patients have not completed the

required efficacy and toxicity assessments. This suspension

of enrollment could cause the slowdown of the trials, espe-

cially when multiple adaptive decisions on dose-escalation or

de-escalation need to be made at different interim decision-

making time points. Note that when the accrual rate is fast, the

waiting time needed for those enrolled patients to complete

their efficacy and toxicity assessments could delay the imme-

diate access to treatment for the new patients, and therefore

could further prolong the duration of the trial. Furthermore,

the difference in the evaluation period between efficacy and

toxicity outcomes could delay decision-making. This problem
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is exacerbated in many immunooncology trials, where fre-

quently late-onset outcomes require significantly longer obser-

vation windows for a robust evaluation of efficacy and toxicity.

To efficiently develop new anticancer agents, novel adaptive

designs for early stage trials are needed to evaluate efficacy

and toxicity outcomes while allowing sequential enrollment

and minimizing treatment interruptions or pauses so that the

duration of the trial can be reduced. To solve the problem, sev-

eral approaches are proposed. Jin et al. (2014) extended the

EffTox design and proposed the LO-EffTox design by using

data augmentation to impute missing outcomes from poste-

rior predictive distributions computed from partial follow-up

times and complete outcome data24. Takeda et al. (2020)

extended the BOIN-ET design and proposed the TITE-BOIN-

ET design using a partial likelihood with pending data25. Zhou

et al. (2022) extended the BOIN12 design and proposed the

TITE-BOIN12 design using a Bayesian data augmentation

and a partial likelihood with pending data26. Zhang and Zang

(2021) proposed the conditional weighted likelihood (CWL)

method to address the delayed effect and applied the method

in U-BOIN (CWL-U-BOIN)27.

4 ORDINAL GRADED OUTCOME

Most of the trial designs for the OD finding assume that the

efficacy and toxicity data are summarized as binary outcomes,

scored as a response or not a response for efficacy, and scored

as a dose-limiting toxicity (DLT) or not a DLT for toxicity.

However, unlike cytotoxic agents, molecular-targeted agents

and immuno-oncology therapies appear more likely to induce

multiple low or moderate-grade toxicities than DLTs28,29,30.

Additionally, for efficacy, it is preferable to evaluate overall

response (ORR) and long-term stable disease (SD) in solid

tumors and consider the difference between complete remis-

sion (CR) and partial remission (PR) in lymphoma. Therefore,

it is crucial to incorporate the toxicity grade and multiple

efficacy levels in dose-finding and decision making to deter-

mine the OD for developing novel anticancer agents. Thall

and Nguyen (2012) proposed a sequentially outcome-adaptive

Bayesian design based on the elicited utility of bivariate

ordinal efficacy and toxicity outcomes with adaptive random-

ization31. Takeda et al. (2022, 2023) proposed a generalized

Bayesian optimal interval design for dose finding that takes

into account ordinal graded efficacy and toxicity outcomes

(gBOIN-ET design and TITE-gBOIN-ET design)32,33.

5 DOSE-FINDING DESIGN WITH PK/PD

Pharmacologically, PK information is considered an appro-

priate indicator to assess the degree of drug intervention in

humans. Several significant exposure–efficacy relationships

have been identified in several immune checkpoint inhibitors,

and some PK information has been considered important pre-

dictors of efficacy endpoints, e.g., overall response, immune

response, and overall survival34. Therefore, including PK

evaluation in oncology dose-finding trials may enable us

to determine OD with greater precision. Guo and Yuan

(2023) proposed a dose-ranging approach to optimizing dose

(DROID) for oncology clinical trials with targeted agents

based jointly on three endpoints: a toxicity endpoint, an effi-

cacy endpoint, and an efficacy surrogate endpoint such as a
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PD biomarker35. DROID is a two-stage approach and ran-

domizes patients among admissible doses in stage II. Takeda

et al. (2023) proposed a Bayesian optimal interval design for

dose optimization with a randomization scheme based on PK

outcomes36. The decision to allocate the dose for the pro-

posed design is guided by toxicity and PK outcomes. The PK

outcome is considered a surrogate indicator of the efficacy

outcome. After the trial is completed, the OD is determined

on the basis of all toxicity, efficacy, and PK outcomes. These

approaches, in addition to the efficacy and toxicity outcomes,

incorporate the PK/PD outcome into the trial design for deci-

sion making under a randomization scheme.

6 INCORPORATING HISTORICAL DATA

The sample size in oncology dose-finding trial is often lim-

ited. Therefore, it should be valuable to consider incorporating

historical information into dose-finding designs. Thall et al.

(2014) discussed an algorithm to determine prior hyperparam-

eters using least squares penalized by effective sample size for

the EffTox design37. Zhao et al. (2022) proposed the iBOIN-

ET design that incorporates historical study information into

the BOIN-ET design through the concepts of skeleton and

prior effective sample size using Bayesian inference38.

7 SELECTION OF OD

Most of the models-assisted designs determine the dose of the

next cohort based on a prespecified decision rule and select

OD based on some measures derived using all data on the tox-

icity and efficacy of the entire cohort at the end of the trial.

In some designs, the OD is simply determined by selecting a

dose that is tolerable and has the highest estimated efficacy

probability. Some designs used utility functions to measure

the trade-off between toxicity and efficiency and chose a dose

that maximized utility, where the definition of utility func-

tion varied between designs. For example, the STEIN design

used a weighted function of the estimated toxicity and efficacy

probabilities. The TEPI design and the PRINTE design use

truncated linear functions of the estimated probabilities of tox-

icity and efficacy. The U-BOIN design and the BOIN12 design

use the efficacy-toxicity trade-off directly scoring the toxicity

and efficacy responses. These utilities are flexible and affect

the operating characteristics of the final OD selection. Yam-

aguchi et al. (2023) have reported the operating characteristics

of OD selection approaches of model-assisted designs through

comprehensive simulation studies39.

8 EXAMPLES

Dose optimization approaches introduced in the previous

sections are implemented in real clinical trials. For example,

the EffTox design is used in a phase I/II trial of CAR-

transduced natural killer cells in CD19 positive lymphoid

tumors40. The LO-EffTox design is implemented in a phase

I/II trial of sitravatinib and nivolumab in clear cell renal cell

carcinoma after progression of antiangiogenic therapy41 and a

phase I/II trial in advanced pancreatic cancer42. The BOIN12

design is used in a phase I/II study of enhanced CD33 CAR

T cells in subjects with relapsed or refractory acute myeloid

leukemia (NCT04835519). The U-BOIN is applied in a phase
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I/II trial of genetically engineered cells (COH06) with or with-

out Atezolizumab for the treatment of non-small cell lung

cancer previously treated with immune checkpoint inhibitors

(NCT05334329) and a phase II extension trial for the eval-

uation of safety and efficacy in patients with beast cancer

(NCT05334329). The TITE-BOIN-ET design is used in a ran-

domized phase I/ II multicenter study evaluating combination

of luspatercept in LR-MDS without RS having failed or being

ineligible to ESA (NCT05181735).

9 SOFTWARE

Some dose optimization approaches provide Web applica-

tion/R package/Codes as listed in Table 1.

10 DISCUSSION

We have briefly reviewed dose optimization approaches in

oncology. Model-based designs assume complicated dose-

toxicity and dose-efficacy models with a potential risk of

misspecification and require real-time model fitting and esti-

mation for each decision making. Therefore, model-based

optimal dose-finding designs are rarely used in practice, except

for the EffTox design. Compared to model-based designs,

model-assisted designs can pre-tabulate decision tables before

the trial starts, are simple and transparent to implement, and

are easier to understand by the clinical community. Yuan et al.

(2017) provide a comprehensive review of phase I-II trials, in

particular model-based designs43. Yuan et al. (2022) provide

a comprehensive review of model-assisted design, including

phase I-II trial designs44.

The appropriate designs are different in each dose-finding

trial. Massive preliminary simulation considering the mech-

anism of action, indication, endpoints, target efficacy and

toxicity probabilities, evaluation period, accrual rate, and mul-

tiple settings is quite important to implement the novel designs

in real clinical trials. In this regard, physicians, biostatisti-

cians, and other stakeholders must work closely together, for

example, considering the purpose of the trial, realistic settings,

and operational issues.

TABLE 1 Available Software List

Design Web application/R Package/Codes

EffTox https://biostatistics.mdanderson.org/SoftwareDownload/SingleSoftware/Index/2
BOIN12 https://www.trialdesign.org/
TITE-BOIN12 https://www.trialdesign.org/
U-BOIN https://www.trialdesign.org/
TEPI EAST Bayes
PRINTE EAST Bayes
Ji3+3 EAST Bayes
BOIN-ET R package boinet: https://cran.r-project.org/web/packages/boinet/index.html
gBOIN-ET R package boinet: https://cran.r-project.org/web/packages/boinet/index.html
TITE-BOIN-ET R package boinet: https://cran.r-project.org/web/packages/boinet/index.html
TITE-gBOIN-ET R package boinet: https://cran.r-project.org/web/packages/boinet/index.html
SEARS R package sears: https://cran.r-project.org/web/packages/SEARS/index.html
uTPI https://github.com/haoluns/uTPI
TSNP https://github.com/yongzang2020/TSNP
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1. Introduction
A career development session, sponsored by the Career
Development committee of the Biopharmaceutical Sec-
tion of the ASA, was held on Tuesday August 8, 2023,
at the Joint Statistical Meetings, in Toronto. The session
was organized by Stan Altan (Janssen), Scott Clark (Eli
Lilly) and John Kolassa (Rutgers University), with the
following senior leaders of statistics departments in
the pharmaceutical industry serving as panelists: Imola
Fodor (Genentech), Cyrus Hoseyni (Janssen), Eve Pick-
ering (Pfizer), and Shanthi Sethuraman (Eli Lilly). The
session abstract is given in Appendix 1.

2. Session chair’s introductory remarks
Session chair, Scott Clark, began by introducing the main
topics for discussion, highlighting the need for a closer

2023 JSM SESSION ON “CLINICAL AND 
NONCLINICAL STATISTICS ROLES IN 
THE PHARMACEUTICAL INDUSTRY: HOW 
KNOWLEDGE OF ONE HELPS THE OTHER”

By Stan Altan, W. Scott Clark, Imola Fodor, Cyrus Hoseyni, John Kolassa, Eve Pickering, and Shanthi Sethuramen

linkage between the clinical and nonclinical spaces. 
This is occurring as “patient centric specifications” 
considerations in the nonclinical space intersects with 
“Patient-focused drug development (PFDD)” in the clini-
cal space. Translational medicine has traditionally been 
at the juncture of nonclinical and clinical pursuits. But 
more recently, scientific and regulatory developments 
have motivated companies to study product quality 
attributes with clinical relevance considerations in mind. 
This convergence is expected to expand into the future. 
Given this convergence, the question was raised as to 
how career development benefits from knowledge and 
experience across the two areas. As further background 
for the relevance of the session topics, the subject mat-
ter spheres pertinent to the clinical and nonclinical areas 
were reviewed as summarized in Figure 1. 

Figure 1 Statistics in Drug Development
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Two aspects of the current techno-
logical landscape having potential to 
dramatically impact  statisticians in the 
pharmaceutical industry were highlighted. 

1. The continuing emphasis on patient-
focused drug development in clinical
studies and the parallel development
of patient centric specifications in the
nonclinical space. These initiatives imply
a need for greater collaborations between
the clinical and nonclinical spaces mov-
ing forward. Specifically Figure 2 shows
graphically the organic linkages between
manufacturing process, the pharmaceuti-
cal product and the patient outcomes, and
product quality.

2. Rapidly evolving technologies and
science driving drug development is another impor-
tant driver of the expected convergence. Closer col-
laborations are expected to accelerate the integration
of these technological advances into the drug develop-
ment process (Figure 3). Setting the stage for further
discussions, another question was posed “Are nonclini-
cal to clinical connections ready for the coming revo-
lution?” with the goal of illustrating the advantages of
acquiring a basic understanding of the role of nonclini-
cal statistics to the clinical statistician, and the reverse,
advantages to acquiring a basic understanding of the
role of clinical statistics to the nonclinical statistician.
In the discussions, one important goal was to address

the question of how this helps career development. 
Ideas on how to bridge any gaps in the connections 
is also sought. What are the connections points, what 
needs to be improved, and how does product quality 
impact on clinical outcomes? 

3. Panelists’ opening statements.
Scott Clark introduced each of the panelists, followed by
the panel discussion led by John Kolassa. It kicked off
with opening statements by each of the panelists. The
panelists gave a brief perspective on the main topic of the
session. These are summarized as follows.

Figure 2 Process-Product-Patient Linkages and Quality 

Figure 3 New Drug Modalitiees developed since 2000
https://www.bcg.com/publications/2023/benefits-and-risks-of-new-drug-modalities
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Imola Fodor (Vice President Data and 
Statistical Sciences, Hematology and Early 
Development, Genentech) 

My professional journey started in nonclinical statis-
tics for 10 years, and then I moved to clinical. I very 
much appreciate the diversity of statistical tools and 
approaches used across the drug development process, 
and the impact that statisticians can have on the busi-
ness. Having that experience in early development and 
nonclinical statistics was a major advantage to appreci-
ate better the compound’s late development challenges.   

Cyrus Hoseyni (Global Head, Statistics and 
Decision Sciences, Janssen)
The first 3 years post-graduation I spent supporting 
early development, toxicology, and in parallel, late 
development. Observing up close the end to end process 
provided me with valuable experience to help connect 
the parts of the entire process of drug development. 
This was not serendipitous; it was helped by having 
a sense of curiosity and seeking opportunities to learn 
and engage. Leaving such opportunities to chance is not 
sufficient, a proactive attitude, being ready to help, is 
essential to learning and growing.  

Eve Pickering (Vice President, Nonclinical 
Statistics, Pfizer)
I had an undergraduate degree in physics, spending time 
in a lab generating scientific data. I moved to statistics 
at Rutgers. Although it was a theoretical department, 
I gained practical experience supporting agricultural 
experiments. I moved to Wright State, was on the con-
sulting center and the IACUC committee, supporting 
animal protocols. Then I  moved to Pfizer. I was initially 
involved in a late development project. An early experi-
ence with the statistical issues of a biomarker and its 
analytical performance motivated me to return to the lab 
and nonclinical studies. All the work in early develop-
ment feeds into later development stages, and knowing 
how the data is used in clinical development, helped 
inform my work in nonclinical.
Shanthi Sethuramen (R&D Global Analytics Officer 
and Sr. Vice President, Eli Lilly)    

In my experience, taking short term assignments, get-
ting outside your comfort zone and spending time in 
both non-clinical and clinical areas is the best way to 
learn and to see the bigger picture of the discovery, 
drug development process and post launch. Getting 

experience from outside of statistics also has benefits. 
When I was part of project management, it allowed me 
to look at a molecule from birth to late stage. I gained a 
deeper insight into what it takes to make the molecule a 
product, and to optimize it later. Having an appreciation 
for the lifecycle of the molecule helps me to be a better 
critical thinker, understanding the importance of sharing 
knowledge across the silos and be a better drug devel-
oper. It’s very importance to learn from one another and 
other functions.      

4. Discussion questions
John Kolassa moderated the discussions and posed 
questions  to the panelists. This was intended to be a 
wide- ranging discussion on a set of questions directed 
to the panelists. The following are the series of ques-
tions and salient points made in response to the ques-
tions (4 questions are given in Appendix 2 which were 
not discussed due to lack of time). 

1. What are the important connections between
early development/Discovery and implications on
clinical studies?

a. From the perspective of safety, under-
standing toxicology data and its role in
setting the “no regrets” human dose is
important, especially with new modalities.,
and having a basic  understanding of the
PK/PD profile and pharmacology, mecha-
nistic modeling helps with  implications on
clinical measures and outcomes.
b. There is a flow from discovery to the
clinic, but there is also a flow back. For
example, understanding immunogenic-
ity issues in the clinic can feed back to the
design of molecules in early nonclinical
development, with the goal of minimizing
toxicity issues in clinical trials.
c. We have huge databases of molecules with
known physical and chemical properties,
with possibly thousands of attributes. Seek-
ing the one(s) that meets certain requirements
for safety and efficacy, knowing the clinical
implications informs the search for the right
compound. While bioinformatics plays an
important part, statistical models/methodolo-
gies help with potential multiplicity issues
during the analyses and plays a significant
role in the design of the molecules.
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2. How do we contrast the diversity of statistical
applications in nonclinical vs clinical and how
does this impact on career trajectories?

a. The beauty of nonclinical and clini-
cal statistics is that there are so many
interesting questions requiring statistical
approaches. Being less regulated in some
cases in nonclinical, there is more flexibil-
ity in statistical approaches and innovative
models. The nature of the variety of chal-
lenging problems in areas of nonclinical
allow more creative and interesting statisti-
cal approaches. Experience with diverse
statistical tools is important no matter
which direction a statistician takes.
b. In clinical, patient safety is paramount.
However, there is plenty of room on the
clinical side to develop clinical development
plans (CDPs). This is not a typical statistical
question, but using our training in statistics
and quantitative skills can help to inform
the writing of the CDPs. This is a basic skill
important to career development.
c. The ratio of statisticians to scientists in
nonclinical might be 1:400, so the duration
of projects is shorter, and multiple projects
in parallel is the norm. Therefore, project
management becomes important. This is a
skill that can be taken forward into the clini-
cal side, a learning from non-clinical.

3. What is the potential and current role of AI and
ML in the clinical and nonclinical spaces?

a. AI and ML are best applied in the hands
of experts who exercise a balance between
augmentation and automation. Some caution
is needed in placing such tools into the hands
of novices, especially in the application of off
the shelf applications. The statistician's role
in helping understand the appropriate meth-
odologies, modeling and statistical issues
such as multiplicity are critical to getting to
the right hypotheses and solutions.
b. Image analysis in cancer studies, and
augmenting pathology studies.
c. Opens up opportunities for deeper col-
laborations with data science colleagues and
related approaches.

4. What kind of academic training can prepare
statisticians to pursue clinical or nonclinical sta-
tistics roles in the industry. Would some kind of
continuing education courses or certification mit-
igate lack of preparedness for an industry career.

a. Having direct hands-on experience gen-
erating and handling data, translates to more
effective understanding of data collection
and generation by our collaborators. Taking
classes in biology or chemistry can help to
provide the language of our scientific col-
laborators, to enhance communication.
b. A statistics degree is not sufficient, inter-
disciplinary, or additional training in the sci-
ences relevant to drug development makes
you a better drug developer. Knowing the
scientific language enhances collaboration.
c. Academic programs could consider
internship programs, or having visiting lec-
tures from industry statisticians to bring to
students the experiences of statisticians on
the job as one way to ameliorate the lack of
awareness, for example different aspects of
the drug development process. We should
look for ways to collaborate more between
industry and academia to address this.

5. What is the practice for making sure that nonclini-
cal data are summarized and presented accurately?

a. Approaching this not as policemen of
the process, but asking what the goal is, are
there biases in the data, making objective
data-based decisions.
b. Data presentation and communicating
findings clearly.
c. Education should be part of the role. Due
diligence requires looking at the totality of
the data, how we come into the process,
sharing the common goal of making the
right decision based on the data. We must
draw valid conclusions based on the data.

6. How can the statistical stakeholders add clarity to
the dialogue? What Collaborations are desirable?

a. Stakeholders may include both internal
partners, e.g., clinical statistics, biomarker
groups, PK/Pharmacology/Pharmacometrics,
commercial supply chain; external partners,
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IQ consortium, DIA, AAPS, academic insti-
tutions, regulatory agencies. 
b. Understanding the key factors that could
influence the outcome, understanding the
underlying assumptions, informs the proper
design of experiments, statistical analysis
and modeling.
c. Expanding your network across the
industry, with regulators, scientific col-
leagues, not just statisticians. Consider
working on industry working groups,
especially those that are comprised of dif-
ferent disciplines, different companies, uni-
versities, all working on a research effort
together. This experience will provide
greater understanding of the big picture,
enhances innovation and the ability to work
more effectively.

7. Can we incorporate QbD principles as a back-
ground for pursuing a patient centric specifica-
tion? What are the hurdles?

a. Linking quality attributes to clini-
cal outcomes is an important goal. QbD
is fundamentally defining an operating
space, whether it’s manufacturing, pKpD,
or clinical. In manufacturing the goal is to
justify expansion of the operating space,
but in clinical, it is the opposite, product
variability in clinical trials is reduced.
This basic conflict needs some resolution,
but finding an approach efficiently, is still
a challenge.
b. The question of how CMC attributes
relate to ADME properties is an important
question, the concept is appealing but can
this question be brought into the clinic using
a DoE subject to time and cost constraints?
This is still a challenge.
c. This is an emerging topic that will
require deeper engagement by statisti-
cians. We must embrace the technological
advances, and in the process, this may
open new possibilities for this to be stud-
ied in an efficient way.

8. Do you agree that patient value is enhanced by
clinical statisticians recognizing the purpose of

pharmaceutical product quality, nonclinical statis-
ticians recognizing connections of product qual-
ity attributes with clinical endpoints?

a. Having experience in both areas helps us
see the bigger picture.
b. Understanding the business, what are the
important questions, why it is important,
allows statisticians to play a more influen-
tial role. Experience in both areas enables a
broader perspective and allows for a better
appreciation for the relevant questions of
drug development.
c. People can pigeonhole statisticians, but
seeing the end to end picture and dem-
onstrating your knowledge of the early
development data, the toxicology data,
the acquisition data, when you talk like a
drug developer, the attitude changes. So, it
is important to have business acumen and
see the whole process end to end. This has
large dividends.

Questions from the audience 
1. How can statisticians hired into one area

acquire experience in the entire end to end drug
development process?

a. The most important factor is the aware-
ness of the importance of getting this kind
of experience. Some organizations have
rotation options, but the individual statisti-
cian can work with their management and
ask to put it into their development plan.
b. “Challenge” or “Stretch” assignments
may be an option at some companies to
work on short term projects in other areas.
Be proactive in finding multiple assignments
that bring you new opportunities, possibly
outside your comfort zone, to learn and
grow. Be curious.
c. Senior Managers frequently encourage
their staff to get experience on both sides.
If your management does not support your
interest in doing this, it might be a good
time to seek other opportunities.

2. I am an isolated statistician, lacking a PhD,
working for a smaller organization, with no or
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few statistical colleagues, with a heavy workload. 
I find balancing statistical rigor with business 
needs a challenge. How can someone in this 
position handle this? 

a. Being a one person department means
you have to make more of an effort to
demonstrate your value to the organization.
Look for opportunities to get more deeply
engaged. It can be simple, maybe a data
presentation strategy, how to help your col-
leagues make their case in the best way.
Start with smaller opportunities to show
your value to the organization.
b. Being alone, the primary goal should
be to avoid wrong interpretations of the
data that could lead to incorrect decisions.
Framing the data, the interpretation and
risks such that a data supported decision
strategy can be established should be the
critical objective.
c. Understand what the decision maker’s
priorities are, see things from their side, dis-
cuss their thoughts and let them speak more.
This can lead to good negotiation to get to a
satisfactory decision.

3. How can we foster more collaboration between
clinical and nonclinical at our companies?

a. Statisticians speak the same language, so
the statisticians can often be the conduit to
enhance and build bridges between different
stakeholders. Breaking down the silos will
naturally lead to more collaboration.
b. Leverage your experience and knowl-
edge, and look for opportunities to share
that knowledge across the areas.
c. Have conversations about the molecule,
know the animal data, help to inform the
downstream clinical implications.
d. The more each group knows about the
other, the better they can appreciate their
technical issues. This may not happen
organically, so some effort has to be made.
Pharmacology/Pharmacometrics groups can

be a good start for this kind of communica-
tion and knowledge sharing. 

4. Collaborators sometimes ask that statistical
results to be reduced down to a single number.
But when a spectrum of results is the necessary
interpretation, how do we bridge this tension
between complexity and the demand for a simple
answer.

a. This is where the job of the statisti-
cian to walk the collaborator to a decision
is extremely important. Walk through the
background to the research problem and
the data collected to address the problem.
Approach it as first providing the bottom
line, and then follow up with how you got
there. Then discuss concerns and caveats.
b. Communicating the topline result is an
art, but necessary when communicating to
decision makers. Takes practice. See it as
an opportunity and challenge to make the
right decision.
c. You’re facilitating the decision; you’re
not making the decision. There should be
a back and forth, ask what you think this
means. The collaborator must have a sense
of the data as well, what is their conclusion.
Get their perspective. Help them make the
decision you want.

4 Panelist answers led to a side discussion on Oppor-
tunities to apply “soft skills” in the evaluation of 
potential licensing and acquisition agreements.

a. As applied scientists, soft skills related
to influence, collaboration, and engagement
will further the statistician’s effectiveness.
Tukey said, “We play in everybody’s back
yard”, so these soft skills are essential. Curi-
osity and showing interest in the collabora-
tor’s research questions is important. It’s
also important to avoid a skeptical attitude
and to approach communications from the
perspective of trying to understand.
b. The goal is making the right decisions,
using the right data, the right design, paying
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attention to bias and sources of variability. 
This ability makes the statistician’s role 
extremely valuable and allows statisticians 
to engage in preparation for internal and 
external (regulatory) questions and dialogue. 
c. Our collaborators want to do good
science, our role is to help them pursue
the science as partners and to enable the
right decisions. It’s important to remember
to be helpful, think about consequences,
be tactful, unbiased, and calm under fire.
This is very much a fine art, honed by
those who are successful in the business.

Final remarks 
John Kolassa ended the session with thanks to the pan-
elists and the audience of 51 people, with “We play in 
everyone’s back yard, but remember, it’s not our back 
yard. We have to understand it’s their back yard, so we 
have to be diplomatic in how we negotiate what hap-
pens in their back yard”.   
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Appendix 1 Session abstract
This is intended as a career development session 
targeted to clinical and nonclinical statisticians in 
the pharmaceutical industry. It is expected that early 
in their career statisticians, as well as more experi-
enced statisticians would benefit from this session. 
The session will start with a broad overview of the 

nonclinical and clinical statistics applications area by 
way of introduction, and then enter a broad discus-
sion of the advantages to the pharmaceutical statisti-
cian of acquiring a basic understanding of the role 
of nonclinical statistics in preparing them for a more 
insightful and productive career as a clinical biostat-
istician. The reverse is also true, there are distinct 
advantages to learning about the clinical aspects of 
the business, in pursuing a career in nonclinical bio-
statistics. This topic is especially timely today, as the 
industry is moving in a direction of closer linkages 
between the two areas. “Patient-focused drug devel-
opment (PFDD)” in the clinical space and “Patient-
centric” specifications in the nonclinical space, are 
examples of this trend. Translational medicine con-
siderations that seek to identify biomarkers early in 
development is another example. The panel session 
will consist of experienced statisticians with broad 
areas of experience or responsibility in both areas 
who will speak to the advantages of career develop-
ment benefitting from knowledge and experience 
from both spaces.

Appendix 2 – Time did not permit 
discussion of these questions. 

1. Beyond effective designs, what are key learnings
across the nonclinical/clinical spectrum that you
have seen impact statistical innovation?

2. How does domain knowledge or business acu-
men that you learned across roles affect your
ability to influence business partners and/or com-
pany leaders?

3. The explosion of available data from genomics,
imaging, single-cell RNA, etc. present new chal-
lenges to statisticians and data scientists but differ-
ing skills necessary in the clinical vs nonclinical
roles.  How should statisticians best prepare for
the fast-changing science and data explosion?

4. In thinking of insights and productivity between
nonclinical and clinical roles, how might these
be impacted by the expansion of artificial intel-
ligence and machine learning tools? n
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Introduction 
The Nonclinical Biostatistics Leaders’ Forum (NCBLF) 
has been conducting resource surveys of Nonclinical 
Statistics (NCS) departments across a range of pharma-
ceutical companies. The purpose of these surveys is to 
track changes in nonclinical statistics resources within 
the industry, and to identify organizational trends. The 
intention is to help senior managers assess their organi-
zational allocations relative to the industry averages and 
ranges. In addition, the surveys provide insights into 
the industry's current human resource landscape and 
support decision-making processes among companies.

History of Surveys of Nonclinical  
Statistics Departments 
Surveys were conducted in 1997, 2008, 2015, and 2022. 
Over this quarter century of conducting surveys, the 
target population of companies changed as companies 
merged, and reorganized and new companies were 
formed. Given this background of a changing target 
population of companies, the surveys have revealed 
structural evolution of nonclinical statistics departments 
over time, with changes in sub-areas, and programming 
support varying across both time and companies. Of 
particular note is the most recent survey conducted in 
2022, which showed that data science as a discipline 
has emerged as an organizational interest, in addition 
to traditional programming resources. We interpret this 
as a shift towards more sophisticated data engineering 
tools and approaches being brought to bear on the drug 
development process.  Additionally, while only large 
pharma companies participated in the 1997 survey, 
the 2022 survey saw contributions from both large 
and mid to large-size biotech companies, highlighting 
the expansion of nonclinical statistical support across 
a wider range of companies in the industry. The find-
ings of these surveys provide valuable insights into 

REPORT ON PHARMACEUTICAL 
INDUSTRY SURVEY OF NONCLINICAL 
STATISTICS RESOURCES

the evolving landscape of nonclinical statistics in the 
pharmaceutical industry and can inform decision-mak-
ing among companies managing nonclinical statistical 
resources. Summary statistics of resource allocations 
by survey year and nonclinical areas are given in Table 
1. The number of respondents was generally half of the
number polled, ranging from 13-15 companies over the
period 1997-2022.

Industry Trends in Nonclinical 
Statistics Resources
The 2022 survey revealed that nonclinical statistics 
remains an important area across companies, underscor-
ing its relevance to the drug development process. The 
2022 survey indicated an increase in resources com-
pared to the 2015 survey, mainly due to the emergence 
of data science within non-clinical statistics groups. 

The numbers in the Discovery sub-area seem to have 
declined since the earlier surveys. We believe this was 
due to further specialization and categorization of func-
tions. For instance, biomarkers (molecular modelling) 
were separated from Discovery in the 2022 survey, 
representing the growth in the biomarker/genomics 
area. It is worth noting that during the early days of 
the Human Genome Project (i.e., in the 2008 and 2015 
surveys), genomics/biomarkers were not separate from 
Discovery, despite having many colleagues working in 
these areas. The official separation of biomarkers from 
Discovery in the 2022 survey reflects the growth and 
development of this area in the industry.

This restructuring of the Statistics functions into 
smaller, specialized areas creates challenges for career 
development, by possibly placing barriers to cross-
learning and cross-fertilization. This suggests that 
management may have to more actively encourage 
collaboration and knowledge-sharing among special-
ized areas to ensure that team members have access to 
the full range of expertise and knowledge within the 
organization.  

The Chemistry, Manufacturing, and Controls 
(CMC) area of nonclinical statistics resources has
experienced strong growth from the earliest 2 surveys
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through the 2015-2022 period, likely due to advance-
ments in manufacturing and regulatory requirements. 
This growth is indicative of the increased importance 
of nonclinical statistics to the CMC subject matter 
areas in general, and the impact of new and complex 
dosage forms and other scientific and engineering 
advances.  Furthermore, the operating model for non-
clinical statistics (NCS) in the CMC area appears to 
be evolving, with a shift observed between the Dis-
covery and CMC areas. In most companies surveyed, 
Discovery is still operating primarily in consultation 
mode, with statisticians providing advice and guid-
ance to project teams. However, in the CMC area, it 
appears to be moving towards an embedded resources 
model where statisticians are being embedded in 
project teams, similar to clinical statistics. 

This shift in operational model in the CMC area 
has important implications for the industry, particu-
larly with regard to collaboration and knowledge-
sharing. As nonclinical statisticians become more 
integrated into project teams, they will have the 
opportunity to work more closely with scientists and 
other team members, sharing expertise and knowl-
edge more readily and directly, and subsequently, 
leading to better decision-making and more efficient 
product development. With the recent initiatives 
related to patient focused drug development and 

patient centric specifications, the industry will derive 
increased efficiencies from closer collaborations and 
knowledge sharing. 

The results of the 2022 survey also provide an inter-
esting insight into the future of nonclinical statistical 
support in the pharmaceutical/biotechnology industry. 
The general sentiment among survey respondents leans 
towards the future expansion of nonclinical statistical 
support within their respective companies. This finding 
highlights the growing importance of nonclinical statis-
tics in the industry, as well as the increasing demand for 
data-driven decision-making.

Summary and Conclusions
As the industry continues to evolve and address 
competitive forces, companies will seek to leverage 
the power of data to drive innovation, increase effi-
ciency, and improve decision-making and outcomes. 
Nonclinical statistical support will play a key role in 
achieving these goals, providing valuable insights into 
the safety, efficacy, and quality of products throughout 
their lifecycle. 

The expansion of nonclinical statistical support in 
pharmaceutical/biotechnology companies indicates 
a growing recognition of the established benefits of 
statistical design, modelling, and analysis in vari-
ous areas such as drug discovery, safety, pre-clinical 

Table 1: Median (Range) of Resources (FTE) in Nonclinical Statistics Departments by Year

*: Other includes, programmers, data scientists, pre-clinical PK/Drug Metabolism and Efficacy, Animal PK/PD, phase 1, vary from year to year. 
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pharmacology, manufacturing, and regulatory com-
pliance. However, this expansion of nonclinical 
statistical support also presents challenges, such as 
the need for specialized expertise and resources. The 
NCBLF can play an important role in helping senior 
leaders in nonclinical organizations address these 
challenges. It can provide a platform for knowledge-
sharing and collaboration among industry profes-
sionals and support opportunities for professional 
growth and networking. The biennial Nonclinical 
Biostatistics (NCB) conference, and its correspond-
ing NCS conference in Europe are examples of the 
active role of the NCBLF in making such opportuni-
ties possible. The NCBLF can also help to identify 
areas for improvement and support the development 
of best practices in nonclinical statistics.

In conclusion, the results of the 2022 survey conducted 
by the NCBLF underscore the continued importance of 
nonclinical statistical support in the pharmaceutical/bio-
technology industry. The median (and maximum) non-
clinical full-time equivalents (FTEs) increased rapidly 
from 1997 to 2008. The 2015 survey showed a drop of 
approximately 25% in median FTEs from 2008,  prob-
ably due to company consolidations. The 2022 survey 
showed some recovery of median FTEs with a 20% 
increase from 2015, but still not at the 2008 level. The 
largest nonclinical group reported a staff of 67 FTEs in 
2022. As there is a need for decision-making and effec-
tive pre-competitive collaboration, respondents indicated 
that they anticipate continued expansion of their non-
clinical statistical capabilities to ensure that the potential 
benefits of statistical approaches are fully realized. n

Figure 1: Median Nonclinical Department FTEs by Year
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SUMMARY OF ASA BIOP SECTION’S 
VIRTUAL DISCUSSION WITH REGULATORS  
ON CONSIDERATION OF CRITERIA FOR 
EVALUATION OF SURROGATE ENDPOINTS

On April 13th, 2023, the American Statistical Asso-
ciation (ASA) Biopharmaceutical Section (BIOP) 
and LUNGevity Foundation hosted a virtual forum 
to discuss Consideration of Criteria for Evaluation 
of Surrogate Endpoints. This forum was part of a 
series conducted under the guidance of the U.S. FDA 
Oncology Center of Excellence’s Project SignifiCanT 
(Statistics in Cancer Trials). The goal of Project 
SignifiCanT is to advance cancer drug development 
through collaboration and engagement among various 
stakeholders in the design and analysis of cancer clini-
cal trials. The discussion was organized jointly by the 
ASA BIOP Statistical Methods in Oncology Scientific 
Working Group, the FDA Oncology Center of Excel-
lence (OCE), and LUNGevity Foundation. 

Individual patient data from randomized clinical 
trials have been used to evaluate surrogate endpoints 
(FDA-NIH, 2017) in cancer trials at both patient and 
trial levels, with some endpoints being validated as 
surrogates to predict clinical benefit. For example, in 
adjuvant colon cancer, 3-year disease-free survival 
(DFS) has been validated as a surrogate endpoint 
for 5-year overall survival (OS) (Sargent DJ et al 
https://bit.ly/3sHPDYZ), and in follicular lymphoma, 
30-month complete response (CR) rate has been 
validated as surrogate endpoint for progression-free 
survival (PFS; Shi Q et al, https://bit.ly/3QH0n1E). 
There are also examples of intermediate endpoints 
which could not be validated as surrogate endpoints, 
such as pathologic complete response as a surrogate 
for event-free survival and overall survival in early-
stage breast cancer (Cortozar P et al, https://bit.
ly/40FaqJb, Buyse M et al, https://bit.ly/3MN9GMv). 
Shi Q et al used a pre-specified statistical analysis 
plan to establish the 30-month CR rate (CR30) as a 
surrogate endpoint by using correlation of the CR30 
odds ratio with the PFS hazard ratio evaluated by 
both linear regression (R2WLS) and bivariate copula 
(R2Copula) models. Prespecified criteria for surro-

gacy required either R2WLS or R2Copula ≥ 0.80, with 
a lower bound of 95% CI > 0.60 and neither estimate 
< 0.7. With advances in science and technology, new 
biomarker based intermediate endpoints, such as mini-
mal residual disease negativity and ctDNA measure-
ments, are being proposed as surrogate endpoints for 
long term clinical benefit endpoints. This discussion 
among multi-disciplinary experts focused on whether 
the criteria used previously by Shi Q et al or a modi-
fied criteria may be needed for evaluation of future 
surrogate endpoints.

The speakers/panelists* for the discussion included 
members of the BIOP Statistical Methods in Oncology 
Scientific Working Group representing pharmaceu-
tical companies, representatives from international 
regulatory agencies (Food and Drug Administration 
(FDA), Health Canada (HC), Medicines and Health-
care products Regulatory Agency (MHRA), Euro-
pean Medicines Agency (EMA), Therapeutic Goods 
Administration (TGA), and Brazilian Health Regula-
tory Agency (ANVISA)), clinicians, academicians, 
patient advocacy groups, and expert statisticians.  In 
addition, over 100 participants attended the virtual 
meeting, including representatives from other interna-
tional regulatory agencies (Health Sciences Authority 
(HAS), Singapore; Ministry of Health, Israel; Phar-
maceuticals and Medical Devices Agency (PMDA), 
Japan).  The discussions were moderated by the BIOP 
Statistical Methods in Oncology Scientific Working 
Group co-chairs, Dr. Qi Jiang from Seagen and Dr. 
Olga Marchenko from Bayer; Dr. Elizabeth Barksdale 
from LUNGevity Foundation; and Dr. Rajeshwari 
Sridhara, consultant from OCE, FDA.

In the introductory presentation, the OCE leader-
ship reviewed differences in how surrogate endpoints 
are used and evaluated in FDA's two approval path-
ways (i.e., traditional and accelerated). A validated 
surrogate endpoint can support marketing approval 
without additional studies demonstrating direct clini-

Rajeshwari Sridhara (FDA), Olga Marchenko (Bayer), Qi Jiang (Seagen), Elizabeth Barksdale (LUNGevity Foundation), Yiyi 
Chen (Seagen), Marc Theoret (FDA)
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cal benefit. Correlation with the clinical outcome is 
necessary, but correlation by itself is not sufficient for 
approval, as the surrogate endpoint must also capture 
the net effect of treatment which is almost impossible 
to demonstrate. Modified conditions to capture most 
of the net effect have been proposed in literature. 
Questions posed to academic, industry, and regulatory 
panelists included how to select criteria for estab-
lishing trial-level associations, challenges in sharing 
individual patient data, and experience with different 
criteria used to establish surrogacy.

The first speaker, from academia, emphasized the 
importance of surrogate endpoints in accelerating regula-
tory approval for oncology treatments, while acknowl-
edging the risks of relying on unvalidated surrogate 
endpoints. Surrogate endpoints must meet two funda-
mental requirements for validation: 1) show strong evi-
dence as a direct causal pathway to a disease outcome, 
and 2) have compelling biological support. The cur-
rent statistical methodology for surrogacy evaluation is 

the meta-analytic approach, evaluating both individual 
patient-level and trial-level correlations. The importance 
of stringent validation criteria in surrogate endpoint 
analyses was highlighted due to the challenges posed by 
data limitations, clinical relevance, novel biomarkers, 
and heterogeneities in trial designs.  

The second speaker, from industry, focused on 
the potential confounding effect in using surrogate 
endpoints for indolent cancers. Using pathological 
complete response (pCR) in early breast cancer as an 
example, the speaker demonstrated that pCR may not 
be a reliable surrogate for overall survival because 
of a lack of trial-level associations. The presentation 
concluded that addressing confounding is crucial but 
difficult due to the limitations of statistical methods 
and data availability.

The key points raised in the panel discussion fol-
lowing these presentations were:  

• Establishing feasible surrogate endpoints in 
early-stage cancer is important to patients, clini-
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cians, investigators and regulators for making 
new effective therapies more accessible because 
traditional clinical endpoints require long fol-
low-up periods. 

• Extrapolating surrogate endpoint validation from 
past trials to future trials may not be appropri-
ate with changing patient populations and new 
therapies with different mechanism of action. 
Introduction of effective salvage therapies is 
likely to change relationship between a surrogate 
endpoint and survival making overall survival 
surrogacy challenging.  While in principle the 
same criteria for evaluation of surrogacy may 
be used for evolving biomarkers, based on the 
patient population under study and the mecha-
nism of action of the treatment, different criteria 
may need to be considered.

• Validating potential endpoints requires broad 
collaboration among stakeholders, large data-
bases, and tailored approaches. Cross-company 
collaborations and data sharing are crucial for 
developing a comprehensive database to estab-
lish surrogacy.

• Discussing validation plans with regulators before 
performing analyses is important. Preparatory 
work, such as harmonizing definitions across tri-
als, is crucial to the interpretability of results. 

This forum provided an opportunity to have open 
scientific discussion among a diverse multidisciplinary 
stakeholder group – clinicians, epidemiologists, and stat-
isticians from academia and pharmaceutical companies, 
patient advocates, and international regulators- focused 
on emerging statistical issues in cancer drug development.  
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On May 11th, 2023, the American Statistical Asso-
ciation (ASA) Biopharmaceutical Section (BIOP) and 
LUNGevity Foundation hosted a virtual forum to dis-
cuss Cancer Clinical Trial Design and Analysis Con-
siderations in Evaluating Treatment Effect in Marker 
Negative Population. This forum was part of a series 
conducted under the guidance of the U.S. FDA Oncol-
ogy Center of Excellence’s SignifiCanT (Statistics in 
Cancer Trials). The goal of Project SignifiCanT is to 
advance cancer drug development through collabora-
tion and engagement among various stakeholders in 
the design and analysis of cancer clinical trials. The 
discussion was organized jointly by the ASA BIOP Sta-
tistical Methods in Oncology Scientific Working Group, 
the FDA Oncology Center of Excellence (OCE), and 
LUNGevity Foundation. This was a continuation of the 
discussion held in December of 2021.  

Advances in precision medicine and development of 
molecularly targeted therapies have led to many effective 
therapies for targeted populations in the past 10 years. 
However, many randomized clinical trials evaluating 
molecularly directed therapies are conducted in the over-
all population, which includes both marker positive and 
negative populations. Indeed, it is not uncommon that the 
hypothesis is tested in the overall population first and if the 
treatment effect is found to be statistically significant, then 
the hypothesis is tested either as a preplanned or explor-
atory analysis in the marker positive subgroup. In general, 
hypothesis testing in a marker negative subgroup is not 
prespecified and conducted only as an exploratory analy-
sis. If the treatment effect in the marker positive subgroup 
is large and contributes to a significant effect in the overall 
population, it may be challenging to infer treatment effect 
in the marker negative subgroup. There are examples of 

SUMMARY OF ASA BIOP SECTION’S VIRTUAL 
DISCUSSION WITH REGULATORS ON CANCER 
CLINICAL TRIAL DESIGN AND ANALYSIS 
CONSIDERATIONS IN EVALUATING TREATMENT 
EFFECT IN MARKER NEGATIVE POPULATION – PART 2
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cancer drug approvals indicated in both restricted and 
overall populations stemming from this type of situation.

This open forum discussion among multi-disciplin-
ary experts focused on understanding and measuring 
uncertainties in the evaluation of treatment effect in the 
marker negative subgroup. The speakers/panelists* for 
the discussion included members of the BIOP Statisti-
cal Methods in Oncology Scientific Working Group 
representing pharmaceutical companies, representatives 
from regulatory agencies (Food and Drug Adminis-
tration (FDA), Health Canada (HC), Medicines and 
Healthcare products Regulatory Agency (MHRA), and 
Therapeutic Goods Administration (TGA)), clinicians, 
academicians, patient advocacy groups, and expert stat-
isticians in industry.  In addition, over 100 participants 
attended the virtual meeting, including representatives 
from other international regulatory agencies (Euro-
pean Medicines Agency (EMA), Pharmaceuticals and 
Medical Devices Agency (PMDA), Health Sciences 
Authority (HAS), Israel Ministry of Health (MOH)).  
The discussions were moderated by the BIOP Statisti-
cal Methods in Oncology Scientific Working Group 
co-chairs, Dr. Olga Marchenko from Bayer and Dr. Qi 
Jiang from Seagen; and Dr. Rajeshwari Sridhara, con-
sultant from OCE, FDA.

In the introductory presentation, the OCE leadership 
reviewed design and analysis considerations in evaluat-
ing treatment effects in marker negative populations in 
cancer clinical trials. It was noted that most phase III 
randomized clinical trial (RCT) designs that evaluate 
biomarker effects include testing in overall popula-
tion and biomarker-positive subpopulation, but not 
in biomarker negative subpopulation. Examples were 
given where indications were granted to the overall 
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population, and cases where approval was restricted to 
a subpopulation.  Panelists were asked to consider how 
to set up subgroup hypothesis testing to avoid false 
conclusions, quantify uncertainty in subgroup analyses, 
measure the strength of association between the bio-
marker and the treatment, and when to include testing 
in the biomarker negative subpopulation. 

The first speaker, from academia, critiqued the 
prevalent use of biomarker positive/overall (BM+/O) 
design in randomized controlled trials. Problems with 
BM+/O design have been discussed in literature (Roth-
mann et al. Drug Inf J. 2012; Freidlin et al. Nat Rev C 
Onc 2014; Tannock et al. Ann Onc 2020; Kim et al. EJC 
2021). Using several trials (e.g., KEYNOTE-119, KEY-
NOTE-048, CHECKMATE-648, BELLE-2) as illustra-
tive examples, the speaker pointed out that the BM+/O 
design may lead to problematic recommendations for 

biomarker negative (BM-) subgroups. The speaker 
recommended using biomarker-stratified designs and 
reporting the treatment effects in BM- subgroups to 
inform the choice of treatment for individual patients. 

The second speaker, from industry, highlighted the 
imperfect nature of biomarkers and the value of broad 
population experience in Phase 3 trials when biomarker 
effects are uncertain. The presenter also discussed 
the benefits of testing multiple hypotheses by taking 
advantage of correlated hypotheses and emphasized the 
importance of considering treatment effect differences 
between BM+ and BM- subpopulations during trial 
design (Anderson et.al., 2022). 

The third speaker, from academia, pointed out that 
under the assumption that the treatment effect in BM+ 
subpopulation is the same or larger than in BM- sub-
population, trials can test the hypothesis in both BM+ 
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and BM- subpopulations more efficiently. The type 
I error rate will be inflated if the assumption is vio-
lated. The speaker also explored different trial designs, 
including targeted and biomarker-stratified approaches, 
and their implications for sample size and error control.     

The key points raised in the panel discussion follow-
ing these presentations were:  

• While p-values from subgroup analyses may not 
be meaningful due to lack of power, calculating 
posterior probabilities of survival improvement 
for biomarker groups can aid decision making.

• Pre-planning and setting up the analysis at design 
stage is crucial. If the treatment is an add-on, 
a pre-planned analysis for the BM- subpopula-
tion should be included due to the potential for 
increased toxicity. 

• Assuming that the prevalence rate for BM+ is 
higher than the prevalence rate for BM- and 
the treatment effect in BM- is smaller than that 
in BM+ subpopulation, studies evaluating bio-
marker effects should be powered within the 
BM+ subpopulation but also should quantify 
treatment effects within the BM- subpopulation 
using a confidence interval with some relaxed 
level of testing. It is important not to exclude 
subjects who are BM- from being evaluated for 
the treatment effect, if there is uncertainty regard-
ing drug’s target population.

• Subgroup hypothesis testing should be set up 
using well-established strategies to control the 
overall type I error rate as a result of multiple 
testing. If a treatment effect is possible for the 
BM- subpopulation, continued enrollment to col-
lect data for testing within the BM- subpopula-
tion is important.

• The approach to testing depends on the nature 
of the biomarker. Different biomarkers may 
interact with each other, adding complexity to 
identifying treatment effect within biomarker-
defined subpopulations.

• The decision to grant approval in the overall 
population or to restrict to BM+ subpopulation 
is made on a case-by-case basis. The decision 
depends on scientific rationale, reliability of 
the biomarker, and whether the treatment effect 

in BM+ population drives overall results. The 
decision on approval goes beyond statistics and 
involves various considerations such as study 
design, endpoints, maturity of data, biomarker 
prevalence and unmet needs.

This forum provided an opportunity to have 
open scientific discussion among a diverse mul-
tidisciplinary stakeholder group – clinicians, epi-
demiologists, and statisticians from academia and 
pharmaceutical companies, patient advocates, and 
international regulators- focused on emerging statis-
tical issues in cancer drug development.  
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REPORT FROM THE CELL AND GENE 
THERAPY SCIENTIFIC WORKING GROUP
Alan Y Chiang (Lyell Immunopharma), Daniel Li (Bristol Myers Squibb), Zhenzhen Xu1  (FDA)

Introduction

According to the American Society of Gene and Cell 
Therapy, gene therapy is the use of genetic material 
to treat or prevent a disease, and cell therapy is the 
transfer of a specific cell type(s) into a patient to treat 
or prevent a disease. These definitions are very broad 
and can cover a wide range of medical products. For 
example, cell therapy may include products that are 
stem or progenitor cell derived, mature or functionally 
differentiated cell derived, or tissue engineering based; 
gene therapy can include products that incorporate 
viral or nonviral vectors, microbial vectors, onco-
lytic viruses, or ex vivo genetically modified cells. In 
recent years, the research and development of cell and 
gene therapy (CGT) products have been making rapid 
progress, offering potential effective treatment options 
for various serious diseases and damaged tissues or 
organs. Many of the initial clinical outcomes have led 
to considerable investment in such innovative thera-
pies around the world. A recent survey by Alliance 
for Regenerative Medicine (alliancerm.org) shows 
that there were approximately 2,200 ongoing Phase 
1-3 CGT clinical trials worldwide in December 2022. 
The early stages of therapeutic development of CGT 
focused on treating serious and life-threatening dis-
eases, such as cancers, genetic diseases, severe burns, 
and infectious diseases. With the recent advancement 
of science and technology, therapeutic applications of 
CGT have expanded to treating patients with arthri-
tis, lupus, neurological disorder, diabetes, cutaneous 
ulcer, and various chronic diseases. CGT products may 
require laboratory procedures or surgical operations, 
which can be invasive for delivery to the target site.

The world’s first commercial gene therapy, Gen-

dicine, was approved in 2003 by China’s State Food 
and Drug Administration to treat head and neck 
squamous cell carcinoma (Pearson et al., 2004). 
Gendicine utilizes recombinant adenoviral vectors to 
deliver wild-type p53 gene, the expression of which is 
known to transfer antitumor abilities into the nucleus 
of tumor cells. The approval and subsequent clinical 
experience helped pave a path for success in making 
the technology become more accepted (Zhang et al., 
2018). In 2012, the first commercial gene therapy 
product Glybera was approved in Europe for the 
treatment of lipoprotein lipase (LPL) deficiency, an 
ultra-rare genetic disorder (Kassim and Somerville, 
2013). Glybera employs adeno-associated virus as 
a vector to convey a functional replica of the LPL 
gene to skeletal muscle. In 2017, the manufacturer of 
Glybera announced it would not seek renewal of the 
European Union market authorization and the product 
was subsequently withdrawn from the market. How-
ever, 2017 also marked two important milestones for 
CGT development in the United States. Kymriah was 
the first genetically modified cell-based gene therapy 
to receive approval from the U.S. FDA for any indica-
tion (FDA, 2017; Braendstrup et al., 2020). Yescarta 
was also approved later in 2017 for patients with 
large-B-cell lymphomas. Both Kymriah and Yescarta 
are autologous Chimeric Antigen Receptor (CAR) T 
cell therapies that are tailored to treat each individual 
patient. Immune cells are extracted from the patient’s 
body, genetically modified in a lab to target specific 
cancer cells, and then reintroduced back into the 
patient’s body through infusion. As of June 1, 2023, 
there have been 29 CGT products approved by the 
FDA (2023a), including 6 CAR T therapies (Table 
1), and an autologous active cellular immunotherapy 

1 Disclaimer: The findings and conclusions in this article have not been formally disseminated by the Food and Drug Administration and 
should not be construed to represent any Agency determination or policy.
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often referred to as a vaccine, Provenge, approved in 
2010 for the treatment of asymptomatic or minimally 
symptomatic metastatic castration-resistant prostate 
cancer (Cheever and Higano, 2011).

CAR T Cell Therapy
CAR T cell therapy is a human gene therapy product 
where T cells are genetically modified to enable them 
to recognize desired target antigen(s) more effec-
tively. In oncology, it is an emerging form of cancer 
immunotherapy, which involves supercharging a 
patient’s T cells to recognize and attack certain can-
cer cells.  Administering and manufacturing CAR T 
cell therapy products are a complex process that can 
take a few weeks. The steps generally include col-
lecting the T cells from the patient or healthy donors, 
engineering the T cells in a laboratory by adding a 
manufactured CAR and allowing the CAR T cells 
to multiply and grow, and infusing the CAR T cells 
to the patient once the laboratory or manufacturing 
facility has enough CAR T cells. Lymphodepletion 
chemotherapy is commonly used prior to the product 
infusion to help increase the treatment’s effective-
ness. See Figure 1 for an illustration of autologous 
CAR T therapies patients’ journey.

FDA has issued several guidance documents on the 
development of CGT therapies, including CAR T cell 
products (FDA, 2023b). These guidance documents 
provide important information on the chemistry, 
manufacturing, and control (CMC), preclinical, and 
clinical study design considerations of CAR T cell 
therapy development. The CMC guidance provides 
recommendations on the following topics:

• Vector manufacturing and testing
• Collection, handling and testing of starting material
• Manufacturing process and analytical testing
• Manufacturing changes and assessing comparability
• Single-site or multisite manufacturing
The preclinical guidance provides recommenda-

tions on the following topics:
• Design of vector component and transgene 

delivery process
• Characterization of transduced cell expression
• In vivo testing

The clinical study of guidance provides information 
on the following topics:

• Considerations for study population selection
• Treatment plan, including dose finding and 

situations when there is a manufacturing delay 
or failure

• Pharmacokinetics, pharmacodynamics, and 
immunogenicity

• Safety evaluation and monitoring
• Long term follow-up plan
• Additional considerations for allogeneic CAR 

T products

In addition to the FDA’s guidance for industry, there 
are also several resources available to sponsors engaged 
in CAR T cell product development. They are available 
through the web site of:

• The International Society for Cell and Gene 
Therapy (ISCT)

• The American Society of Gene and Cell Therapy 
(ASGCT)

• The National Cancer Institute (NCI)
• The National Institutes of Health (NIH)

The development of CAR T cell products is a com-
plex and challenging process. The FDA’s guidance 
documents and other resources can help sponsors 
develop safe and effective products that have the 
potential to revolutionize the treatment of cancer and 
other diseases. Several statistical related issues have 
emerged and methodological solutions to address 
these unique challenges have become an area of 
active research.

Cell and Gene Therapy Scientific  
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Working Group
In late 2022, a statistics-focused scientific work-
ing group (SWG) was formed to address some of 
the critical and unique questions arisen from CGT 
development, and in January 2023, the SWG was 
subsequently endorsed and supported by the Bio-
pharmaceutical Section. The proposed SWG works to 
strengthen the use of appropriate analytics by sharing 
collective experience, facilitating the development 
of promising statistical methods, and promoting the 
adoption of those methods by the statistical com-
munity. The initial efforts focus on issues related 
to genetically modified autologous cell-based gene 
therapies.  The term modified cell therapies includes 
a variety of immune therapies, such as CAR, includ-
ing CAR T cells and CAR Natural Killer (NK) cells, 
or T cell receptor (TCR) based, tumor infiltrating 
lymphocytes, and other adaptive immune cell-based 
therapies. Current members include representatives 
from pharmaceutical and biotech companies, contract 
research organizations, and health authorities.

Statistical issues that are pertinent to CGT develop-
ment include the followings:

- Design of multiple versions of CGT in early or 
late phase clinical trial 

- Determination of dose-range, and approaches for 
dose escalation and dose optimization

- Implementation of estimand framework appropri-
ate to CGT special considerations

- Use of real-world data and real-world evidence 
(RWD/RWE) to support or supplement CGT 
product registration or reimbursement

- Design of de-centralized long-term follow-up 
study (LTFU)

- Prediction of CGT related adverse events such as 
cytokine release syndrome and neurotoxicity or 
efficacy endpoints

- Approaches to establish CMC critical quality 
attributes and justifications of specification

- Performing comparability analysis for multiple 
versions of CGT

- Addressing statistical issues related to clinical 
trial design of next generation CGT

- Addressing the issue of small sample size in rare 
disease trials

While some of the topics are also relevant to other 
therapeutic applications, Table 2 summarizes the fea-
tures of statistical challenges and opportunities distinc-
tive to CGT development.

Summary 
CGT’s are at the forefront of therapeutic innova-
tion and transform how we treat and potentially cure 
certain diseases. The new era of CGT development 
shares a profile of astonishing efficacy, complex 
production and manufacturing process, and unique 
statistical challenges, aimed at very limited patient 
populations. In the spirit of scientific collaboration, 
the CGT SWG was formed to collectively address 
and overcome some of these challenges. Currently the 
SWG core team members include representatives from 
BMS (Daniel Li and Revathi Ananthakrishnan), FDA 
(Zhenzhen Xu), ICON (Patricia Anderson), Kite (Jim 
Whitmore), Lyell (Alan Chiang and Yeonhee Kim), 
MHRA (Khadija Rantell), and Novartis (Shihua Wen).  
As our understanding of CGT continues to improve, 
the SWG has planned to have several scientific disclo-
sures in 2023 and beyond. It is anticipated that there 
are opportunities to collaborate with other statisticians 
and SWGs within the Biopharmaceutical Section. The 
CGT SWG is also actively recruiting statistical experts 
and subteam members to help tackle some of these 
difficult problems and identify new opportunities. For 
more information, please see the CGT SWG website 
at https://community.amstat.org/biop/workinggroups/
cellandgenetherapy.
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Table 1. FDA approved CAR T-cell therapies

Generic Name Brand 
Name

Target 
Antigen

Year of First 
Approval

Targeted Disease Patient Population

Tisagenlecleucel Kymriah CD19 2017 B-cell acute lymphoblastic 
leukemia (ALL)

Children and young adults with relapsed or 
refractory B-cell ALL

2018 B-cell non-Hodgkin 
lymphoma (NHL)

Adults with relapsed or refractory B-cell NHL

2022 Follicular lymphoma (FL) Adults with relapsed or refractory FL

Axicabtagene 
ciloleucel

Yescarta CD19 2017 B-cell non-Hodgkin 
lymphoma (NHL)

Adults with relapsed or refractory B-cell NHL

2021 Follicular lymphoma (FL) Adults with relapsed or refractory FL

Brexucabtagene 
autoleucel

Tecartus CD19 2020 Mantel cell lymphoma (MCL) Adults with relapsed or refractory MCL

2021 B-cell acute lymphoblastic 
leukemia (ALL)

Adults with relapsed or refractory B-cell ALL

Lisocabtagene 
maraleucel

Breyanzi CD19 2021 B-cell non-Hodgkin 
lymphoma (NHL)

Adults with relapsed or refractory B-cell NHL

Idecabtagene 
vicleucel

Abecma BCMA 2021 Multiple myeloma (MM) Adults with relapsed or refractory MM

Ciltacabtagene 
autoleucelw

Carvykti BCMA 2022 Multiple myeloma (MM) Adults with relapsed or refractory MM
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Figure 1. A patient journey from an autologous CAR T cell therapy treatment

Table 2. Statistical challenges in CGT development

Key Ares of Focus Unique Challenges References

Dose Escalation 1. Traditional maximum tolerated dose may not be suitable for these therapies; 
approaches to address toxicity-efficacy trade-off during dose escalation can help 
optimize the recommended Phase 2 dose.

2. Leveraging data extrapolation from prior products of identical CAR construct with 
similar features to help accelerate dose escalation.

3. Manufacturing autologous products may fail to achieve the desired dose level or 
meet the specified release criteria during ex vivo expansion of the T-cell, resulting 
non-conforming products in dose escalation.

Li et al. (2017); 
Lin et al. (2020); 
Devlin et al. (2021);
Better et al. (2023)

Estimand 1. Clear understanding of scientific questions and treatment of interest.

2. Intercurrent events occurring after surgery or leukapheresis, such as the use of 
lymphodepleting therapies and/or bridging therapies. 

3. Intercurrent events due to manufacturing failure or starting new therapies without 
progression.

Lin et al. (2022)

RWD/RWE Real world data (e.g., data sources from clinical sites, registries and research 
databases) that are derived and set up to generate an external comparison arm for 
ancillary analysis of efficacy endpoints.

Casadei et al. (2021); 
Derman et al. (2022)

Predictive 
Biomarkers

Identification of biomarkers, including product cell composition, tumor burden, T cell 
infiltration, and immunosuppressive factor expression, that may be associated with or 
predictive of CAR T safety and efficacy.

Swanson et al., (2017); 
Stein-Thoeringer et 
al. (2023)

Master Protocol; 
Novel Trial 
Design

1. Utilization of a master protocol design to conduct CGT LTFU studies 

2. Studying multiple versions of CGT product in early phase using umbrella trial 
designs

3. Basket trial designs implemented in targets with lower prevalence cancer subtypes

FDA LTFU (2020); 
FDA multiple 
versions of CGT 
(2022); Rochigneux et 
al. (2021)
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September 2023
Selection as a Fellow of the American Statistical 
Association is a high honor to which many mem-
bers of the ASA aspire. Each year, new Fellows are 
chosen based upon their record of achievements and 
contributions to the field, summarized in nomina-
tion packages submitted to the ASA Committee on 
Fellows, announced in the spring, and recognized 
in ceremonies at the Joint Statistical Meetings. Bio-
pharmaceutical Section (BIOP) members have been 
well represented among those honored. To help BIOP 
members who are considering being put forth for 
selection or would like to assist others in achieving 
this honor, a Fellows Nomination Committee has 
been operating within the section. Its members are 
ASA Fellows experienced in successfully support-
ing others in the nomination process. The committee 
does not prepare packages for potential nominees, 
but can offer general advice and, importantly, send 
a proposed nomination package to an independent 
expert reviewer for comments and suggestions for 
improvements. Nominators who would like to take 
advantage of this service should send their draft 
packages to the current committee chair (informa-
tion can be found at https://community.amstat.org/
biop/aboutus/sub-committees/fellows141) at least 4-5 
weeks in advance of the planned submission date 
in order for feedback to be received and potentially 

IMPORTANT INFORMATION  
FOR PROSPECTIVE ASA FELLOWS 
Original written by Paul Gallo, Brenda J Crowe, Bruce Binkowitz, Ilya Lipkovich, and Amy Xia, and updated by Paul Gallo, 
Bruce Binkowitz, Weili He, Inna Perevozskaya 

acted upon (the submission deadline each year is 
March 1). Those planning a nomination should 
thoroughly familiarize themselves with the process, 
along with suggestions for an effective nomination. 
There are a few good sources of information readily 
available to prospective candidates and nominators 
and can be found below:  

• ASA Fellows website (https://www.amstat.org/
your-career/awards/asa-fellows) contains tips for 
Nominators, frequently asked questions, rating of 
nominees, nomination form preview, example of 
letters of support, and other useful information.   

• In addition, a helpful article with perspectives 
and tips from several BIOP ASA Fellows, entitled 
“Nomination for ASA Fellowship” (Dmitrienko 
et al), appeared in the Spring 2020 Biopharma-
ceutical Report: BIOPSpring2020_FINAL.pdf. 

• Finally, an ASA-sponsored webinar was pre-
sented in 2020, “Biopharmaceutical Section 
Offers Advice on Strategic Planning for ASA 
Fellow Nomination”, containing presentations 
and panel discussions featuring a large group of 
BIOP members with experience in the Fellows 
process, and can be viewed at https://www.you-
tube.com/watch?v=YLkXund_p7I.   

Good luck! 
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Christina Nurse (Takeda), Rebbecca Wilson (J&J)

It’s been an exciting year for the ASA Biopharmaceuti-
cal Section Podcast. We welcomed a new co-host, Reb-
becca Wilson, earlier this year to help while Christina 
Nurse welcomed her son, Kaleb. Speaking of family 
additions, Amy Lalonde also welcomed her son over the 
summer. As we like to cover a variety of topics on the 
podcast, Amy and Christina will discuss what it’s like 
to be a working mom and statistician in the industry in 
an upcoming episode.

Please visit the ASA website to listen to all 
episodes: https://community.amstat.org/biop/media-
contents/podcasts

Upcoming episodes include a conversation with 
Godwin Yung, PhD (Genentech/Roche) on overall 

survival in oncology trials. Cesar Torres, PhD (FDA) 
will share his perspective on safety estimands in clini-
cal trials. Satrajit Roychoudhury, PhD (Pfizer) will 
highlight the work of the ASA Statistical Partnerships 
Among Academe, Industry & Government (SPAIG) 
committee. He will also discuss the ASA SPAIG award 
that recognizes outstanding partnership or collabora-
tive efforts across different career sectors.

We look forward to having you tune into these 
episodes. If you have suggestions for a topic or want 
to be a guest, please reach out to Christina Nurse, 
PhD (christina.nurse@takeda.com), Amy Lalonde, 
PhD (lalonde_amy@lilly.com), and Rebbecca Wilson, 
DrPH (rwilso12@its.jnj.com). 

CHECK OUT THE 
LATEST EPISODES 
OF THE ASA 
BIOPHARMACEUTICAL 
SECTION PODCAST 
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A SUCCESSFUL CONFERENCE SEASON
Brian Millen, Chair, ASA Biopharmaceutical Section.  (Biogen)

We’ve recently wrapped up what has become known 
in my house as conference season – that most busy 
and energizing time of the year spanning from JSM 
through RISW. Fittingly for a time that includes kids’ 
returning to school and launches of academic years, I 
enjoy the opportunity to reunite with friends and col-
leagues, to share, and learn during this season.  This 
year, both JSM and RISW provided great opportuni-
ties for learning and reflected the continued growth 
in interest from members of our Biopharm Section 
(BIOP).  I share a few highlights below.

Elena Polverejan (J&J), 2023 BIOP Program Chair, 
led the selection of BIOP sessions for JSM.  This year, 
BIOP sponsored 6 invited sessions.  This includes our 
4 allotted sessions plus two additional sessions earned 
through competition.  In addition to the invited ses-
sions, BIOP sponsored 16 topic-contributed sessions, 
which were selected out of 49 proposals.  BIOP also 
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sponsored 20 contributed paper sessions, 48 contrib-
uted poster presentations and 19 contributed speed 
presentations.  This program of presentations, talks, 
and panels offered an abundance of opportunity for 
colleagues to share their work and all of us to engage 
on topics of interest.  The short course, “Causal infer-
ence in Randomized Controlled Trials,” rounded out 
the scientific offerings by BIOP at JSM.

Of course, the annual BIOP business meeting and 
mixer is a highlight of the conference for many of 
us.  This event offers a chance to network, reconnect 
with friends and make new ones.  This is all done, of 
course, with a backdrop of fine appetizers and drinks, 
and BIOP officers sharing updates on behalf of the 
executive committee.  This year, as Chair, I had the 
privilege of presenting multiple awards to deserv-
ing recipients, including our student scholarship 
awards which grew to eight this year, due to the large 

numbers of really deserving high-quality applicants.  
(Thank you to the Scholarship Award Committee led 
by Jared Lunceford (Merck)).

“This year, as Chair, I had the 

privilege of presenting multiple 

awards to deserving recipients, 

including our student 

scholarship awards which grew 

to eight this year...” 
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Just a few weeks after returning from Toronto, 
I landed in Washington, D.C., to participate in the 
BIOP Regulatory Industry Statistics Workshop, affec-
tionately known as RISW.  This conference is unique 
in its very relevant focus for our BIOP community 
as well as its strong participation from statistician 
colleagues at FDA and industry alike.  Conference 
Co-Chairs, Fanni Natanegara (Lilly Japan) and Erik 
Bloomquist (Merck; formerly at FDA) and the 2023 
Steering Committee put on a stellar program.  The 
global theme of the conference, Statistical Thinking 
and Innovation with Global Impact, was felt promi-
nently in the plenary sessions and throughout the 
conference.  In addition to the expansion of emphasis 
to global ideas, the number of session offerings was 
increased and an additional day of roundtable lunches 
was added.  As usual, the conference kicked off with 
short course offerings on Wednesday.  These were 

well attended, with the ten offerings covering a wide 
range of relevant topics for conference attendees.

Prior to leaving RISW, I had the opportunity to 
attend the kickoff meeting for the 2024 RISW steer-
ing committee.  Energy and engagement were high.  I 
look forward to what is to come next year to continue 
the strong legacy of the RISW conference.

Now in the post-conference season, I look forward 
to the end of the year and the holiday season.  I wish 
you and your loved ones a great season to come.  
Thank you, BIOP members, for trusting me to serve 
you in this role.  I will write again for the Spring 
2024 Biopharm Report, sharing reflections on the 
year.  I will be joined by current Chair-elect, Ted Lys-
tig.  I look forward to all the Section will accomplish 
going forward.  

Be sure to follow our BIOP LinkedIn profile for 
regular updates on the Section.   
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The 2023 ASA Biopharmaceutical Section Regula-
tory-Industry Statistics Workshop (RISW) was held 
in North Bethesda, MD from September 27-29 and 
once again resulted in a highly successful event. The 
workshop had a theme of “Statistical Thinking and 
Innovation with Global Impact” and featured over 
1,150 statisticians participating in 10 short courses, 
49 parallel sessions, and 2 plenary sessions that 
focused on ICH harmonization and digital health 
technologies. The session on ICH harmonization 

REGULATORY INDUSTRY STATISTICS 
WORKSHOP 2023 RECAP
Erik Bloomquist, 2023 RISW Co-Chair (Merck)

featured Amy Xia from Amgen as moderator and fea-
tured a panel of statistical leaders from FDA, EMA, 
PMDA, Novartis, and UNC Chapel Hill discussing 
efforts to develop international guidance for drug 
development. The second plenary session was mod-
erated by Kelly Zou from Viatris and featured talks 
by Vinay Pai from the FDA Digital Health Center 
of Excellence and Digital Medicine Society (DiME) 
CEO Jennifer Goldsack on digital innovation and 
outlooks for this area. Due to high demand, both 
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talks were recorded and are available on the 2023 
workshop homepage.

As part of the RISW 2023 global theme, a spe-
cial outreach effort was conducted to statisticians 
outside of North America. During this outreach, a 
collaboration was established between the European 
Federation of Statisticians in the Pharmaceutical 
Industry (EFSPI) and ASA BIOP to promote future 
regulatory-industry statistics workshops held both in 
North America and Europe. Stay tuned for informa-
tion on the 9th EFSPI workshop on regulatory statis-
tics workshop to be held September 11-12, 2024 in 
Basel Switzerland. 

For RISW speakers and participants, the peer-
reviewed statistics journal Statistics in Biopharmaceu-
tical Research is pleased once again to offer a special 
issue devoted to the 2023 workshop. Authors who 
presented at the workshop are welcome to submit full 
papers based on the results presented at RISW2023, 

and the journal welcomes submissions beyond the 
workshop as well. The SRB special issue editorial 
team includes Erik Bloomquist, Fanni Natanegara, 
Weili He, Zachary Micah Thomas, and Hana Lee. 
Deadline for submission is January 31, 2024.

It’s never too early to make plans to attend RISW 
2024 to be held September 25-27, 2024 at the North 
Bethesda Marriott. Zhiheng Xu from FDA and Jian-
chang Lin from Takeda will be co-chairs for the 
workshop and have a wonderful program planned. 
Stay tuned to LinkedIn and the RISW 2024 website 
(https://ww2.amstat.org/meetings/biop/2024/) for 
upcoming participation, submission, and registration 
deadlines. 

We would like to one last time thank all the mem-
bers of our steering committee, workshop sponsors, 
and ASA event staff for all their dedication and work 
planning the 2023 workshop. We hope to see you all 
once again at RISW 2024.  
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The 2023 Boston Pharmaceutical Symposium, organized 
by the Boston Chapter of the American Statistical Asso-
ciation (BCASA), hosted by Sanofi, was a resounding 
success. The event marked a significant milestone in the 
history of the symposium, with a record-breaking atten-
dance of 157, the most representative Scientific Commit-
tee from both industry and academia, and a wide variety 
of presentations in different sessions since its inception 
in 2017. The attendees came from the New England area 
and other regions with diverse backgrounds, representing 
various sectors of the pharmaceutical industry, clinical 
research organization, academia, and university students. 

Our Symposium transcended expectations, thanks 
to the remarkable contributions of our ten distin-
guished oral presentation speakers and poster pre-
senters. Their wealth of insights, knowledge, and 
expertise elevated the event, providing attendees with 
exceptional learning opportunities and making this 
gathering an unequivocal success. One of the high-
lights was the morning keynote by Prof. Mark Chang, 
an Adjunct Professor at Boston University and the 
visionary Founder of AGInception. In a mesmerizing 
address, he delved deep into the intricate landscape of 
Artificial Intelligence and Machine Learning (AI/ML) 
in Drug Development and Healthcare. Prof. Chang not 
only illuminated the challenges and regulatory aspects 
associated with AI applications but also painted a vivid 
picture of the benefits that stem from shifting from 
traditional statistics to AI/ML methodologies. His pre-
sentation left an indelible mark on everyone present, 
offering a glimpse into the future of innovation in these 
critical fields. Furthermore, the afternoon keynote by 
Rui (Sammi) Tang, Vice President and Global Head 
of Biometrics at Servier, was nothing short of inspira-
tional. With unwavering passion, Sammi embarked on 
a journey exploring the theme of strategic innovations 
in clinical development. Drawing from real-life cases, 
she masterfully illustrated how statistical innovations 
can profoundly impact drug development, ultimately 
leading to tangible benefits for patients. Sammi’s 
compelling narrative underscored the significance of 
statistical teams as leaders, their indispensable role in 

RECAP OF 2023 BOSTON 
PHARMACEUTICAL SYMPOSIUM
Jianjun Hua1, Zhaoyang Teng2, Gautier Paux3, Xihao Li4, Kristin Baltrusaitis5, Wenting Cheng6 
1 Dartmouth College, Hanover, NH, 2 Servier, Boston, MA, 3 Sanofi, Cambridge, MA, 4 UNC-Chapel Hill, NC, 5 Center for Biostatistics in AIDS 
Research, Harvard T.H. Chan School of Public Health, Cambridge, MA, 6 Biogen, Cambridge, MA

shaping the future of healthcare. Sammi’s keynote was 
a resounding call to action, reminding us all to cherish 
the joy of being statisticians and our power to make 
a genuine impact on the lives of patients. The Sym-
posium, enriched by the insights and wisdom of our 
exceptional speakers, will leave an enduring legacy 
in the realm of AI/ML and clinical development. The 
full event agenda and presentation slides can be found 
on BCASA website: https://community.amstat.org/
bostonchapter/upcoming-events/new-page2

The Scientific Committee, comprising 24 members, 
played a crucial role in organizing the symposium. This 
includes the leaders of the Scientific Committee (Andrew 
(Jianjun) Hua, Co-chair, Program Chair of BCASA; 
Zhaoyang Teng, Co-chair; Gautier Paux, Vice-chair and 
Venue host; Xihao Li, Vice-chair; Kristin Baltrusaitis, 
Past Chair). Special thanks to the Poster Subcommittee 
(Xihao Li, Disa Yu, Ina Jazić, Hailu Chen), the Invited 
Speaker Session Subcommittee (Zhaoyang Teng, Xihao 
Li, Jianchang Lin, Brooks Clark), Student Award Sub-
committee (Kosalaram Goteti, Hrishikesh Kulkarni, 
Xihao Li) and our Venue Host Representative (Gautier 
Paux) for their outstanding leadership and unwavering 
dedication to the Symposium.

The event was made possible by the generous sup-
port of sponsors, including Venue Sponsor: Sanofi; 
Platinum Sponsor: ASA Biopharmaceutical (BIOP) 

This summary was prepared by the Scientific Committee 
Leadership Team:

Andrew (Jianjun) Hua, Co-chair, Program Chair of 
BCASA, Dartmouth College

Zhaoyang Teng, Co-chair, Servier

Gautier Paux, Vice-chair and Venue host, Sanofi

Xihao Li, Vice-chair, UNC-Chapel Hill, formerly Harvard 
T.H. Chan School of Public Health

Kristin Baltrusaitis, Past Chair, Center for Biostatistics in 
AIDS Research, Harvard T.H. Chan School of Public Health

Wenting Cheng, the President of BCASA, Biogen
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Section; Gold Sponsors: Phastar, Servier, and ASA 
BIOP Leadership-in-practice Committee (LipCom); 
and Silver Sponsors: Cytel, MaxisIT, Algorics, and 
ClinChoice.

This symposium served as a unique platform for 
sharing insights into statistical applications and research 
within the pharmaceutical industry, fostering connec-
tions among colleagues involved in statistical practices 
in the Greater Boston area and nurturing future innova-
tions in this field. The event featured the strong local 

community of statisticians, promoting research and 
innovation in pharmaceutical statistics, highlighting 
the dynamic and ever-evolving landscape of statisti-
cal practices within the pharmaceutical industry. Much 
positive feedback was received from the attendees.

In conclusion, the 2023 Boston Pharmaceutical 
Symposium was a landmark event that showcased the 
collective efforts of many dedicated colleagues and 
organizations. We look forward to continuing this tradi-
tion of excellence in the years to come. 
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ISBS TO HOLD SYMPOSIUM IN BALTIMORE

We are proudly announcing that the 7th International 
Symposium on Biopharmaceutical Statistics will take 
place on March 6 – 9, 2024, at Hilton Baltimore Inner 
Harbor. The symposium is organized by the Interna-
tional Society for Biopharmaceutical Statistics with 
a theme on “Statistical innovation in the era of inte-
grated evidence for medical product development”. 
The purposes of this symposium are

• To bring together worldwide statisticians 
and drug development professionals who are 
involved in quantitative biopharmaceutical 
research, development, and regulations to share 
and exchange information, experience, and 
research findings, and

• To improve and promote the harmonization of 
statistical practice in the industry at the interna-
tional front.

Prominent statisticians and drug development pro-
fessionals from regulatory agencies, academia, and 
industry will deliver keynote speeches on various 
emerging/evolving fields. Invited and contributed 
presentations will cover a wide range of topics from 
non-clinical statistics, preclinical discovery, clinical 
development, post-licensure evidence generation, 
to regulatory science, data science and statistics. A 
series of short courses will be given by experts in 

their respective professional fields. The Statistics in 
Biopharmaceutical Research will publish a special 
issue of high-quality papers presented (including 
poster presentation) at the Symposium via a peer-
review process according to the policy and principles 
of the journal.   

This symposium is co-sponsored by several orga-
nizations:

• American Statistical Association (ASA)  
Biopharmaceutical Section 

• Center for Innovative Study Design, Stanford 
University

• Department of Biostatistics, Bioinformatics, & 
Biomathematics, Georgetown University 

• Department of Biostatistics and Bioinformatice, 
The George Washington University

• Department of Mathematics and Statistics, Uni-
versity of Maryland Baltimore County 

• UMBC-Stanford Workshop on Clinical Trials 
and Regulatory Science

• DahShu 
• ASA-DahShu IDSWG Multidisciplinary Mas-

ter Protocol Working Group
The preliminary program will be available online on 

Nov 15 and the online registration will start on the same 
day. We sincerely invite you to join us at this event!

Dear ASA BIOP colleagues, 

ISBS 2024 7th Symposium Organizing Committees
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ASA Fellows 
CONGRATULATIONS TO THE NEW 

Margaret Gamalo 
Pfizer

For exceptional impact to drug 
development, benefitting millions of 
patients worldwide; for promoting 
statistical methods to expedite 
access of drugs in children and 
high unmet need diseases; and for 
sustained and impactful service to 
the statistical profession.

Bo Huang 
Pfizer

For outstanding statistical leadership 
and consulting in biopharmaceutical 
industry, extraordinary research and 
collaboration, exceptional promotion 
of novel statistical methods 
to oncology clinical trials, and 
exemplary service to the profession.

Kalyan Ghosh 
Inference

For statistical application in 
clinical pharmacology, outstanding 
organizational leadership in statistical 
consultancy and services, and 
excellent leadership and service to 
the statistical profession.

Inna T. Perevozskaya 
GSK

For outstanding contributions to 
the statistical profession through 
development, dissemination, and 
application of innovative designs 
in the pharmaceutical industry; 
for engagement in highly impactful 
scientific working groups; and for 
service to the ASA.

Xiaofeng Wang 
Cleveland Clinic

For major impact in developing 
and  implementing novel statistical 
methods in high-priority medical 
settings, advancing statistical 
knowledge through numerous 
courses on cutting-edge topics, 
and substantial service to the ASA 
Biopharmaceutical Section.

Big congratulations to the following BIOP members who become 
ASA fellows in 2023! Your hard work and influence are really valuable 

to the BIOP community and you continue to be our inspiration.
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The 79th Annual Deming Conference on 
Applied Statistics
The Deming conference is sponsored by the ASA 
Biopharm Section. It will be held on December 4-8, 
2023 in Philadelphia, PA. It consists of 3 days of 
Tutorials and 2 days of Short Courses on Applied 
Statistics, aimed at providing a learning experience 
on recent developments in statistical methodologies 
in biopharmaceutical applications. The first 3 days 
of the conference is composed of twelve three-hour 
tutorials on current topics in applied biopharmaceuti-
cal statistics and FDA regulations, and a one-hour 
distinguished keynote speaker on each of the 3 days 
of the conference. The last 2 days of the conference 
consist of short courses on special topics that will 
offer in-depth review of theory and practical con-
siderations. For more details, please visit https://
demingconference.org/. 

• Key dates: registration opens on August 14, 2023.

UPCOMING CONFERENCES

The 7th International Symposium on 
Biopharmaceutical Statistics
This conference will take place on March 6-9, 2024, at 
the Hilton Baltimore Inner Harbar. The symposium is 
organized by the International Society for Biopharma-
ceutical Staistics with a theme on “Statistical innovation 
in the era of integrated evidence for medical prod-
uct development”. For more information please visit 
https://www.isbiostat.org/7th-international-symposium-
on-biopharmaceutical-statistics/. 

• Key dates: registration opens on November 15,
2023




