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Note from the Editors
In this issue we feature two articles. The first, by Danel J. 
Zaccaro and Leela M. Aertker (Rho Inc) discusses the use 
of  zero-inflated mixture models in vaccine testing to bet-
ter characterize subjects whose antibody levels fall below 
the lower limit of  quantitation. They apply this methodol-
ogy to data from an H1N1 vaccine trial.

John J. Peterson (GlaxoSmithKline Pharmaceuticals) 
and Ron S. Kenett (The KPA Group) argue that process 
improvement and optimization in pharmaceutical devel-
opment and manufacturing can be enhanced through 
greater use of  stochastic process modeling. They identify 
and provide a thorough review of  two such modeling 
opportunies, multivariate predictive regression and Bayes-
ian Networks.

We also welcome Yongming Qu (Eli Lilly & Co.) as 
new Associate Editor. Yongming will be replacing Amit 
Bhattacharyya, who is stepping down from his edito-
rial position in 2012 to assume his new role as section  
Chair-Elect. n
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Letter from the Chair…
The Steering Committee for this year’s ASA/Biopharm FDA/Industry Meeting at the Marriott Ward-
man Park Hotel in Washington, DC, had a unique challenge in meeting the demands of  an over-
whelmingly full program (37 sessions!) – how to “kick-off ” the meeting when they were starting with 5 
parallel sessions? In responding to this challenge, the decision was made to have Committee members 
in each of  the 5 rooms simultaneously “open” the meeting with a common slide deck and some of  their  
own words.

In thinking about what to say, Brenda Crowe from Eli Lilly, the Industry Co-Chair for the meeting 
sent me an e-mail that said,

“I am reviewing what I want to say in my introductory comments. I plan to remind 
people to join the Biopharm Section and thought it might be more powerful if I told 
them of some of the benefits. Do you have thoughts on this?”

After 9 months of  serving as your Chair, working with this Section’s tremendous elected/appointed 
officers and volunteers, putting together the BIOP ENAR and JSM Executive Committee Meetings, 
thinking about Section business, answering many, many e-mails, learning about all of  the Section’s 
activities and history…the thoughts and ideas tumbled out of  my head (my apologies to Brenda who 
was just looking for a few simple bullets).

With this year’s experience I have come to the realization that my advice is a “no-brainer” – if  it is 
important to a statistician to be a fully involved professional (in all aspects), dedicated to the development 
of  new medical (animal and human) products for the Public’s good, then it is important that he/she be 
a supporting member of  the ASA Biopharm Section.

However, realizing that Brenda just wanted a few bullets for a 30-second timeslot, I boiled it down 
to the following:

The Biopharm Section Works for all of  us…developing numerous professional and leadership opportunities: 

Professional Visibility, Networking, Continuous Education, Volunteer Opportunities 
and Career Support 

•	 ASA/Biopharm FDA/Industry Workshop 

•	 JSM

—Invited Sessions 

—Contributed Paper Competition 

—Tutorials 

—Student Paper 

—Business Meeting/Mixer

—Webinars 

—Fellows Committee

Communication and Collaboration 

• 	 ASA publications 

• 	 Collaborative Web Community of  colleagues 

• 	 Biopharm Newsletter
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(Please feel free to use these bullets the next time a colleague asks you “Why should I pay an extra 
eight bucks per year to be a member of  the Biopharm Section?”)

According to everybody I have talked to, this year’s ASA/Biopharm FDA/Industry Meeting was a  
great success!

• 	 The biggest ever, with 820 participants; 

• 	 A terrific venue – “on the Red Line,” new meeting rooms, internet access, good food, etc.; and 

• 	 So many well-designed/useful sessions to choose from – something for everyone.

All of  this made possible by the many Section volunteers and the dedicated work of  the ASA meet-
ing support staff. A quick count of  persons involved in the meeting (serving on the organizing com-
mittee, managing the roundtables, organizing sessions, chairing sessions, teaching, speaking, discussing, 
etc.) reveals that nearly 300 professionals, served as volunteers for this important ASA Biopharm 
activity—we did it, we put this meeting together for ourselves. The Workshop (the most democratic and 
collaborative of  all of  our meetings) is what the Section is all about – professional leadership, volunteer-
ism, collaboration, career support and continuous education. Many kudos and thanks to the meeting 
co-chairs, Brenda from Eli Lilly and Joan Buenconsejo from FDA/CDER, and to all of  the dedicated 
professionals who made this meeting happen.

So what do I do with 3 whole months remaining as your Chair? We are good, but (me being me) I 
feel that we can get better. How do we strategically plan for our future?

One of  the few “powers” a BIOP Chair enjoys is the ability to create ad hoc committees to serve the 
needs of  the Section, so I have assigned myself  the task of  creating and nurturing three new ones:

Leadership Committee – dedicated to examining how the Section can contribute to the recog-
nition and the growing number of  efforts in industry, academia and government to develop statisti-
cians as leaders;

Continuing Education Committee – formed with a mandate to figure out how we can best 
describe, structure, grow and plan all of  our various (current and future) CE and collaboration 
efforts; and

Specialty Committee – to examine and assure ourselves that we have the right policies and activi-
ties in place to meet the “specialized needs” of  all of  our members. Our Charter tells us that “The 
special interest of  the Biopharmaceutical Section is the application of  statistics to the development 
and use of  therapeutic drugs, biologics, and devices in humans and animals.” Are we doing all that 
we could/should? Can we do it better? Do all of  our members feel equitably well-served by the Sec-
tion’s efforts and activities?

I have already recruited a number of  you to help with these efforts and will more fully describe these 
committees at the upcoming Transition Meeting at the end of  October. If  you are interested in joining 
any of  these groups—to think about our future—please get in touch with me (stephen.wilson@fda.hhs.gov). 
Hopefully, this will give me plenty to do during 2012 as your “Past Chair.”

I am starting to realize that this has been a very short year—serving as your Chair…how could my 
term be nearly over when I am still learning how to do the job? The story of  many of  our lives: Too 
much to do, too many ideas and too little time.

Cheers.
Steve Wilson
2011 Chair, ASA BIOP Section
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Summary of the Minutes of the ASA 
Biopharmaceutical Executive Committee Meeting 

Held August 1, 2011 in Miami, FL 
Submitted by Rick Caplan

•	 Matilda Sanchez, Treasurer, reported that the Section has $359,653.43 as of  July 25th. The pro-
posed 2012 budget and the budget for the Biopharmaceutical FDA/Industry Workshop were 
reviewed. The Workshop is sponsored by the Biopharmaceutical Section.

• 	 Alex Dmitrienko, David Breiter and Stephine Keeton gave the Council of  Sections report. There 
will be an update to Sections’ charters. A BIOP Ad Hoc Committee will handle this. The COS is 
proposing an earlier deadline, February 19, for decisions about student paper awards. There was a 
proposal for a new ASA Section on Imaging. ASA is organizing a Conference on Statistical Practice 
in February in Orlando.

• 	 Devan Mehrotra, Publications Officer, reported that all items for the Amstat News are on track.

• 	 Biopharm Report editors, Jose Alvir, Deborah Panebianco and Amit Bhattacharyya, reported that 
the Spring issue was published, the Summer issue will soon be published, and there are plans for a 
Winter edition.

• 	 Fellows Committee Chair, Neal Thomas, reported that there were 5 successful nominations of  Bio-
pharm Section members this year.

• 	 JSM Program Chair and co-chair, Jeff  Maca and Carmen Mak, reported that the Biopharm Sec-
tion has more sessions than any other Section. It was a very successful meeting.

• 	 Mani Lakshminarayanan and Venkat Sethuraman reported on web-based training. There have been 
8 to 10 webinars per year for the past 2 years. Recently, webinars have been organized in teams of  2; 
and that’s worked well. The webinar program is sponsored by the Biopharmaceutical Section.

• 	 Steve Snapinn, Editor, gave information about the ASA-sponsored journal, Statistics in Biophar-
maceutical Research. It is an electronic-only journal, though a special hardcopy issue was recently 
commissioned by UNC to honor Gary Koch. There will be future special issues on biomarkers, 
non-clinical statistics, and an issue honoring Bob O’Neill’s tenure at the FDA.

• 	 Yongming Qu, Jingli Song, Jerry Wang, Poster Competition Committee, reported the winners of  
this year’s contest. The following first, second and third place lead author winners are:

1.	 Martin O. Carlsson: A Comparison of  Methods for Adjusting for the Baseline Measure.

2.	 Kelly H. Zou: Cross-Sectional and Longitudinal Joint Modeling of  Repeated Measures of   
	 Quasi-Continuous Patient-Reported Outcome and Binary Response Data.

3.	 Yufan Zhao: Reinforcement Learning Strategies for Lung Cancer Clinical Trials.

• 	 Joan Buenconsejo and Brenda Crowe reported that planning for the 2011 FDA/Industry Biop-
harmaceutical Workshop is going well. It will be September 19-21 at the Marriott Wardman Park, 
Washington, DC. 
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•	 John Johnson, Qi Jiang, Veronica Taylor, Contributed Paper Award Committee, reported last year’s 
winners, which were announced in the Spring 2011 edition of  the Biopharm Report.

• 	 Christie Clark announced the winner of  the Student Paper Competition. The winner is David Vock: 
Mixed Model Analysis of  Censored Longitudinal Data with Flexible Random Effects Density. 

Biopharmaceutical Section Poster Awards at  
2012 Joint Statistical Meeting

If  you plan to attend the 2012 JSM and plan to present a poster, you may consider participating in the 
Poster Competition sponsored by the ASA Biopharmaceutical Section. All authors who present posters 
sponsored by the Biopharmaceutical Section are qualified to compete for this award. The entry criteria 
for the Poster Awards are:

•	 Topics in statistics which are applicable to biopharmaceutical research. Suitable topics include 
but are not limited to methodological issues in preclinical or clinical trials, epidemiology stud-
ies of  drug safety (device or biological), genetic studies predicting drug (or biological) response, 
laboratory and toxicological data analyses, methods for high-dimensional data from high-
throughput screening, and non-linear pharmacokinetic modeling. 

•	 All JSM attendees (not restricted to members of  the Biopharmaceutical Section) can participate 
in the competition. 

•	 Posters will be evaluated based on the following criteria:

—Innovation

—General applicability in pharmaceutical research

—Appropriate example(s)

—Effectiveness of  presentation (well written, well organized, etc) 

•	 Authors who compete for the Poster Awards cannot also compete for the Students Paper Awards.

Three awards with cash prizes of  $1000, $600 and $400 will be given for 1st, 2nd and 3rd  
place, respectively.

The process is as follows:

1.	 Submit an abstract through the Biopharmaceutical Section by the JSM abstract submission 
deadline.

2.	 Submit your poster to Jerry Wang, Chair for the Poster Awards through email (junyuan.wang@
bms.com) by May 1, 2012.

3.	 Each poster will be reviewed by two reviewers and an average score will be assigned.

4.	 Posters with the highest scores will be the winners.

5.	 Ribbons will be put on the corner of  the posters to indicate the winners during the poster pre-
sentation at JSM.

6.	 Winners will be announced with certificates at the Biopharmaceutical Section Mixer at the  
2012 JSM.
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Modeling Opportunities for Statisticians Supporting 
Quality by Design Efforts for Pharmaceutical 

Development and Manufacturing
John J. Peterson (GlaxoSmithKline Pharmaceuticals) and Ron S. Kenett (The KPA Group)

Introduction
Variability and randomness in product quality and process performance present the pharmaceutical 
industry with day to day challenges. A key component to the design and quality improvement of  prod-
ucts and processes is understanding both deterministic and stochastic (random) variation (Kenett and 
Kenett, 2008). This broad perspective holds for the pharmaceutical industry as well as any other indus-
tries and services such as automotive, electronics, healthcare, banking, etc. that have made substantial 
improvements by exploiting knowledge of  variation. Historical examples involve applications of  classi-
cal methodologies such as design of  experiments (DoE) and statistical process control (SPC). DoE is used 
to separate (deterministic) signal from noise (uncontrolled variability) by using models to analyze data 
collected in well laid out experimental runs (Kenett and Zacks, 1998). Purposeful deterministic variation 
introduced in experimental arrays has been used to find optimal mean responses and to determine how 
different factors act together to affect quality attributes. SPC is used to quantify stochastic variation of  a 
process over time, to detect process drift, and “special” causes of  variation, both deterministic and sto-
chastic. However, the clear success of  these tools for process improvement generates new questions such 
as “Can more be done with exploiting variation understanding for process improvement in pharmaceu-
tical development and manufacturing?”. We believe the answer is “Yes”, particularly if  we broaden our 
viewpoint to include stochastic modeling and an improved understanding of  the interplay of  stochastic 
distributions that propagate through a process.

In this review paper, we present two opportunities for stochastic process modeling that can be used 
to improve process understanding and optimization in the context of  Quality by Design initiatives, and 
beyond. One opportunity we discuss involves multivariate predictive regression modeling of  laboratory 
and manufacturing processes (Peterson, 2007). Specific applications may include those to multiple-
response-surface optimization, product risk assessment, ICH Q8 design space development, and 
assessment of  assay ruggedness & system suitability. The other opportunity involves Bayesian Network 
modeling of  cause and effect relationships between process and product variables (Ben Gal, 2007). Here, 
we give a specific example involving bioreactor optimization. These tools exploit concepts of  stochastic 
distributions and the laws of  probability to help us make better decisions about the complex systems we 
encounter in modern pharmaceutical development and manufacturing.

Predictive Distribution Regression Modeling
Most processes, including those in pharmaceutical development and manufacturing, are inherently sto-
chastic processes (see for example Biwer et al., 2005). This is basically the case whether or not they are 
batch or continuous processes. By this we mean that even if  measurement error could be completely 
removed, these processes would still exhibit some sort of  common cause variation (e.g. from batch to 
batch or as the process unfolds as in dissolution or mixing). As such, quantitative descriptions of  such 
processes cannot be completely described by mean profiles or other deterministic functions. The best 
way to describe such processes is by a probability distribution that changes according to various process 
control conditions and perhaps over time.



Biopharmaceutical Report, Fall 2011� 7

The noted statistician and quality guru, W. Edwards Deming, states that quality improvement 
involves reduction of  variation about a target value (Wayne, http://www.q-skills.com/Deming6sigma.htm). 
For processes with multiple responses we can generalize this to a moving and shrinking of  a probability 
distribution of  quality responses towards a multivariate target. This will increase the likelihood that the 
multiple quality specifications will be jointly met.

One way to quantify the reliability or level of  assurance of  meeting multiple quality specifications is 
to construct a predictive distribution for the process at hand. Such a predictive distribution based on a 
model over a region of  process control conditions, and possibly over time, can be used to quantify the 
probability of  meeting quality specifications (Peterson, 2004).

A key concept in pharmaceutical manufacturing quality assessment is the concept “design space” 
as defined in the ICH Q8 regulatory guidance (ICH, 2009). ICH Q8 defines “design space” as “The 
multidimensional combination and interaction of  input variables (e.g.,material attributes) and process 
parameters that have been demonstrated to provide assurance of  quality.” Translating the ICH Q8 
design space definition into a quantitative region with associated “assurance of  quality” is straight-
forward if  one uses predictive distributions for a process. Peterson (2008) and Peterson et al. (2009) 
propose a Bayesian probabilistic definition as follows. A quantitative definition for design space is the 
set of  process controllable factors, DS, such that

DS = x e E : Pr Y e S|x,data $ R , (1)

where x is a vector of  process control factors, E is the experimental region, Y is a vector of  quality 
responses, and S is a specification region corresponding to the quality responses in Y. Here, Pr is a 
probability measure based upon a posterior predictive distribution and R is a prespecified reliability 
level for the design space to provide “assurance of  quality”, based upon the predictive model embed-
ded in the distribution of  Y as a function of  x defined on E (conditional on the experimental data used 
to build the model). As an example, Figure 1 is a contour plot of  the Design Space for an early phase 
synthetic chemistry example presented in Stockdale and Cheng (2009), The design space approach 
in (1) above was used in the biopharmaceutical industry’s A-Mab case study (available at: www.ispe.
org/PQLI_A_Mab_Case_Study_Version_2_1.pdf). Preliminary attempts to quantify ICH Q8 design space 
involved overlapping mean response surfaces, which provide poor assurance for quality (Peterson and 
Lief, 2010).

Figure 1. Contour plot of the Design Space for an early phase synthetic chemistry example presented in Stockdale 
and Cheng (2009) (Used with permission from the Association for Quantitative Management)
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The probability of  conformance can also be used as an optimization strategy for multiple response 
processes (Peterson, 2004, 2007, Peterson et al., 2009) and as a method for processes ruggedness and 
system suitability assessment (Peterson and Yahyah, 2009). This approach has been applied to several 
GlaxoSmithKline processes involving the development of  important company assets (e.g. Castagnoli et 
al. 2010). In addition, this probability of  conformance approach easily adapts to the presence of  noise 
variables, thereby allowing for robust parameter design optimization. See for example Miró-Quesada et 
al. (2004) and del Castillo (2007, pp342-346).

Additional opportunities for process optimization and design space development involve use of  infor-
mation about raw material properties. Use of  information about raw material properties can be used to 
develop a “dynamic” design space that depends upon the predictive information in the raw materials. 
Different raw material properties then give rise to slightly different design space regions for the process 
controllable factors. MacGregor and Bruwer (2008) and Polizzi and García-Muñoz (2011) present a 
strategy for the utilization of  raw material properties and their relation to design space. MacGregor and 
Bruwer (2008) in particular recognize the important issue of  process capability (to provide assurance 
for the design space) but do not provide a clear, quantitative formulation that one can use to develop a 
dynamic design space involving multiple quality responses. However, using a Bayesian predictive dis-
tribution approach would help with regard to assessing what configuration of  control factor levels and 
raw material properties would be likely to meet quality specifications with a satisfactory degree of  assur-
ance. The quantitative key here is to develop good predictive models that incorporate both controllable 
process factors as well as raw material properties and possibly other ambient influences (such as process 
noise variables). Such predictive models will likely involve latent variables because (raw material) princi-
pal property scores will often be high dimensional. Here, we begin to get to the cutting edge of  Bayesian 
modeling knowledge, but some recent work has been done. See for example Chen et al. (2009).

A practical point worth mentioning is that a Bayesian predictive distribution, obtained from a sto-
chastic model of  a process, can be used to estimate how much additional data may be needed in order 
to reduce uncertainty about unknown model parameters, and thereby obtain more accurate predictions. 
Furthermore, one may be able to estimate how much process variation may need to be reduced in order 
to adequately increase the probability that future process quality responses will meet specification. See 
Peterson (2004) for a discussion within the context of  a simple multivariate linear model. This issue 
may become important in that, as statisticians, we are often asked to assess how much data is needed to 
properly quantify the risks associated with a pharmaceutical process. The Bayesian approach, using a 
weakly informative prior, can start with a modest amount of  data and then determine how much more 
is needed. If  much more data is needed, the predictive distribution will be rather spread out, reflecting 
the need for more information on the model parameters and/or possibly the need to reduce the process 
variability. Bayesian design of  experiments can also be a helpful methodology (Lunney et al. 2008).

Pharmaceutical scientists and chemical engineers are now starting to see the utility of  using a Bayes-
ian predictive approach to quality improvement and design space development. DynoChem’s Design 
Space and QbD blog have posted on the utility of  Bayesian methods for design space (see for example: 
http://designspace-qbd.blogspot.com/2009_01_01_archive.html). See Castagnoli et al. (2010) for a Bayesian 
application to process robustness. Stamatis (2011), on behalf  of  the National Institute for Pharmaceuti-
cal Technology and Education (NIPTE), has applied Bayesian predictive distributions to mechanistic 
shelf-life models to assess the risks associated with various manufacturing conditions. In addition, the 
upcoming “Comprehensive Quality by Design in Pharmaceutical Development and Manufacture” ses-
sions at the American institute of  Chemical Engineers 2011 annual conference this October will have at 
least three talks on Bayesian applications to pharmaceutical process optimization. Mockus et al. (2011) 
provide a Bayesian predictive analysis of  lyophilization cycle parameters. See Blau et al. (2008) and Hsu 
et al. (2009) for general overviews of  Bayesian analysis for mechanistic models in chemical engineering. 
As such, nonclinical statisticians who support primary and secondary pharmaceutical product develop-
ment will probably need to acquire the tools and skills necessary for Bayesian modeling. Or, at the very 
least, be able to assess process risk using statistical procedures and predictive distributions that take into 
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account the uncertainty of  unknown model parameters (Bayesian procedures can do this). In some 
cases, a simple parametric bootstrap approach may be helpful as a start (Peterson, 2009, available at: 
http://www.pharmaqbd.com/qbd_classics_what_your_design_space_needs)

As statisticians, it is important to help our clients better understand the importance of  modeling 
sources of  variation for their processes. This is particularly important for pharmaceutical process 
optimization and design space development where batch-to-batch variation and other sources of  
common cause variability can be considerable. (See for example: http://www.pharmamanufacturing.com/
articles/2011/074.html). Bayesian methods can also be very useful for statistical inference about variance 
components (Wolfinger and Kass, 2000).

There are several process modeling opportunities for pharmaceutical product development where 
statisticians can help in the development of  predictive distributions for process optimization, risk assess-
ment, and in some cases ICH Q8 design space formulation. A good place to begin familiarizing oneself  
with Bayesian tools is with univariate linear models associated with experimental designs for process 
factor screening (Allen and Rajagopalan, 2011) and optimization (del Castillo, 2007). Some good basic 
books on Bayesian statistics are: Congdon (2006), Ntzoufras (2009), Krusche (2010), and Christensen 
et al. (2011). See also the recent Wiley Encyclopedia of  Statistics in Quality and Reliability (Ruggeri 
et al., 2007, 2008). A possible next step is to move to multivariate linear models which have very nice 
applications to multiple response process optimization (Peterson, 2004, Peterson et al. , 2009) and assay 
ruggedness and system suitability assessment (Peterson and Yahyah, 2009). WinBUGS software can be 
helpful for producing predictive distributions for nonlinear regression (mechanistic) models that occur 
in active pharmaceutical ingredient (API) modeling and sometimes in stability or dissolution modeling 
(LeBlond et al. 2011). See Appendix A for some Bayesian programs for building for predictive regres-
sion models.

Two very promising areas that require much attention by statisticians and engineers involve biophar-
maceutical growth curve modeling and predictive models for API synthesis that involve raw material 
properties. Biopharmaceutical growth curve predictions may benefit greatly from Bayesian dynamic 
models (Gamerman and Lopes, 2006, pp63-68, 172-176), while as stated above, latent variable model-
ing will be needed for modeling the effects of  raw material properties on API quality responses. More 
complex systems, involving multiple interconnected stages, may be able to benefit from Bayesian Net-
work methodology. This is presented next.

Bayesian Network Modeling
Bayesian Networks (BN) implement a graphical model structure known as a directed acyclic graph (DAG) 
that is popular in Statistics, Machine Learning and Artificial Intelligence. BN are both mathematically 
rigorous and intuitively understandable. They enable an effective representation and computation of  
the joint probability distribution over a set of  random variables (Pearl, 2000). The structure of  a DAG 
is defined by two sets: the set of  nodes and the set of  directed edges. The nodes represent random 
variables and are drawn as circles labeled by the variables names. The edges represent direct depen-
dencies among the variables and are represented by arrows between nodes. In particular, an edge from 
node Xi to node Xj represents a statistical dependence between the corresponding variables. Thus, the 
arrow indicates that a value taken by variable Xj depends on the value taken by variable Xi. Node Xi is 
then referred to as a 'parent' of  Xj and, similarly, Xj is referred to as the ‘child’ of  Xi. An extension of  
these genealogical terms is often used to define the sets of  ‘descendants’, the set of  nodes from which 
the node can be reached on a direct path. The structure of  the acyclic graph guarantees that there is 
no node that can be its own ancestor or its own descendent. Such a condition is of  vital importance to 
the factorization of  the joint probability of  a collection of  nodes. Although the arrows represent direct 
causal connection between the variables, the reasoning process can operate on a BN by propagating infor-
mation in any direction. A BN reflects a simple conditional independence statement, namely that each 
variable is independent of  its non-descendants in the graph given the state of  its parents. This property 
is used to reduce, sometimes significantly, the number of  parameters that are required to character-
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ize the joint probability distribution (JPD) of  the variables. This reduction provides an efficient way to 
compute the posterior probabilities given the evidence present in the data (Lauritzen et al, 1988, Pearl, 
2000, Jensen, 2001). In addition to the DAG structure, which is often considered as the “qualitative” 
part of  the model, one needs to specify the “quantitative” parameters of  the model. These parameters 
are described by applying the Markov property, where the conditional probability distribution (CPD) 
at each node depends only on its parents. For discrete random variables, this conditional probability is 
often represented by a table, listing the local probability that a child node takes on each of  the feasible 
values – for each combination of  values of  its parents. The joint distribution of  a collection of  variables 
can be determined uniquely by these local conditional probability tables (CPT).

As an example consider 4 bioreactors operating in parallel, over up to 21 days. Several amino acids 
in the medium composition are tracked periodically. These include: Taurine, Aspartic acid, Hydroxy-
proline, Threonine, Serine, Asparagine, Glutamic acid, Glutamine Proline, Glycine, Alanine, Valine, 
Cystine, Methionine, Isoleucine, Leucine, Tyrosine, Phenylalanine, Ornithine, Lysine, Histidine and 
Arginine. The control parameters include: IGF and levels of  two control factors, A and B. The target 
variables consist of: Volumetric productivity, Ps, Titer, Max Cell and Diamid%.

A bioreactor monitored by n variables produces responses that can be considered random variables, 
X1, … , Xn. Some of  these variables, say q of  them, are considered target variables. As mentioned, 
examples of  target variables include: Volumetric productivity, Ps, Titer, Max Cell and Diamid%. Vari-
ables, such as the amino acid composition, X1, … , Xk , k = n-q, can be analyzed under the hypotheses 
that they are positively dependent with target variables. The combinations (Xi, Xj), Xi e X1, … , Xn-q, 
Xj e Xn-q+1, … , Xn are either positive dependent or independent, for each pair of  variable (Xi, Xj),  
i ≤ n-q, n-q < j ≤ n. In general, dependency patterns can be extracted from data by using statistical 
models and data mining techniques (Hand et al. 2001). This section describes how to use Bayesian 
Networks for mapping such patterns. In constructing a Bayesian Network, several learning algorithms 
can be implemented to set up the structure of  the DAG. Again, one main advantage of  the BN is that it 
allows the combination of  structural components derived from expert opinion with components learned 
from the data. Several software programs that implement algorithms and models for constructing BN 
are listed in Appendix B.

We return to the bioreactor example to demonstrate the potential in using Bayesian Networks to 
analyse such data. Our objective is to generate insights on the behavior of  the bioreactors for improved 
operation and monitoring. If  we better understand how the control factors affect the target response 
variables we will know how to optimize the process and generate early warning signals during produc-
tion for mid-course corrections.

Figure 2 presents a Bayesian Network of  the bioreactor data produced with the GeNie software. Each 
node represents a discretized variable. Some are naturally discrete such as the bioreactor number or the 
day of  operation. The variable “Days” has further aggregated the day of  operation in 4 stages. Stage I 
consists of  the first 5 days, Stage IV the final 5 days of  operation.
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The network has been automatically learned from the data, without any outside intervention. In 
learning a Bayesian Network several algorithms can be implemented. The bnlearn R package imple-
ments five constraint based learning algorithms (see Appendix B). The GeNie package generated Fig-
ure 3 using the Greedy Thick Thinning algorithm. In learning the network one can include white lists 
of  forced causality links imposed by expert opinion and black lists of  links that are not to be included 
in the network, again using inputs from content experts. One can see that the variable “Days” is affect-
ing the composition of  many of  the amino acids and that IGF and the amino acid used as control 
parameter characterize the bioreactor number. In this case a full factorial experiment was conducted 
with different combinations of  IGF levels and control amino acid as factors, so that the links from IGF 
and amino acid to bioreactor number reflect the experimental design set up. In Figure 3 we condition 
the network on the first and last stage of  operation, and show the distribution of  the composition of  
the various amino acids. The discretized values are presented as ordinal categories with blue and purple 
standing, respectively, for the lowest and highest categories.

As an example, on the left panel of  Figure 3 we can see that, according to the BN model, at Stage 
I the highest compositions of  Isoleucine, Alanine and Arginine correspond to 63%, 12% and 62% 
respectively. As we move to Stage IV (right panel), these numbers become, respectively, 13%, 25%, 12% 
with a dramatic drop in high values of  Isoleucine and Arginine and an increase of  100% in the high 
values of  Alanine. This demonstrates how conditioning the network on the bioreactor stage is dem-
onstrating the strength of  the model as a predictive tool. Conversely, by conditioning the network on 

Figure 2. Bayesian Network of bioreactor variables
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target variables or end results such as the highest maxim volumetric productivity or cell production can 
help diagnose the conditions which produced these record numbers. In other words, Bayesian Networks 
can be used to predict an outcome when a process is set at a certain set of  parameters or diagnose what 
can cause a result we want to prevent or duplicate.

The use of  Bayesian and multivariate methods, in the context of  Quality by Design biopharmaceu-
tical initiatives, is described in Kenett and Kenett (2008). Sensitivity analysis for determining robust-
ness of  the network structure have been proposed in Cornalba et al (2007). The main disadvantages 
of  GeNie and bnlearn are that they do not allow the mixing of  continuous and categorical variables. 
Some existing libraries handle networks with mixed variables; however their learning procedure is still 
experimental and hardly applicable to complex models and large datasets (Bottcher and Dethlefsen, 
2003). For more on BN in general, and in the context of  operational risks and health care, see Ben Gal 
(2007), Kenett (2007), Kenett and Raanan (2010) and Kenett (2012). An introductory book on Bayesian 
Networks is by Koski and Noble (2009).

Figure 3. Bayesian Network conditioned on operation day (left: Stage I, right: Stage IV)

Discussion
Using the laws of  probability and Monte Carlo simulations, statisticians can help their scientific col-
leagues to better understand the uncertainties and risks involved in making decisions about increasingly 
complex pharmaceutical processes. A successful stochastic predictive model provides evidence that the 
drug sponsor understands the process with regard to how process risk will vary under different manufac-
turing conditions. A Monte Carlo predictive distribution approach appears to have a promising future 
with regard to quantitative decision making. See for example the book by Savage (2010). Of  course, 
not all risks can be quantitatively modeled (see for example Taleb, 2010, Kenett and Tapiero, 2009, 
and Kenett and Raanan, 2010), but for many processes deeper insight can be obtained with careful 
stochastic modeling. This review was designed to provide an introduction and a perspective of  how such 
modeling is gradually impacting modern pharmaceutical research and development.
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Appendix A: Bayesian Programs for Building for Predictive Models

WinBUGS: A very flexible Bayesian software package that can be used to model linear or nonlinear, 
univariate or multivariate, regression models, with mixed effects if  desired. WinBUGS can be 
called from R via the R2WinBUGS package. A nice book on this software tool is by Ntzoufras 
(2009). The WinBUGS web site is http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml.

bayesm: An easy-to-use R package that contains a variety of  Bayesian analysis functions. In par-
ticular, the rsurGibbs function computes samples from the posterior distribution of  multivariate 
linear models with possibly different functional forms for each response-type, i.e. the seemingly 
unrelated regressions (SUR) model. The bayesm package is available at the CRAN R web site:  
http://cran.r-project.org/web/packages/#available-packages-M.
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MCMCglmm: an R package for Bayesian univariate or multivariate response generalized linear mixed 
models. Mixed models are useful for modeling batch effects or split-plot designs. The MCMCglmm 
package is also available at the R CRAN web site.

Appendix B: Bayesian Network Programs

GeNIe (Graphical Network Interface) is the graphical interface to SMILE (Structural Modelling, Infer-
ence, and Learning Engine), a fully portable Bayesian inference engine developed by the Decision 
Systems Laboratory and thoroughly field tested since 1998. GeNIe can be freely downloaded from 
http://genie.sis.pitt.edu with a user guide and related documentation.

Hugin (http://www.hugin.com/index.php) is a commercial software which provides a variety of  products for 
both research and non-academic use. The Hugin GUI (Graphical User Interface) allows building 
BN, learning diagrams, etc.

IBM SPSS Modeller (http://www.spss.com) includes several tools which enable the user to deal with a list 
of  features and statistical methods such as BN. IBM SPSS is not free software.

The R bnlearn package is powerful and free. Compared with other available BN software programs, it is 
able to perform both constrained-based and score-based methods. It implements five constraint based 
learning algorithms (Grow-Shrink, Incremental Association, Fast Incremental Association, Interleaved 
Incremental association, Max-min Parents and Children), two scored based learning algorithms (Hill-
Climbing, TABU) and two hybrid algorithms (MMHC, Phase Restricted Maximization).

The main disadvantage in most available BN programs is that they do not allow the mixing of  continu-
ous and categorical variables. Some experimental libraries handle networks with mixed variables; 
however their learning procedures are not yet applicable to complex models and large datasets.
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Use Of Zero-Inflated Mixture Models to Compare 
Antibody Titers in Response to H1N1 Vaccination

Daniel J. Zaccaro1, M.S., Leela M. Aertker1, M.P.H.
1Rho Inc, Chapel Hill, NC

Abstract
Pandemic H1N1 vaccine was administered to participants with mild/moderate and severe asthma to 
investigate quantitative and qualitative differences in immunogenicity among subgroups. H1N1 anti-
body titers were measured pre-vaccination (Day 1) and post-vaccination (Days 8, 21, 28 and 41). A 
second vaccination of  the same dose (15 or 30 mcg) was administered after blood samples were taken 
on Day 21. H1N1 antibodies at Day 1 and three weeks post-vaccination (Day 21) were of  primary 
interest for the current article. A preponderance of  titers below the lower detection limit was observed 
(36% - 75% of  observations at Day 1, depending on subgroup). Titers above the upper detection limit 
(6 - 52% at Day 21) were also observed. Because of  this preponderance of  censored values, assump-
tions of  Gaussian data are not appropriate, and traditional modeling approaches could produce biased 
estimates of  differences in immunogenicity. Zero-inflated log-normal models that accounted for left- 
and right-censoring and a “point mass” below the lower limit of  detection were utilized to compare 
subgroups with respect to antibody titers. Results derived from traditional analytical methods such as 
imputation of  censored values were compared to results from zero-inflated methods. By formal criteria, 
zero-inflated models provided a better fit to data and yielded results that were qualitatively and quanti-
tatively different from traditional models. Zero-inflated models yielded geometric mean titers that were 
2- to 3-fold different from traditional models and elucidated differences among subgroups that were 
obscured by traditional methods.

Introduction
Investigations of  immunological processes often produce a preponderance of  measurements which are 
below a lower limit of  detection (LLOD). Observations below the LLOD may consist of  values which 
are truly zero, values which are non-zero but still below the LLOD (left-censored), or a mixture of  both. 
Examples include antibody levels in response to vaccine,1 levels of  HIV mRNA,2 and serum-specific 
IgE antibodies.3 Given that distributions with a preponderance of  censored values are typically not 
Gaussian, traditional solutions such as imputation of  censored values (e.g., LLOD/2), may produce 
biased estimates of  the parameters of  interest.1 Moreover, the presence of  a “point mass” of  individuals 
with undetectable measurements, suggesting more observations below the LLOD than accounted for 
by left-censoring alone, may suggest an important biological phenomenon that would be overlooked 
with traditional imputation methods. For example, a point mass of  individuals with undetectable 
antibody levels may suggest a subgroup with no prior exposure to relevant antigens or an inability to 
produce antibodies due to presence of  disease which impacts vaccine immunogenicity. To address this, 
we illustrate the zero-inflated modeling approach described by Moulton and Halsey1 and others.4,5,6 The 
zero-inflated model consists of  two components: 1) a binary (Bernoulli) component which assigns each 
individual to either a point mass or a log-normal distribution with probability p, depending on the indi-
vidual’s covariates; and 2) conditional on an individual’s assignment to the log-normal distribution, the 
model consists of  a traditional linear component with normal errors, mean (m), and variance (s2). We 
consider the following approaches: 1) the naïve model with imputation of  left-censored antibody titers, 
2) the left-censoring model with no point mass, and 3) the left-censoring model including a point mass 
of  individuals who have antibody titers (potentially) equal to zero. The left-censoring, zero-inflated 
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modeling approach could be extended to account for right-censored observations, which are above an 
upper limit of  detection (ULOD), but we omit this modeling strategy in the present article to narrow our 
focus on the utility of  left-censoring and inclusion of  a point mass. We observed left- and right-censoring 
and an excess zero phenomenon in the recently completed NIAID/NHLBI-sponsored clinical trial of  
safety and immunogenicity of  the H1N1 vaccine in individuals with asthma, part of  the Severe Asthma 
Research Program (SARP).7 These phenomena are demonstrated in the following figures. Figure 1 
illustrates the distributions of  baseline geometric mean titers (GMTs) from the H1N1/SARP trial for 
participants who indicated no receipt of  2009 seasonal influenza vaccine (A), as well as those who did 
indicate receipt of  the 2009 seasonal influenza vaccine (B). Note the preponderance of  values below the 
LLOD (GMT values <10). Figure 2 illustrates the distinction between left-censoring and the point mass 
phenomenon with a hypothetical distribution of  titers. An excess zero phenomenon is indicated when 
more observations are left-censored than predicted from a log-normal distribution.

Figure 1. H1N1 antibody geometric mean titers at baseline (pre-vaccination) for participants who indicated no 
prior receipt of the 2009 seasonal influenza vaccine (A) vs. those who indicated prior receipt of the 2009 seasonal 
influenza vaccine (B).
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H1N1/SARP Trial
The primary analysis of  the H1N1/SARP trial indicated that overall seroprotection levels (defined as 
a post-vaccination titer ≥1:40) were adequate, but that participants with severe asthma required the 
higher dose of  vaccine (30mcg) as they did not respond adequately to the lower dose level. Exploratory 
analyses also indicated that recipients of  the 2009 seasonal influenza vaccine had lower seroprotection 
levels than those who did not receive the 2009 seasonal influenza vaccine. In this article, we examine 
potential differences in H1N1 antibody titers among subgroups of  participants while illustrating the 
utility of  the zero-inflated modeling approach. We utilized zero-inflated methods to address two ques-
tions: 1) do differences exist among subgroups with respect to the proportion of  participants who are 
in a point mass of  observations versus the log-normal distribution (e.g., are subjects ≥60 years of  age 
more likely to have titers in the point mass when compared to subjects ages 12 - 17?); and 2) given the 
subset of  participants with values in the log-normal distribution (and not in the point mass), are there 
quantitative differences among subgroups (e.g., age groups, receipt of  2009 seasonal influenza vaccine) 
with respect to expected H1N1 antibody titers?

This article describes the results of  an exploratory analysis of  the 385 participants vaccinated at least 
once and who provided blood for at least one post-vaccination titer measure. Participants were divided 
into two asthma severity groups - mild/moderate and severe. Vaccine dose (15 versus 30 mcg) was 
randomly assigned to participants stratified by severity group, clinical site, and age group (i.e., 12-17, 
18-60, and > 60).7 Baseline (Day 1) and post-vaccination (Day 21) H1N1 antibody titers were the focus 
of  the current analysis.

Methods
Ordinary least squares (OLS) regression (with imputation of  unobserved, left-censored titers) and 
zero-inflated models were used to describe associations between H1N1 antibody titers and participant 
characteristics, including vaccine dose, asthma severity group, age, gender, 2009 seasonal influenza 
vaccination, and the fluticasone-equivalent dose of  inhaled corticosteroid (ICS) use. The zero-inflated 

Figure 2. Hypothetical distribution of antibody titers to illustrate a theoretical log-normal distribution of titers with 
left-censored values (green area of curve), shown here to be a distinct subset from the point mass.



Biopharmaceutical Report, Fall 2011	 20

model does not rely on imputation of  left-censored titer values, but rather includes both a binary com-
ponent to the likelihood (i.e., is the participant in the point mass or is the participant in the log-normal 
distribution?), as well as a log-normal component to the likelihood (i.e., given that the participant is in 
log-normal distribution, what is the expected titer value?). The zero-inflated model fits both of  these 
components simultaneously using all available data. In this article, we illustrate that zero-inflated models 
produce different estimates of  expected antibody titers at baseline and post-vaccination when compared 
to OLS methods using imputation (i.e., LLOD/2 in place of  left-censored titers).

Relative goodness of  model fits were evaluated using Akaike information criteria (AIC). SAS PROC 
NLMIXED was utilized for all computations of  model estimates. Geometric mean titer (GMT) values 
were log10 transformed for all modeling computations. The LLOD (yL )  was therefore log10 (10) = 1.0 
and the ULOD (yU) was log10 (1280) = 3.10721. Summary frequencies of  the GMT values by subgroup 
for both observed (i.e., not censored) and unobserved (i.e., left- or right-censored) values are provided 
in Table 1 for Day 1 and Day 21.

Subgroup (n)

Baseline, Day 1 Post-vaccination, Day 21

GMT1 < 10  
n (%)

GMT1 $ 10, < 1280 GMT1 $ 
1280 
n (%)

GMT1 < 10 
n (%)

GMT1 $10, < 1280 GMT1 $ 
1280 
n (%)n (%) GMT2 n (%) GMT2

Seasonal Vaccine 2009

Yes (204) 121 (59) 82 (40) 53 1 (0) 11 (5) 133 (65) 193 60 (29)

No (181) 112 (62) 63 (35) 61 6 (3) 5 (3) 107 (59) 242 69 (38)

Asthma Severity, Vaccine Dose

Mild/Moderate, 15 mcg (107) 70 (65) 35 (33) 63 2 (2) 5 (5) 71 (66) 203 31 (29)

Mild/Moderate, 30 mcg (107) 62 (58) 44 (41) 50 1 (1) 3 (3) 56 (52) 267 48 (45)

Severe, 15 mcg (86) 50 (58) 33 (38) 56 3 (3) 6 (7) 60 (70) 160 20 (23)

Severe, 30 mcg (85) 51 (60) 33 (39) 60 1 (1) 2 (2) 53 (62) 248 30 (35)

Age

12-20 (75) 27 (36) 42 (56) 98 6 (8) 0 (0) 36 (48) 355 39 (52)

21-39 (95) 61 (64) 34 (36) 52 0 (0) 2 (2) 53 (56) 255 40 (42)

40-59 (152) 98 (64) 53 (35) 49 1 (1) 5 (3) 101 (66) 204 46 (30)

$60 (63) 47 (75) 16 (25) 27 0 (0) 9 (14) 50 (79) 134 4 (6)

Gender

Male (156) 84 (54) 68 (44) 61 4 (3) 4 (3) 93 (60) 247 59 (38)

Female (229) 149 (65) 77 (34) 53 3 (1) 12 (5) 147 (64) 194 70 (31)

Fluticasone-Equivalent Doses

0 (53) 33 (62) 19 (36) 53 1 (2) 0 (0) 31 (58) 239 22 (42)

#250 (79) 49 (62) 30 (38) 53 0 (0) 5 (6) 51 (65) 215 23 (29)

251-499 (75) 44 (59) 29 (39) 52 2 (3) 4 (5) 49 (65) 238 22 (29)

500-999 (72) 44 (61) 26 (36) 62 2 (3) 2 (3) 37 (51) 200 33 (46)

$1000 (106) 63 (59) 41 (39) 62 2 (2) 5 (5) 72 (68) 193 29 (27)
1GMT = Geometric mean titers are back-transformed from the mean of log10 transformed H1N1 antibody titers, within a participant and visit.
2GMT = Summary geometric mean titers are back-transformed from the average of the mean of log10 transformed H1N1 antibody titers, across participants 
for the indicated visit.

Table 1—Summary of H1N1 antibody geometric mean titers by  
subgroups at baseline (Day 1) and post-vaccination (Day 21) 
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Similar to Moulton and Halsey1, we consider a Bernoulli (binary outcome) component in the likelihood; 
i.e., covariates predict whether an observation is in the log-normal component or in the point mass. Once 
an observation is predicted to reside in the log-normal component, then we consider the potential for 
left-censored values which are theoretically in the log-normal component, but are not directly observed. 
For simplicity in our discussion, we provide a general prediction equation for the expected values for both 
Bernoulli and log-normal components. The Bernoulli component is given by:

where:  
p = conditional probability of  the observation falling into the log-normal distribution (and not in the 
point mass) given the independent variables

x1, x2, …, xk = independent variables used to predict whether an observation is in the log-normal dis-
tribution and not in the point mass (e.g., age group indicator variables)

b0, b1, …, bk = parameters to be estimated in the Bernoulli component, which are used to predict 
whether an observation is in the log-normal distribution and not in the point mass

Consequently, (1 – p) denotes the probability of  an observation residing in the point mass. Note that 
the model above could have easily been constructed so that covariates were used to predict the prob-
ability of  an individual residing in the point mass and not in the log-normal distribution.

Conditional on an observation residing in the log-normal distribution, the expected value (mean) is 
given by:

where:

μ = conditional expected value (mean) of  observations in the log-normal distribution, given the inde-
pendent variables

z1, z2, …, zm = independent variables used to predict the expected value (mean) of  observations in the 
log-normal distribution

g0, g1, …, gm = parameters to be estimated, used to predict the expected value (mean) of  observations 
in the log-normal distribution

s
2= conditional variance of  the log-normal distribution, assumed constant across all levels of  indepen-

dent variables

We considered several models to describe associations between titers and baseline characteristics, 
but only present three models in this article. Other models assume a combination of  left-censoring, 
right-censoring, and point mass, or all three (see Appendix I). Models considered for this article are  
as follows:

Traditional Model: Log-normal distribution with imputation (values < LLOD set to LLOD/2) 
using OLS regression

Left-Censoring Model: Log-normal distribution with left-censoring, but no point mass

Left-Censoring + Point Mass Model: Log-normal distribution with left-censoring and point mass

Assuming equations (1) and (2) above for expected values, likelihood expressions are described below 
for each model. Expressions are provided for contributions from a single observation to each likelihood. 
Appendix I contains a complete list of  Ln likelihoods for all models, but only results from the above 
three models are illustrated in this article.
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Traditional (OLS) Model with Imputation

The likelihood for an OLS linear regression model for which left-censored values have been assigned 
values of  LLOD/2 is given by:

where:

y = log10 (GMT)

m, s = parameters of  a normal distribution (i.e., mean and standard deviation)

g0, g1, …, gm = parameters to be estimated that are used to predict the expected value (mean) of  obser-
vations in the log-normal distribution, and

Left-Censoring Model

The likelihood for a single observation for the model with left-censoring and no point mass is given by:

where:

yL= log10 (LLOD) = log10(10) = 1

d= 1 if  y < yL; d= 0 if  y ≥ yL

The component of  the likelihood expression under the d indicator allows for unobserved values to 
be left-censored while still originating from the log-normal distribution. Observed values from the log-
normal distribution are included under the 1- d indicator.

Left-Censoring + Point Mass Model

Finally, the likelihood using a mixture model for a single observation, which includes components for 
left-censoring as well as a point mass is given by:

Recall that p is the conditional probability of  an observation falling into the log-normal distribution 
(and not in the point mass) given the independent variables.

This model specification assumes that a subset of  individuals with unobserved values are either in a 
sub-population with antibody titers (possibly) equal to 0 (with probability 1 – p) while others presumably 
would have been observed if  the measurement technique was more precise (with probability pF[yL]).
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Results
Inclusion of  left censoring and a point mass provided a better fit to the data than the traditional 
method of  imputation using OLS or left-censoring alone (see Table 2). Therefore, we narrow our focus 
on the comparison between the model with the best fit, the left-censoring model with point mass, and 
the naive model with imputation.

Akaike Information Criteria (AIC) by Model2

Subgroups1
Traditional Model  
with Imputation Left-Censoring Model

Left-Censoring +  
Point Mass Model

Baseline, Day 1

Seasonal Vaccine 2009 758 742 737

Severity/Dose Groups 762 745 745

Age 705 700 695

Gender 753 736 735

Fluticasone-Equivalent Doses 764 747 750

Post-vaccination, Day 21

Seasonal Vaccine 2009 747 755 709

Severity/Dose Groups 739 746 703

Age 683 691 650

Gender 748 756 710

Fluticasone-Equivalent Doses 752 760 717
1Subgroups are included in model as covariates for both Bernoulli and log-normal components.
2Lower AIC value indicates a better fit.

Table 2—Summary of model-fitting criteria using naïve (imputation of values < LLOD)  
as well as zero-inflated models at baseline and post-vaccination

Of  primary (biological) interest to this article were the differences in H1N1 antibody titers between 
participants who did/did not receive the 2009 seasonal influenza vaccine. Participants who received 
the 2009 seasonal influenza vaccine had a baseline GMT half  the magnitude of  those who did not 
receive the 2009 seasonal influenza vaccine (21versus 42, respectively; see Table 3), and also exhibited 
fewer estimated participants in the point mass (38% versus 52%, respectively). These differences were 
obscured in the traditional model, which indicated virtually identical GMT values at baseline between 
participants who did/did not receive the 2009 seasonal influenza vaccine (14 versus 15, respectively; 
see Table 3). We examined Day 21 GMT differences between 2009 seasonal influenza vaccine recipi-
ents/non-recipients by adjusting for H1N1 baseline titers using a zero-inflated model. Participants who 
received the 2009 seasonal influenza vaccine exhibited lower GMT values than those who did not 
receive the 2009 seasonal influenza vaccine in the log-normal component before (p=0.0202) and after 
(p=0.0195) adjustment for baseline titers.

Using both a traditional model with imputation and a zero-inflated model with left-censoring and 
a point mass, we explored other potential effects of  participant subgroups on baseline and Day 21 
antibody titers (see Table 3). When compared to other severity/dose groups, the severe asthma 15 mcg 
group exhibited similar levels of  antibody response and percentage of  participants in the point mass at 
baseline, yet exhibited the lowest antibody titers and the highest estimated percentage of  participants in 
the point mass at Day 21 compared to the other asthma severity/dose groups. Participants with severe 
asthma receiving 15 mcg could have more “true zeros”, which may be partly due to an effect of  age 
(i.e., severe asthma participants were older, on average, than mild/moderate participants; p<0.001). 
Using the left-censoring and point mass model, we found that at Day 21, 14% of  older participants 
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(≥ 60yrs) were in the point mass compared to 0 - 3% of  younger participants (< 60yrs). Males tended to 
exhibit higher antibody titers and lower percentages in the point mass compared to females, but differ-
ences in GMTs were not affected by the modeling approach. Additionally, there were no differences among 
fluticasone-equivalent ICS dose groups, either in the point mass estimates or in the GMT estimates.

Subgroup (n)

Baseline, Day 1 Post-vaccination, Day 21

Point Mass 
(Estimated %)

GMT1 for  
log-normal

GMT1 by  
naive approach

Point Mass 
(Estimated %)

GMT1 for  
log-normal

GMT1 by naive 
approach

Seasonal Vaccine 2009

Yes (204) 38 21 14 5 345 276

No (181) 52 42 15 3 463 410

Asthma Severity, 
Vaccine Dose

Mild/Moderate, 
15 mcg (107)

55 36 13 5 353 291

Mild/Moderate, 
30 mcg (107)

35 19 14 3 550 483

Severe, 15 mcg 
(86)

45 35 16 7 266 204

Severe, 30 mcg 
(85)

45 29 14 2 447 405

Age

12-20 (75) 32 112 42 0 691 691

21-39 (95) 52 27 12 2 509 463

40-59 (152) 52 26 12 3 362 316

$60 (63) 21 5 8 14 154 96

Gender

Male (156) 39 34 17 2 466 417

Female (229) 49 24 12 5 354 286

Fluticasone-Equivalent Doses

0 (53) 46 25 13 0 480 480

#250 (79) 40 18 13 6 373 285

251-499 (75) 42 27 14 5 399 318

500-999 (72) 50 39 15 3 479 423

$1000 (106) 46 33 15 5 330 273
1GMT = Geometric mean titers are back-transformed from model estimates; all model estimates are derived from log10 transformed H1N1 antibody titers.

Table 3—Modeling Results to Describe H1N1 Antibody Titers By Subgroups of Interest at  
Baseline and Post-Vaccination Using Zero-Inflated Mixture Model With Point Mass and Left-Censoring

Discussion
One of  the unexpected results from the original analysis7 was that participants who received the 2009 
seasonal influenza vaccine had significantly lower seroprotection rates compared to participants who 
did not receive the 2009 seasonal influenza vaccine. Earlier studies have also shown that recipients of  
previous influenza vaccines have lower GMTs compared to those who did not receive previous influenza 
vaccines.7,8 The use of  a zero-inflated model accounting for a point mass and left-censoring resulted in a 
slight attenuation of  fold differences at Day 21 between GMTs of  those who received the 2009 seasonal 
influenza vaccine compared to those who did not receive the 2009 seasonal influenza vaccine. Most 
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interestingly, the zero-inflated model revealed a two-fold difference between baseline GMTs of  these 
two groups. Referencing baseline distributions (Figure 1) as well as model estimates (Table 3), it appears 
that recipients of  the 2009 seasonal influenza vaccine had a distribution of  baseline titers shifted to 
the left (lower) and hence yielded more observations that were left-censored and fewer in the point 
mass. Conversely, participants who did not receive the 2009 seasonal influenza vaccine had higher 
titers at baseline, fewer left-censored observations, and hence more observations estimated to reside in 
the point mass (i.e., “true zeros”). These results potentially indicate two different phenomena: 1) those 
who received the 2009 seasonal influenza vaccine represent a distinct subpopulation, and 2) receipt 
of  the 2009 seasonal influenza vaccine may potentially affect immunogenicity of  the H1N1 vaccine. 
Although, the zero-inflated model does not fully explain why recipients of  the 2009 seasonal influenza 
vaccine were less responsive to the H1N1 vaccine, it is apparent from zero-inflated modeling results that 
the two subgroups began the trial with different baseline titer distributions.

The previous paper also revealed that the severe asthma 15 mcg group had the lowest GMTs post-
vaccination compared to the mild/moderate 15 and 30 mcg groups and the severe asthma 30 mcg 
group.7 We confirm this trend with zero-inflated models, as the GMT values were generally higher for 
higher doses, and percentages in the point mass were higher for lower doses at Day 21 (Table 3).

These results demonstrate the utility of  zero-inflated models when there is a preponderance of  obser-
vations below the LLOD, which could be truly zero and/or non-zero, but left-censored. By account-
ing for left-censored observations and a point mass, the zero-inflated model revealed a difference in 
baseline titer distributions between 2009 seasonal influenza vaccine recipients and non-recipients. The 
zero-inflated model also pointed to a sizeable proportion of  participants ≥ 60yrs residing in the point 
mass who had no response (i.e., potentially zero antibody titers) to the first vaccine administration. 
These two observations were obscured by traditional models and suggest the utility of  zero-inflated 
modeling to discern differences in vaccine immunogenicity that are not immediately apparent from 
traditional approaches.
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Appendix I. Ln likelihood expressions used for SAS PROC NLMIXED

Model 1: Ordinary least squares models- imputation of censored values 

The Ln likelihood for an observation from a log-normal density (with no point mass or censoring, and 
censored values are imputed) is given by:

Model 2. Left-censoring only, no point mass 

The Ln likelihood for an observation from a log-normal density with left-censoring (but no point mass) 
is given by:

Model 3. Left- and right-censoring, no point mass 

The Ln likelihood for log-normal data with left- and right-censoring (but no point mass) is given by:

Model 4. Point mass only 

The Ln likelihood of  the log-normal model, which considers a point mass (but no censoring) in addition 
to a separate log-normal component is given by:

Model 5. Left-censoring, point mass 

Combining the features of  Models 2 and 4 yields the Ln likelihood for the model with a point mass and 
left-censoring:

Model 6. Left- and Right-censored, point mass

The Ln likelihood using a mixture model for a single observation which includes components for left- 
and right-censoring as well as a point mass is given by:
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Biopharmaceutical Section  
ASA Fellow Nominations Requested

Do you know someone in the Biopharmaceutical Section who you think deserves to become an ASA 
Fellow? The ASA Fellows committee recognizes there are numerous ways to make important contribu-
tions to the profession and does not restrict itself  to review of  research publications. Successful candi-
dates have distinguished themselves by organizing educational activities at the secondary and collegiate 
level, organizing professional meetings and sections within meetings, effectively managing large groups 
of  statisticians and supporting their external involvement in the profession, fundraising to support a 
statistical organization, strengthening local ASA chapters through innovative leadership and participa-
tion, influencing regulatory or corporate statistical policy through research and communication. A list 
of  criteria for rating nominees is available at http://www.amstat.org/careers/fellows.cfm.

If  you know an appropriate candidate, please go to the ASA web page on ASA Fellows (http://www.
amstat.org/careers/fellowslist.cfm) to determine whether the person you have in mind is already an ASA 
Fellow. If  not, please send the name(s) of  the person(s) to the Biopharmaceutical Section Fellows Com-
mittee through Neal Thomas (snthomas99@yahoo.com). The committee will evaluate each recommenda-
tion for this prestigious award. The committee does not typically sponsor candidates, but we can help 
them identify a sponsor and we can supply a letter of  support from the section.

Meeting Announcements

2011 Non-Clinical Biostatistics Conference
October 18 – 20, 2011, Boston

Advancing Discovery, Preclinical and CM&C Drug Development through Statistical Science

We are pleased to announce the second U.S. conference dedicated entirely to Non-Clinical Biostatistics. 
It is organized jointly by regulatory and pharmaceutical/biotech statisticians in collaboration with the 
Department of  Biostatistics at the Harvard School of  Public Health. The conference will take place October 18 - 
20, 2011, at the Harvard Medical School’s Joseph B. Martin Conference Center in Boston.

Members of  the non-clinical/pre-clinical statistics community are invited to submit proposals for 
presentations and posters discussing significant scientific and regulatory issues. Attendees will have 
ample opportunity to network, share experiences and discuss current scientific issues with leaders in the 
field. Submissions will be accepted up to June 1, 2011.

Registration and a call for abstracts are open on the conference website: www.ncb2011.org.
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PRELIMINARY PROGRAM

Featured Speakers: Bob O'Neill (FDA) & Robert Rodriquez (ASA President Elect) 
•	 Half-day short course on linear and nonlinear models presented by Andrew Gelman (Columbia 

University) 

•	 Invited Speakers:

—Discovery/Early Development/-omics
Richard Bourgon (Genentech), Anne Carpenter (Broad Institute), Richard Simon (NCI)

—Pharmacology/Safety/Toxicology/pK
Mohammad Atiar Rahman (FDA), Vikram Sinha (Eli Lilly), John Szumiloski (Merck)

—CM&C/Manufacturing
Rick Burdick (Amgen), Walter Hauck (USP), Meiyu Shen (FDA) 

•	 Poster Session & Reception, Roundtable discussions, Vendor presentations and courses 

•	 ASA Presidential Address Reception

The 67th Deming Conference on Applied Statistics
December 5 – 9, 2011 at Atlantic City, New Jersey

Sponsored by Metropolitan Section, ASQ and Biopharmaceutical Section, ASA

The conference's purpose is to provide a learning experience on recent developments in statistical meth-
odologies. The three-day conference is followed by two parallel two-day short courses. The conference 
is composed of  twelve three-hour tutorials on current applied statistical topics of  interest. Recognized 
experts in the field of  applied statistics are invited to give the lectures and short courses based on their 
recently published books. The conference makes these books available for sale at an approximately 40% 
discount. Attendees will receive bound proceedings of  the presentations. The full program will be avail-
able on www.demingconference.com before June and all other information on the website, including 
fees, remains valid. The conference will be held in the state-of-the-art Havana Tower of  the Tropicana 
Casino Resort. Walter Young has chaired this conference for 42 consecutive years.

For more info click here: www.demingconference.com.

Let’s Hear from You!
If  you have any comments or contributions, please contact the Editors: Jose Alvir (Jose.Alvir@pfizer.com),  
Deborah Panebianco (deborah_panebianco@merck.com), or Yongming Qu (QU_YONGMING@LILLY.COM).

As we have stated in previous issues, the Report is a joint effort of  the editors and the members of  the Biophar-
maceutical Section. Volunteers are welcome to write articles of  interest to our members. This is an excellent 
opportunity to “publish and flourish” by sharing your expertise with Section members and a larger audience. 
Do not hesitate to get in touch with us should you consider contributing an article or know of  someone who 
would like to do so.

Letters to the Editors are also welcome.

We look forward to hearing from you.
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