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A Bayesian approach
 What is a Gaussian process?

* Popular version using a squared exponential kernel
e (Gaussian process inference

* Prediction & uncertainty quantification

e (Goal:

e | earn the mechanism behind standard GPs to
identify benefits and pitfalls
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We just drew random functions from a type of
“Gaussian process’!
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* Definition: “A Gaussian process is a collection of random
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A Bayesian approach
 What is a Gaussian process?
* Popular version using a squared exponential kernel

* Hyperparameters: length scale(s), signal
variance, observation-noise variance

e (Faussian process inference
* Prediction & uncertainty quantification
e Limitations (not just for GPs):
* E.g. extrapolation
* High-dimensional inputs
* Always ask: What uncertainty are we quantitying®?

Goal:

e | earn the mechanism behind standard GPs to
identify benefits and pitfalls




R esources http://www.tamarabroderick.com/tutorials.html

Rasmussen and Williams 2006. Gaussian Processes for
Machine Learning. https://gaussianprocess.org/gpml/

 Chapters 1

!214!5

Gramacy 2020. Surrogates: Gaussian process modeling,
design and optimization for the applied sciences.
https://bookdown.org/rbg/surrogates/

Garnett 2023. Bayesian Optimization. https://
bayesoptbook.com/

Software options include:
e scikit-learn, GPy, GPflow, GPyTorch

My setup for

his tutorial: pip install X

e X = jupyter

ab, notebook, numpy, matplotlib, scikit-learn
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