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Clinical Biostatistics, Merck Research Laboratories, Blue Bell, PA 19422

1. Introduction
The remarkable success of many vaccines and their impres-

sive safety record, along with the eradication of smallpox are
regarded amongst the greatest public health achievements of
the 20th century. Statisticians have contributed (and continue to
contribute) significantly toward the research and development
of vaccines worldwide. In this article, we discuss some of the
statistical issues that arise in all phases of vaccine development,
and, where necessary, contrast drug and vaccine clinical trials.
A more detailed treatment of this subject is provided by Chan,
Wang and Heyse [1]. 

In the past three decades, there has been an incredible trans-
formation in our understanding of the human immune system
and its functions. While statisticians working on vaccine clini-
cal trials are not expected to keep abreast with the latest
advances in cellular and molecular immunology, understand-
ing of the basics is essential for proper development of design
and analysis strategies. Accordingly, before moving on to statis-
tical issues, we provide a brief review of basic immunology. For
more advanced reading, see Abbas, Lichtman and Pober [2].

There are two forms of immunity - innate and adaptive.
Innate immunity, the principal components of which include
blood proteins and phagocytic cells, provides the first line of
defense against microbes (bacteria, viruses, parasites, fungi,
etc.). The pathogenicity of microbes is related to their ability to
defeat the soldiers of innate immunity. The other form of immu-
nity is called adaptive (or specific) immunity, and evolves as a
response to infection. There are two types of adaptive immunity:
humoral and cellular. Until the 1970s, only humoral immunity
had been well understood. It is mediated by antibodies that pri-
marily defend against extracellular microbes. Specifically, recog-
nition of microbes triggers white blood cells called B cells to
multiply and secrete antibodies that destroy microbes before
they infect host cells. In 1996, two microbiologists (Peter
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marker of interest. The positivity criterion is often (but not
always) one dimensional, such as the 99.9th percentile of the
estimated distribution of biomarker responses in the absence of
vaccination. In such a case, the vaccine is considered minimally
immunogenic for a given subject if his or her biomarker response
is greater than the positivity cut-off. Note that this does not nec-
essarily imply that the vaccine will subsequently provide pro-
tection from infection and/or disease for that subject. Often
times, the response has to be notably higher than the positivity
immunogenicity cut-off for the vaccine to induce a protective
effect; we revisit this issue in section 4.

Vaccines are advanced to phase I clinical testing if they are
deemed to be generally safe in animals, and for which an ade-
quate proportion of animals exhibit a minimally immunogenic
post-vaccination response.

3. Phase I (clinical safety and immunogenicity)
Phase I vaccine clinical trials are small, typically enrolling 30

to 100 human volunteers across multiple investigational cen-
ters. They are usually double-blind, placebo controlled trials
that study different doses and/or vaccination schedules of the
experimental vaccine. The primary focus is on safety and toler-
ability, but the trials are designed to also provide preliminary
assessments of immunogenicity. Note that drug trials typically
enroll healthy subjects in phase I, but move to the target popu-
lation (patients requiring treatment) in phase II and beyond. In
contrast, vaccine trials, not surprisingly, involve healthy volun-
teers in all phases of development. Exceptions include so-called
“therapeutic vaccination” studies, which are not discussed here.
The statistical challenges there are even greater, since it is diffi-
cult to quantify and conclusively demonstrate the benefits of
vaccination in subjects that are already infected with the
microbe of interest. 

Safety in phase I is commonly summarized using the inci-
dence of serious vaccine-related adverse events (if any), along
with data on injection-site reactions, body temperatures, sys-
temic adverse events, and laboratory measures. The sparseness
of safety data from an individual phase I trial make them more
suited for descriptive rather than formal inferential statistical
analyses. The decision to proceed to a subsequent trial is there-
fore based primarily on sound clinical judgment, with input
from a safety evaluation committee (if necessary), and regula-
tory agencies such as the Center for Biologics Evaluation and
Research (CBER) for US-based trials. 

While statisticians may have a smaller role for safety analyses
in phase I, they play a pivotal role in the analysis of immuno-
genicity. Two types of immunogenicity summaries are reported
for the biomarker(s) of interest: the proportion of subjects with
a post-vaccination response above the predefined positivity cut-
off (“responders”), and the (geometric) mean post-vaccination
biomarker response. The small sample sizes in phase I trials
pose a multitude of statistical challenges for analyzing immuno-
genicity. Some of these are readily tackled using a prudent selec-
tion of methods from the statistician’s existing tool kit. Others
present opportunities for innovative analytical solutions and
further methodological research. Some of the key statistical
issues encountered in phase I analyses of immunogenicity are
discussed below under subheadings.

Cross-validation of “positivity” criterion
As mentioned earlier, what represents a “positive” response

Doherty and Rolf Zinkernagel) won a Nobel Prize for decipher-
ing how the cellular immune system works. It is mediated by
white blood cells called T cells that defend against intracellular
microbes. Specifically, T cells (mostly CD8+ T cells) seek out
and destroy cells that have already become infected with the
specific microbe. T cells can detect the presence of intracellular
microbes because infected cells display on their surfaces peptide
fragments derived from the pathogens’ proteins. The foreign
proteins are delivered to the cell surface by specialized host cell
glycoproteins called MHC or HLA molecules. The adaptive
immune system “remembers” each encounter with a specific
microbe, through the establishment of memory B and/or T cells.
Subsequent microbe-specific encounters stimulate increasingly
effective defense mechanisms, and this immunological memory
serves as the basis of protective vaccination against microbes.

Virtually all vaccines in use today have been licensed using
antibody-based endpoints. More recently, research has intensi-
fied on developing vaccines that stimulate cellular immunity
(or both). But regardless of whether the vaccine is intended to
induce humoral or cellular immunity, the operational goal of
vaccination is the same: to simulate a microbe-specific exposure
so that the host’s immune system will generate a pool of mem-
ory B and/or T cells to protect against potential real exposures
later on. The simulation is accomplished via inoculation of the
host by a vaccine that contains either a weakened version of the
microbe, or a DNA plasmid or viral vector encoding certain
gene(s) of the microbe, and so on.

Understanding the “mechanism of action” of the vaccine is
critical for identifying appropriate study endpoints and statisti-
cal analyses in clinical trials. For example, several T cell medi-
ated immunity-based vaccines targeted against HIV-1 are
currently being developed worldwide. Such vaccines may not
prevent acquisition of HIV-1 infection, but will hopefully pre-
vent or significantly delay the progression to AIDS among sub-
jects who become infected despite vaccination. From a
statistical perspective, this poses a plethora of challenges for the
design and analysis of current HIV-1 vaccine trials, including
the selection of study endpoints.

In the following sections, we provide an overview of the key
statistical issues in each phase of vaccine development.

2. Preclinical phase
Before a vaccine can be tested in humans, it undergoes

extensive testing in animals. This is similar to what is done in
the preclinical phase for drugs. However, for vaccines there is
additional emphasis on the development and validation of
bioassays to measure the immunogenicity of the vaccine, i.e., the
ability of the vaccine to induce specific immune responses. The
statistical characteristics of an ideal assay include accuracy,
unbiasedness, reliability, reproducibility, precision, and rugged-
ness. In addition, a good assay should have high levels of speci-
ficity and sensitivity for the hypothesized biomarker of interest
(antibody level, T cell response, etc.). Standard statistical tools
used in assay development and validation include classic
design of experiments (e.g., D-optimal factorial designs), linear
and non-linear regression, the four parameter logistic model,
concordance correlation, and variance component models.
Schofield [3,4] provides an excellent review of this topic.

An important by-product of the assay validation process is
identification of what constitutes a positive (or perhaps more
accurately, a non-negative) response to vaccination for each bio-
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dose. For example, consider the analysis of response propor-
tions. A simple way to proceed is to compare each dose group
with placebo using an exact score test for two independent
binomials (Suissa and Shuster [8]), and assess the resulting p-
values for statistical significance after a multiplicity adjustment
(Dunnett [9], Hochberg [10], etc.). However, a more efficient
way is to use a step-up trend testing strategy, such as an exact
Cochran-Armitage trend test [11-12] embedded within the
NOSTATSOT closed-testing procedure (Tukey, Ciminera and
Heyse [13]). The gains in statistical efficiency using a trend test-
ing approach over the pairwise approach can be considerable,
especially when there are three or more dose levels in a small
study (Shirley [14]). This is of particular relevance for phase I
vaccine trials. The reason is that larger doses of a vaccine can be
substantially more costly to manufacture compared with lower
doses. As a result, use of a suboptimal statistical approach can
have negative economic ramifications if it contributes to a selec-
tion of doses for further study that are considerably larger than
the truly minimum effective dose.

“Missing” immunogenicity data
Most vaccine regimens include a sequence of one or more

“priming” inoculations followed by a “booster” shot later. In
phase I trials, blood samples are collected at one or more time
points after each inoculation and assayed for immune activity.
The primary analysis focuses on statistical estimation and infer-
ence involving the mean post-boost response of the biomarker
of interest (µ), and the true proportion of post-boost respon-
ders (p). However, the post-boost response is occasionally
“missing” for some subjects at the time of analysis. This hap-
pens because subjects either drop out of the study prior to the
booster or, more commonly, the analysis is an interim look at
the data when the subjects in question have received priming
inoculations but not yet been boosted.

This situation is similar to the incomplete longitudinal data
problem for drug trials. However, there are two key differ-
ences. First, while the missing data resulting from dropouts in
vaccine trials are typically missing completely at random
(MCAR), they are more likely to be either missing at random
(MAR) or non-ignorably missing (NM) for drug trials. The rea-
son is that patients often drop out from drug trials because
they are not responding favorably to their assigned treatment
(e.g., high blood pressure not declining); this concept is gen-
erally not applicable for vaccine trials! The second key differ-
ence is that the ability to predict or impute the missing data at,
say, the last scheduled visit may be better for vaccine trials
compared with drug trials. This happens because subjects in
vaccine trials are inherently less heterogeneous that patients in
drug trials. Moreover, basic immunology tells us that success-
ful priming bodes well for successful boosting, i.e., if the post-
prime immune responses are positive, they will almost always
be positive post-boost.

So, how should we estimate µ and p? A simple (and com-
mon) way is to use a “complete case analysis”, i.e., exclude sub-
jects with missing post-boost data. This approach is unbiased
under MCAR, but it is also inefficient because it fails to utilize
the rich post-prime information of the excluded subjects. A bet-
ter alternative is to use principled methods for longitudinal data
analysis like restricted maximum likelihood (REML), general-
ized estimating equations (GEE), or multiple imputation, all of
which are readily available in standard software. The gains in

to vaccination is determined before phase I clinical trials are
begun, in conjunction with the assay validation for the bio-
marker of interest. It is important to use the accumulating
immunogenicity data to either confirm the validity of the posi-
tivity criterion, or modify it if necessary. For example, Mogg et
al [5] used baseline (pre-vaccination) responses from 559 sub-
jects to cross-validate the two dimensional positivity criterion
for the HIV-1 gag specific ELISPOT assay that had been estab-
lished before phase I clinical trials began. Specifically, they used
binomial score intervals, robust parametric methods, and non-
parametric density estimates with bootstrap-based confidence
intervals to estimate the proportion of “non-responders” that are
incorrectly classified as “responders”. All three methods con-
verged to a common conclusion, namely that the false positive
rate associated with the ELISPOT positivity criterion used by
Merck Research Laboratories is estimated to be less than 1%
with high confidence.

Stratification
Stratification is often used in vaccine clinical trials; either pre-

stratification at the enrollment stage, or post-stratification at the
time of analysis. Interestingly, investigational center is rarely
used as a stratification factor in phase I because of the small
(sometimes zero) sample size per treatment group at each cen-
ter. Instead, stratification is limited to one or two key prognos-
tic factors that are likely to influence the response to vaccination
in a systematic way. For example, it is well-known that the abil-
ity of a vaccine to induce an antibody-based immune response
diminishes with increasing age. Failure to incorporate this
important information at either the design or analysis stage can
result in a biased and/or inefficient statistical analysis, particu-
larly for small trials! The summary table below reinforces this
point. In this hypothetical phase I trial, vaccine A is observed to
be more immunogenic than vaccine B for both younger (18-45
years) and older (> 45 years) subjects. However, naïve “pooling”
of the results, i.e., failing to adjust for an age effect, yields a result
which paradoxically suggests that vaccine B is better! 

Hypothetical Data (% Responders)
Age Vaccine A Vaccine B A - B

< 45 years 79.2%  (19/24) 64.7%  (22/34) 14.5%

> 45 years 12.5%  (2/16) 0.0%  (0/6) 12.5%

“Pooled” 52.5% (21/40) 55.0% (22/40) -2.5%

An overview of stratification issues in clinical trials, includ-
ing references to some recently developed analytic strategies, is
provided elsewhere (Mehrotra [6], [7]). The key point here is
that stratification-based adjustment for prognostic factors is
important for phase I vaccine trials, particularly since the sam-
ple sizes are quite small.  

Minimum effective dose
As mentioned earlier, phase I vaccine trials often involve

multiple dose levels of a vaccine. Interest lies in quantifying the
dose-response association, and in identifying the smallest dose
that provides adequate immunogenicity. It is usually (but not
always) expected that, within the range of doses studied, a
higher dose of the vaccine will be at least as immunogenic as a
lower dose. Given the small sample sizes in phase I, it is impor-
tant to use statistical methods that capitalize on this additional
biological information to help identify the minimum effective



efficiency of the latter approaches over the complete case analy-
sis can be significant when the amount of missing data is large
(say >20%), as illustrated by Li, Mehrotra and Barnard [15].

4. Phase II/III (clinical immunogenicity,
efficacy and safety)

After phase I, there is continued assessment of the immuno-
genicity and safety of the one or two doses of the vaccine
selected for further study. However, the primary focus shifts
towards evaluation of vaccine efficacy, and to determine if the
biomarker(s) used to advance the vaccine beyond phase I are
correlated with efficacy. In this section, we discuss the key sta-
tistical issues encountered in phase II/III. Interestingly, for drug
clinical trials there is usually a clear demarkation between phase
II and phase III, but this is less common for vaccine trials. 

Assessing Vaccine Efficacy
After a candidate vaccine has been demonstrated to be

immunogenic and generally safe and well tolerated in phase I,
controlled clinical trials are conducted to evaluate vaccine effi-
cacy (VE). The “efficacy” of a vaccine refers to its ability to either
prevent infection (e.g., for an antibody-based prophylactic vac-
cine) or reduce the incidence and/or severity of the associated
disease in the target population (e.g., for a T cell immunity-
based vaccine). Two types of strategies are used in practice. In
the first, a “small” phase II proof-of-concept efficacy trial is con-
ducted to get preliminary evidence of vaccine efficacy before
moving to a “large” phase III confirmatory trial. In the second,
researchers proceed directly to a large pivotal trial (phase II/III
combined). The sample sizes required to demonstrate vaccine
efficacy trials depend on a multitude of factors, and can range
from several hundred subjects to tens of thousands of subjects.
O’Neill [16], and Chan and Bohidar [17] describe methodology
for sample size estimation to establish vaccine efficacy.

A commonly used measure of efficacy for a vaccine designed
to prevent infection is given by , where 
and denote the true incidence or hazard rates for the vac-
cine and control arms, respectively. A vaccine is 100% effica-
cious if VE = 1. Since a licensed vaccine could ultimately be
administered to millions of healthy subjects, it is usually insuf-
ficient to demonstrate that the vaccine efficacy is merely greater
than zero. Instead, there is a requirement of “super efficacy”,
i.e., a need to demonstrate with high confidence that the true
vaccine efficacy is greater than some pre-specified non-zero
lower bound, say VE*. The choice of VE* is influenced by sev-
eral factors, both statistical and non-statistical; this is analogous
to the choice of the non-inferiority or equivalence bound for
drug trials. The statistical tools used to quantify vaccine efficacy
are context dependent, and include time-to-event analyses
based on the Cox model, and conditional and unconditional
tests for incidence ratios (Chan [18], Ewell [19]). Interestingly,
as is the case for drug trials, there is often a debate on whether
the primary analysis should be an “intent-to-treat” analysis or a
“per protocol” analysis (Horne et al [20]). Fortunately, the two
sets of analyses in vaccine efficacy trials have historically yielded
very similar results.

Defining and demonstrating efficacy for a vaccine that is
designed to attenuate disease but not necessarily prevent infec-
tion is a difficult issue that is beyond the scope of this article.
Some progress has been made in this area, for example, by
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Gilbert et al [21] and Hudgens et al [22] for evaluation of T cell
immunity-based HIV-1 vaccines, but more work remains to be
done. Other statistical tools that appear promising for the eval-
uation of such vaccines include the “burden-of-illness” statistic
(Chang et al [23]) and the “two part model” (Lachenbruch
[24]), both of which provide for a composite evaluation of inci-
dence and severity of disease.

It should be noted that the above discussion of vaccine effi-
cacy has implicitly focused on the direct effects of the vaccine. In
addition to direct effects, vaccines often confer indirect effects
through “herd immunity”. Related statistical issues are discussed
by several authors (e.g., Haber et al [25]), and omitted here for
brevity.

Surrogate Markers or “Correlates of Protection”
Vaccine efficacy trials provide valuable data for determining

whether the immune biomarker (e.g., antibody or T-cell
response) used to assess immunogenicity can also serve as a
surrogate marker for vaccine efficacy. For example, suppose
that the vaccine is observed to have no efficacy in subjects with
low biomarker responses, but has near perfect efficacy in those
with high responses (e.g., at a level that is much higher than
the positivity cut-off discussed earlier). In this case, use of the
Prentice criterion [26] and related approaches [27-28] will eas-
ily help formally establish the validity of the biomarker as a
surrogate for vaccine efficacy. In contrast, it is very difficult to
establish the biomarker as a valid surrogate for vaccine efficacy
if the vaccine is highly immunogenic in all subjects, or if the
vaccine efficacy is close to 1, for obvious reasons. This was
indeed the case for Wyeth-Lederle’s PREVNAR®, a seven-valent
vaccine licensed in February 2000 to protect infants and chil-
dren from pneumococcal disease. In a large efficacy trial, all
protocol-defined cases of disease occurred in the placebo arm.
So, the vaccine was 100% efficacious, but a correlation
between immune response and protection from disease could
not be determined. Vaccine researchers use the term “correlates
of protection” to describe surrogate markers of vaccine efficacy.
The availability of such surrogates allows for significantly more
efficient evaluation of newer (e.g., 2nd generation) vaccines,
since vaccine efficacy can be indirectly demonstrated through
the surrogate. A detailed discussion of correlates of protection,
including other real examples and a useful bibliography is pro-
vided by Chan et al [1]. 

Assessing Vaccine Safety
As mentioned earlier, vaccines are developed for potential

administration to millions of healthy subjects worldwide.
Accordingly, the assessment of safety is of paramount impor-
tance, and requires a comprehensive evaluation to ensure that
the benefits of vaccination outweigh the potential risks. The
methods and measurements chosen to establish the safety of a
vaccine depend on many factors, including the type of vaccine
and its mechanism of action.

Common reactions to vaccines are readily identified in
phase I, and continue to be tracked in phases II and III. These
include swelling, tenderness, and redness at the injection site
(e.g., arm), and are almost always attributable to the vaccine.
Systemic reactions, such as fevers or muscle aches, are also
fairly common for some types of vaccines (and placebo!) It is
important to stress that the large volume of safety data, either
for a single phase III trial or an integrated summary of safety

VE V C= − ÷( )1 λ λ λV
λC
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across several trials, calls for careful statistical analysis and
interpretation. For example, systemic adverse events (AEs) are
typically evaluated using between-group p-values for every AE
encountered within each of several body systems. If the p-val-
ues are interpreted without multiplicity considerations, there is
a potential for an excess of false positive findings. This can
needlessly complicate the safety profile of the vaccine under
study. Mehrotra and Heyse [29] have recently proposed a novel
method for taming the multiplicity artifact in such situations.
Their method involves a two-step application of adjusted p-
values based on the Benjamini and Hochberg [30] false dis-
covery rate methodology. They use real data from three
moderate to large vaccine trials to illustrate their proposed
“Double FDR” approach, and to reinforce the potential impact
of failing to account for multiplicity.

Phase II/III vaccine trials are usually well powered for com-
parative analyses of common but less serious adverse events.
However, determining the sample size required to rule out less
common but more serious adverse events is a challenging issue
that requires context-dependent solutions. For example, Sadoff
et al [31] described the study design considerations necessary
to detect an increased risk of intussusception in a randomized,
placebo-controlled trial of a rotavirus vaccine. They proposed
extensive monitoring for intussusception cases through multi-
ple stopping boundaries, and used Monte Carlo simulation
methods to justify a study size of at least 60,000 infants. A more
detailed discussion of statistical design and analysis issues
involving vaccine safety are provided by Ellenberg [32].

Other Pre-Licensure Issues
The licensing application for a new vaccine is called the Bio-

logical License Application (BLA); it is analogous to the New
Drug Application (NDA) for a drug. In order for the license to
be approved by a regulatory agency (like CBER in the US), the
BLA must provide convincing data to support the safety and
efficacy of the vaccine. In addition, it must demonstrate that
the product meets regulatory standards of purity and potency,
and consistency of manufacturing (Lachenbruch et al [33]).
Evidence for the latter is obtained through a “lot consistency”
study. Such studies typically use three lots of vaccine made
from the same manufacturing process. The goal is to demon-
strate that the three lots evoke “similar” immune responses.
Similarity is concluded if a pre-specified clinically significant
difference between any two pairs of lots can be ruled out with
high confidence, with respect to both the proportion of
responders and the (geometric) mean response for the primary
biomarker. Statistical methods for lot consistency studies are
discussed by Wiens and Iglewicz [34].

5. Post-Licensure Issues
Phase IV studies are conducted after licensure to collect

additional information on the safety, immunogenicity, and/or
efficacy of the vaccine to meet regulatory commitments or
post-marketing objectives. These include so-called bridging
studies, persistence studies, and post-licensure safety studies.
Some of the attendant statistical issues are briefly discussed
here. Chan et al [1] and Halloran [35] provide more detail.  

Bridging Study
After the vaccine has been licensed, the manufacturing

process, storage conditions, or dosing schedule may be altered

to enhance production yield, vaccine stability, or convenience
of vaccination schedule, respectively. Regulatory requirements
mandate that sponsors conduct studies to demonstrate that
such changes have no material impact on vaccine effectiveness.
This is accomplished via immunogenicity bridging trials
designed to demonstrate similarity of the modified
vaccine/process to the current vaccine/process in a manner
analogous to that for lot consistency trials. Of note, it is pre-
sumed that the biomarker used to establish similarity in a
bridging study is sufficiently correlated with efficacy. Lack of
such a correlation makes it harder to justify the use of the bio-
marker, since the ultimate goal is to (indirectly) ensure that the
vaccine efficacy is unaffected.

Immunological Persistence Study
It is important to have an understanding of how long vac-

cine-induced immunity lasts. For example, if the protective
efficacy of a vaccine is known to last for ten years, then giving
a booster shot every ten years might be reasonable. However,
such information is rarely available before the vaccine is
licensed. The reason is that the expected duration of vaccine-
induced immunity is usually much longer than the duration of
the clinical trials that are included in the BLA. Accordingly,
immunological long-term persistence studies are often con-
ducted post-licensure. These are typically open label studies in
which vaccinated subjects provide blood samples over time
(usually annually) for determination of immune responses. The
resulting data can be analyzed using standard time-to-event
methodology. Modeling strategies have also been proposed to
predict the duration of vaccine-induced immunity based on
extrapolation of observed antibody or cellular immune
responses from clinical trials [36-37].

Post-licensure safety surveillance
The Food and Drug Administration (FDA) and the Centers

for Disease Control (CDC) have created the Vaccine Adverse
Event Reporting System (VAERS) for post-licensure safety
surveillance [38]. This system accepts reports of adverse
events that may be associated with U.S. licensed vaccines
from health care providers, manufacturers, and the public.
The reports are continually monitored for any unexpected
patterns or changes in rates of adverse events. Post-marketing
safety evaluations are often complicated and contentious,
particularly when they are based on retrospective analyses or
involve data collected via potentially biased reporting sys-
tems. Bayesian data mining methods have been proposed by
DuMochel [39] and implemented in practice by Niu et al
[40]. See also Brewer and Colditz [41] for an informative dis-
cussion on post-marketing safety issues.

6. Concluding remarks
In this article, we have provided an overview of the key sta-

tistical issues that arise in all phases of vaccine development.
We have stressed the importance of understanding the science
behind the numbers, including how the vaccine is intended to
work, as well as the bioassays that measure whether or not the
vaccine is immunogenic. Since licensed vaccines are adminis-
tered to millions of healthy people, we have highlighted the
importance of establishing vaccine safety in a large number of
subjects, and explained the concept of super efficacy studies.
Finally, we have noted the importance of establishing that the
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vaccine manufacturing process produces vaccine lots that
evoke statistically similar post-vaccination immune responses.
Recent advances in genetic engineering and pharmacogenetics
are spawning a new generation of vaccine modalities to protect
against HIV/AIDS, cancer, malaria, anthrax, plague, and so on.
Development of such vaccines will pose additional statistical
challenges that will require innovative thought and creative
solutions.
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cal skills sharp. We also help organize sessions on biopharma-
ceutical topics at the ENAR meeting, and work behind the
scenes to help coordinate topics at JSM and ENAR with other
conferences such as ASQ (Deming) and the MidWest Biophar-
maceutical (Muncie) Workshop.

We seek to recognize and promote excellence in our pro-
fession in many ways, including awards for the best student
papers each year, and for the best presentation of a biophar-
maceutical contributed paper at JSM. If you know of a leader
in our profession who has not yet been elected a fellow of
ASA, we can help you prepare a strong nomination for him or
her (and if they’ve been active supporters of the Section, write
a letter on their behalf).

Each year we partner with the FDA to organize an
FDA/Industry workshop where hundreds of statisticians from
the industry and FDA can meet to hear statistical research
directly relevant to our work, discuss regulatory issues, or just
get to know our colleagues in a relaxed setting. If you do not
have the opportunity to travel to the Washington, D.C. area,
you can get our “Biopharmaceutical Report” published peri-
odically via e-mail.

If you are already a member of our Section, you know the
benefits. If not, the modest annual dues will give a great return
on your investment. We hope to see many of you at our
annual meeting in Toronto at JSM this year. ■

Letter from the Chair
Keith Soper

The Biopharmaceutical Section of ASA was formed in 1968
to provide a forum for “statisticians dealing with the quantita-
tive aspects of drugs in the areas of experimental therapeutics,
clinical pharmacology, and other bio-pharmaceutical sci-
ences”. That covered a lot of ground in 1968 and today bio-
pharmaceutical statistical science has broadened further to
include high throughput screening, genomics, formulation,
vaccines, bioequivalence, manufacturing, post-marketing sur-
veillance, and health economics, among other areas. Our Sec-
tion has grown to become one of the largest and most active
Sections in ASA. We provide a combination of services to
members that you cannot get anywhere else.

Much of our effort, naturally, is directed to making the
Joint Statistical Meetings as useful and relevant as possible to
our members each year. In 2004 our Section will sponsor six
invited sessions, over a dozen luncheon roundtables, over two
dozen regular and special topic contributed sessions, as well
as continuing education classes designed to keep your techni-
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Monday, May 24
8:30 am – 5:00 pm 
Workshop Registration
Fee:  $140 until May 1 ($45 for students), $160 after May 1

9:00 am – 1:00 pm
Short Course
(Separate Registration Fee: $55)
Presenter:  Georges Grinstein, University of Massachusetts
Topic: High Dimensional Data Visualization for Solving
Complex Data Exploration and Discovery Problems 

2:15 pm – 2:30 pm
Introduction and Welcome
Tim Schofield, Merck
Michael A. Maggiotto, Dean, College of Sciences and Humanities,
Ball State University

2:30 pm – 4:30 pm
Plenary Session
Speaker:  Harald Martens, Matforsk/Norwegian Food 
Research Institute
Topic: Analysis of Chemometric Data

Tuesday Morning, May 25
Concurrent Sessions
8:30 am – 11:30 am

A. Statistical Analysis of New Studies Required in
Preclinical Safety Testing 
Organizer/Chair: Steve Bailey, Wyeth

1. “New Methodologies for QT Interval Prolongation 
Adjustments in Preclinical Safety Pharmacology       
Studies,” Lori Mixson, Merck

2. “Design and Analysis of Juvenile Animal Toxicology 
Studies in Support of Pediatric Drug Products,” Edmund
Kadyszewski, Pfizer

3. “Statistical Aspects of the Auditory Startle Experiments 
in Behavioral Toxicology Studies,” Wherly Hoffman, Eli 
Lilly

4. “Design and Analysis of CNS/FOB Studies in Preclinical 
Safety Pharmacology Testing,” Steven Bailey, Wyeth

B. Novel Designs and Their Analyses in Early Clinical 
Trials
Organizer/Chair:  Steve Gulyas, Pfizer

1. “Design and Analysis Considerations for a Clinical       
Endpoint Based on Count Data,” Mani Lakshminarayanan
and Aparna Raychaudhuri, Centocor

2. “How we Broke the Rules and Got Away with It: Use of a
Latin Square to Evaluate Symptomatic Treatment of 
AD,” Wayne Ewy, Pfizer

3. “Biomarkers of Stroke: A Bivariate Outcome Design and
Mixed Model Analysis,” Jessica Mancuso, Pfizer

4. Discussant: Tim Montague, GlaxoSmithKline

C. Tools and Methods for Large Data
Organizer/Chair:  Kjell Johnson, Pfizer

1. “Approaches to Analyzing Large, Drug Discovery Data 
Sets,” Kimberly Crimin and Thomas Vidmar, Pfizer

2. “Autonomous Fast Classifiers For Pharmaceutical Data 
Sets,” Paul Komarek, Carnegie Mellon University 

3. “Top Mistakes with Large Data,” John Elder, Elder 
Research

Tuesday Afternoon, May 25
Poster Session
12:00 pm – 1:30 pm 
Chair:  Jackie Reisner, Pfizer
Posters will be accepted on any biopharmaceutical statistical
topic. Abstracts must be received by May 1. Students may
qualify for the Charlie Sampson poster award if abstract,
poster panels and a paper briefly describing the poster are
received by May 1.
For more information contact Jackie at (734) 622-4996 or
jacqueline.k.reisner@pfizer.com

Concurrent Sessions
1:30 pm – 4:30 pm

A. Equivalence Testing for CMC: Approaches and 
Challenges   
Organizer/Chair:  Douglas Lee, Pfizer

1. “Effectively Incorporating Experimental Design and   

The 27th Annual Midwest Biopharmaceutical Statistics
Workshop
May 24 – 26, 2004
Ball State University, Muncie, Indiana

Final Program
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Analysis into Analytical Method Transfer Exercises,” 
Greg Steeno, Pfizer 

2. “Assessment of Population Bioequivalence Criteria 
Applied to CMC in Vitro Data,” Beth Morgan, Glaxo-
SmithKline

3. “Assessing In Vitro Bioequivalence for Profile Data:  A 
New Modeling Approach,” Bin Cheng, University of  
Wisconsin

4. “Multivariate Equivalence Testing with an Elliptical    
Hypothesis Boundary,” Mark Berry, Pfizer

B. Robust Statistical Methods for Clinical Trials 
Organizer/Chair: Robin Mogg, Merck

1. “Some Recent Advances Related to Robust ANOVA and 
Regression,” Rand Wilcox, University of Southern         
California

2. “RAVE Analysis of Longitudinal Clinical Trials,” Devan V. 
Mehrotra, Merck 

3. “Robust Estimation in Linear Mixed-Effects Models Using
the Multivariate t-Distribution,” Jose Pinheiro, Novartis 
Pharmaceuticals

4. Discussant: George Milliken, Kansas State University  

C. Multiple Data Block Analysis
Organizer/Chair:  Stan Young, NISS

1. “Integrative Analysis of High Dimensional Gene      
Expression, Metabolite and Protein Data,” Raymond Lam,
Lei Zhu, Kwan Lee, Amit Bhattacharyya, Alan Menius, 
Biomedical Data Sciences, GlaxoSmithKline

2. “Three-way Analysis: Micro Array, Biological Potency, and
Molecular Descriptors,” Jack Liu and S. Stanley Young, 
NISS

3. “Three-way Analysis,” Harald Martens, Matforsk/           
Norwegian Food Research Institute

Tuesday Evening Banquet
Announcement of Student Winner of Charlie Sampson
Poster Award
Speaker: Tony Lachenbruch, CBER
Topic: Lessons from a Life in Statistics

Wednesday Morning, May 26
Concurrent Sessions
8:30 am – 11:30 am

A. Methodologies and Challenges in Assay 
Validation
Organizer/Chair:  Kristi Griffiths, Eli Lilly

1. “Challenges in a Priori Acceptance Criteria Establishment
for Assay Validations,” Randy Rafferty, Eli Lilly

2. “Unique Challenges in the validation and Routine           
Monitoring of Bioassays,” Charles Tan, Merck 

3. “Challenges and Issues with LOD, LOQ and Reporting 
Threshold Establishment and Use,” Dave LeBlond, Abbott

B. Multiple Comparisons 
Organizer/Chair: Alex Dmitrienko, Eli Lilly 

1. “Decision-theoretic Views on Switching between        
Superiority and Non-inferiority Testing,” Peter Westfall, 
Texas Tech University

2. “Applying the Partitioning Principle to Dose-response and
Multiple Endpoint Problem,” Jason Hsu and Haiyan Xu.,
Ohio State University 

3. “Multiple Co-primary Endpoints where All Must Achieve
Statistical Significance,” Walt Offen, Eli Lilly, Paul 
Stryszak, Schering-Plough, and Alex Dmitrienko, Eli Lilly

C. Subgroup Analysis 
Organizer/Chair:  Alan Menius, GlaxoSmithKline

1. “Data Mining Large Clinical Databases: Searching for   
Important Subgroups,” Daniel Park and Kwan Lee, Glaxo-
SmithKline

2. “Practical Considerations in Analyzing Pharmacogenetic 
Data Sets,” Michael Man, Pfizer

3. “Competing Tree Techniques for Subgroup Analysis,” Joe
Boyer, North Carolina State University

For more information on the workshop, please contact MIR
ALI, Ball State University, (765) 285-8670, Email:
mali@bsu.edu or Ying Zhang, Quintiles, (816) 767-4679,
Email: yings.zhang@quintiles.com. The preliminary program
will be updated periodically at the web site
www.mbswonline.com/. ■

The 27th Annual Midwest Biopharmaceutical Statistics
Workshop
May 24 – 26, 2004
Ball State University, Muncie, Indiana

Final Program (continued)
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