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everything that becomes or
changes must do so owing
to some cause; for nothing
can come to be without a
cause

Plato
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Why should we care about causality in medicine?
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Causality

• �Epidemiological research is, almost exclusively, concerned
with etiology of illness�, where etiology is the �causal origin�
of illness (Miettinen & Karp, 2012).

• In fact, the goal of most statistical analyses is to uncover
causal relationships.
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Causality

• There is no agreement on the de�nition of causality,
particularly across disciplines.

• Pearl (2009, p. 25-26), a computer scientist and a leader in
the �eld of modern causality, does not explicitly de�ne
causality at all, refers to causal relationships as �stable� and
�ontological�.

• Meinshausen (along with Peters & Buehlmann, 2016) takes
a similar view, viewing causal relationships to be present
when multiple data sources produce `invariant prediction'.
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Koch's postulates
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Koch's postulates

In 1890, Robert Koch proposed a set of criteria that he believed
to be necessary to establish a `causative relationship' between a
microbe and a disease.
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Koch's postulates

Koch applied his postulates to understand the causes of TB and
cholera.

However, gaps emerged:

• asymptotic carriers of diseases went against postulate 1
(e.g., latent TB, asymptomatic carriers of HCV)

• some microorganism (e.g., viruses) cannot be grown in
culture

• (and for medicine more generally: not all illness is caused
by pathogens)

→ Koch's postulates are su�cient but not necessary
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Non-pathogenic causes
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Non-pathogenic causes
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Bradford Hill

• Some of the earliest, and best known, ideas in epidemiology
on causality are the (non-)criteria for causality given by Sir
Austin Bradford-Hill in 1965, in his article `The
Environment and Disease: Association or Causation?':

1. Strength
2. Consistency
3. Speci�city
4. Temporality
5. Biological gradient
6. Plausibility
7. Coherence
8. Experiment
9. Analogy

• A group of conditions to assess (not establish) causality.
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Bradford Hill

• Less well-known is Bradford Hill's wide-ranging lecture on
`The Statistician in Medicine'

• Three themes:
▶ knowledge of the area of application,
▶ types of data to provide evidence and how data are

gathered (including the poor experimenter, `nature'),
▶ drawing conclusions from evidence.

• Will return to this � still very relevant!
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The counterfactual framework

• The major challenge in observational studies is confounding
� though other biases exist (missing data, measurement
error, paticipation/selection).

• The Rubin causal model dominates the statistical literature
on causality (Rubin 1978).
▶ Equivalent to the use of what is known as potential

outcomes or counterfactuals.
▶ Counterfactuals often attributed to Neyman (1923).
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The counterfactual framework

• Framework supposes each individual i has two (or many)
potential outcomes (Yi(0), Yi(1)), corresponding to each
possible treatment assignment.

• Challenge lies in only being able to observe one.

• Fundamentally, almost all biases that impede causal
inference can be viewed through the lens of missing data.
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The counterfactual framework

• At an individual level, contrasts in counterfactuals help to
eliminate any alternative explanations for di�erences in
outcomes.

• We de�ne the causal e�ect of exposure by considering
contrasts between population-level average values of
counterfactuals, e.g.,
▶ Additive contrasts (ATE)

ave[Yi(1)]− ave[Yi(0)]

▶ Multiplicative contrasts

ave[Yi(1)]/ave[Yi(0)]
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Confounding

• Confounding is now easy to understand in terms of Rubin's
causal model; it is likely appear when the assumption
(Yi(0), Yi(1)) ⊥⊥ Zi does not hold.

• This is the case for instance if the value of Zi has not been
determined through complete randomization, but has been
recorded in a non-experimental (�observational�) study.

• It may then be that (Yi(0), Yi(1)) and Zi have common
determinants, which in turn means that Zi is informative of
the pair of potential outcomes.
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Confounding

Confounding is loosely de�ned as the exposure and response
having a common cause:

Common 

cause

Exposure Outcome?
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Confounding

Confounding is loosely de�ned as the exposure and response
having a common cause:

SES

Vit D Cancer?
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Confounding

• Suppose that the values of all common determinants,
denoted Xi, have also been recorded in the study.

• The previous independence assumption may then be
restated as the conditional independence

(Yi(0), Yi(1)) ⊥⊥ Zi | Xi,

conditioning on Xi then being interpreted as controlling for
confounding.

• Many di�erent names in the literature; let us call it no
unmeasured confounding (NUC).

• NUC of course implies that Xi are measured confounders.

• The NUC assumption is empirically untestable based on
observed data → must be based on substantive knowledge.
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Confounding

• Without adjustment, the estimator based on simple
averages in the exposed and unexposed is biased in
estimation of the average causal e�ect.

• It should be noted that even randomized controlled studies
have imbalance w.r.t. the confounder distributions between
the treated and untreated groups due to the random
assignment, with more the smaller is n.

• It depends on de�nition if the e�ects of this imbalance are
also called confounding.
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The counterfactual framework

• Many writers reasoning in terms of Rubin's causal model
(e.g. Holland 1986, p. 946 and Miettinen 2011, p. 110) make
the further restriction that a cause must be something that
is (at least in principle) manipulable, that is, both exposure
to the cause and its alternative must be possible for all.

• �No causation without manipulation� !
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The counterfactual framework

• This is often stated as the positivity assumption, which
says that both

0 < P (Z = 1 | X = x) < 1

for all z and x.

• In particular, we need that the conditional means of Y
given Z and X are de�ned for treated and controls for all
possible values of the covariates of X = x to be able to
marginalize over the X.

• Also called overlap or common support: the support of the
conditional covariate distribution p(x | Z = 0) overlaps with
that of p(x | Z = 1).
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Positivity
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Identi�cation of a causal e�ect

• Identi�cation means that we can use the observed data
(X,Z, Y ) to de�ne a causal parameter in terms of the
potential outcomes Y (z).

• Given that NUC and positivity hold we can estimate a
causal parameter, e.g., ATE = E[Y (1)− Y (0)], with the
observed data by conditioning on the covariates:

ATE = EX [E[Y |Z = 1, X]− E[Y |Z = 0, X]]

= EX [E[Y (1)|Z = 1, X]− E[Y (0)|Z = 0, X]]

= E[Y (1)− Y (0)]
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Identi�cation

• NUC and positivity are su�cient conditions for
nonparametric identi�cation, i.e., no further parametric
model assumptions are needed.

• In practice, model assumptions are used for some parts of
the joint distribution of the observed variables p(X,Z, Y ):

p(Z,X, Y ) = p(X) · p(Z|X)︸ ︷︷ ︸
propensity score

·
outcome model︷ ︸︸ ︷
p(Y |Z,X) .
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The counterfactual framework

• There are many statistical ways of adjusting for
confounding, so that we can estimate the true (causal)
treatment e�ect such as:
▶ regression
▶ strati�cation/matching
▶ reweighting

• Whatever the approach, the goal is to recreate a dataset
that looks like a randomized study, by creating balance
between in the treated and untreated groups with respect
to all confounders.
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Outcome regression

• E�ects of treatments are commonly analyzed with
regression models for the outcome, e.g.,

Y = α+ βZ +X ′γ + ε.

• If the above model holds, i.e., the causal e�ect is constant
over the covariates, then β is the ATE:

β = E(β)

= E [(α+ β · 1 + γX)− (α+ β · 0 + γX)]

= E [E(Y |Z = 1, X)− E(Y |Z = 0, X)]

= E [Y (1)− Y (0)]
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Outcome regression

• Direct interpretation of the treatment parameter, β, in
an outcome regression model as an estimate of an average
causal e�ect has been discussed (Rubin, 1997, Lunceford
and Davidian, 2004, Senn, Graf and Caputo, 2007):

- only valid for a linear model and constant additive
treatment e�ect,

- relies on correct speci�cation of the full model,
- gives no warning if the overlap assumption is not satis�ed.

26



Outcome regression

• What about non-constant causal e�ects?

• Consider
Y = α+ βZ + γX + δZX1 + ε

where ZX1 is an interaction term between the treatment
and one of the covariates.

• In this case, β is no longer the average causal e�ect. Instead

E [Y (1)− Y (0)] = E [E(Y |Z = 1, X)− E(Y |Z = 0, X)]

= E [(α+ β · 1 +X ′γ + δ · 1 ·X1)− (α+ β · 0 +X ′γ)]

= β + δE[X1].
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Outcome regression estimators

• More generally, we could have any model

µ(z, x) = E [Y | Z = z,X = x]

for the conditional outcome given Z = z and X = x.

• We can use the �tted values from the outcome models
provide estimates of the conditional means:

µ̂(1, x) = Ê [Y | Z = 1, X = x]

and
µ̂(0, x) = Ê [Y | Z = 0, X = x] .

• ...but if our target is the marginal causal e�ect (ATE)?
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Regression modeling: ATE

• Suppose we have a random sample i = 1, . . . , n, with n1

treated and n0 controls.

• We can use our model to estimating two potential
outcomes, and take their di�erence:

ˆATE =
1

n

n∑
i=1

[µ̂(1, xi)− µ̂(0, xi)] .
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Drawbacks and advantages of regression modeling

• Model speci�cation: Using regression models for estimation
of causal e�ects relies on that the speci�ed model is correct.

• It can be di�cult to quantify whether `balance' is achieved
between treatment groups (more on this later).

• Extrapolation: Models are estimated over regions with
little/no data. No warning if there is no overlap between
treated and controls.
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Drawbacks and advantages of regression modeling

• Often are well-established theoretical models for the
outcome functions, µ̂(z, xi), in terms of which variables,
X = x, to include and the functional form.

• If not, there are �exible methods available that can be used
to estimate the functional form, µ̂(z, xi).

• A regression estimator can easily be implemented in
standard software, and the marginalization is also easy:

ˆATE =
1

n

n∑
i=1

[µ̂(1, xi)− µ̂(0, xi)]

• It is also straightforward to target conditional estimands by
averaging over the corresponding subpopulations by
estimating and contrasting the counterfactuals in a
subgroup de�ned by some covariate (e.g., 18-25 year olds,
or with a given family history).
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Controlling for confounding with the propensity score

• Let's go back:

p(Z,X, Y ) = p(X) · p(Z|X)︸ ︷︷ ︸
propensity score

·
outcome model︷ ︸︸ ︷
p(Y |Z,X) .

• A commonly used function both in applied and
methodological research is the propensity score, often
de�ned as the probability of treatment given the covariates
e(X) = P (Z = 1|X)...

• But in fact, the real de�nition is that it is the coarsest
possible balancing score. In other words, we need only
include confounders, and not all possible predictors of
treatment.
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The propensity score and covariate balance

• Two important results (Rosenbaum and Rubin, 1983):

1. The propensity score is a balancing score e(X) that
summarizes the information on the confounding variables,
X:

X ⊥⊥ Z | e(X).

2. Conditioning on the propensity score achieves covariate
balance

p [x | Z = 1, e(X) = e(x)] = p [x | Z = 0, e(X) = e(x)] .
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The propensity score and covariate balance

• The propensity score, e(X), can be used for estimation of a
causal e�ect.

• If NUC holds, then the propensity score is su�cient to
control for confounding

Y (z) ⊥⊥ Z | e(X), z = 0, 1.

• Therefore,

ATE = EX [E[Y |Z = 1, e(X)]− E[Y |Z = 0, e(X)]].
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Regression with e(X) as a covariate

• A common approach is to �t a linear model where the
estimated propensity score ê(X) is included as a covariate:

E[Y |Z,X] = α+ βZ + γê(X), (1)

where covariates can (but need not) also be included
directly.

• If the propensity score model is correctly speci�ed, then the
OLS estimate is consistent for the conditional causal e�ect

E [Y (1)− Y (0)|e(X) = e(X)] ,

and, in the case of no ZX interactions, for the population
average causal e�ect (ATE) E [Y (1)− Y (0)] as well.

• NB This is only true for the linear model. For a GLM with
non-identity link, including ê(X) as a covariate only yields
approximate balance.
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Strati�cation

• A strati�cation estimator is a weighted sum of the
di�erences of sample means across strata.

• De�ning nj as the number of individuals and Ȳj,Z=z as the
mean outcome in stratum j = 1, . . . , J

ˆATEstrata =

J∑
j=1

nj

n

[
Ȳj,Z=1 − Ȳj,Z=0

]
.

• Strata can be created based on discrete (or discretized)
variables or based on discretizations of the propensity score.
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Strati�cation and matching

• When stratifying on the propensity score (or the covariates
X directly), we compare the levels of treatment within the
same interval of the propensity score, which corresponds to
`similar' covariates.

• A strati�cation estimator will have a bias that comes from
the remaining imbalances between treated and controls.

• A matching estimator is a �ner version of a strati�cation
estimator, where each individual is matched to one or more
individuals with the most similar covariates from the
opposite treatment group.
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Matching

• The idea behind matching:
▶ When matching, the goal is to make Z and X independent

in the matched sample.
▶ Pair the n1 treated to n1 selected controls (or alternate

treatment) with the closest value of the propensity scores
(covariates) as the treated. Also, pair the n0 controls to n0

treated with the closest value of the propensity scores
(covariates) as the controls.

▶ When estimating the ATE the matched sample consists of
2n individuals, n treated and n controls.

▶ We can now use this sample to estimate the average
treatment e�ect.

38



A simple matching estimator

• In a simple matching estimator, we use the di�erence in
mean outcomes for the matched individuals.

• For individual i, we impute the outcome of a matched
individual(s) i′ based on a matching criterion.

• The matching criterion aims at pairing individuals with
similar covariates, so that we estimate individual-level
causal contrasts using:

Yi −
1

M

∑
i′

Y ′
i

where note that M = 1 with 1:1 matching.
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Steps in matching

1. Choose a matching criterion, Ci,i′ .

2. Evaluate positivity; truncate the study population if needed
(and report the truncation).

3. Implement a matching method given the criterion.

4. Evaluate the quality of the matched sample (balance
checks, empirical distribution plots).

5. If balance is not satisfactory, go back to step 1.

Since conditioning on the true propensity score implies that the
treatment groups are balanced, the above procedure can be used
for evaluation of the propensity score model.
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1. Apply a matching criterion

• A matching criterion is a rule that assigns values of a
covariate distance for each individual in the opposite
treatment group.

• For example the absolute di�erence in estimated propensity
scores:

Ci,i′ = |e(Xi)− e(Xi′)| .

• Other criteria that have been considered include other
scalars summarizing the covariate vector for the individual,
i.e., the Mahalanobis' distance, vector norm, the prognostic
score (Hansen, 2008).
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2. Checking positivity

Treated

Propensity score

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

20
0

Controls

Propensity score

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8

0
10

0
30

0

42



3. Matching methods

• There are several di�erent algorithms for matching.
▶ how many matches, M?
▶ with/without replacement, i.e., should each Yi′ be used

more than once?
▶ if each Y ′

i is used as a match only once, how should they be
assigned: optimal matching (global best) or greedy
matching (sequentially best)?

• Each of these decisions impacts the estimator's bias and
variance.

• A general advice is to use the method that gives the best
balance.
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4. Assessing balance

• After matching our aim is that the resulting matched
sample is balanced, i.e.,

p̃(x|Z = 1) = p̃(x|Z = 0)

where p̃(x) refers to the empirical joint covariate
distribution.

• In practice the marginal distributions of the individual
covariates are evaluated although the full joint distribution
should be balanced.
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4. Assessing balance

Comparing:

• standardized mean di�erences (SMD), aim to have
di�erences below 0.1:

x̄treated − x̄controls√
(S2

treated + S2
controls)/2

• variance ratios

• higher order moments and interactions

• quantile-quantile plots, non-parametric density plots,
empirical cumulative distribution plots, side-by-side
boxplots.

Report descriptive tables and plots (Austin, 2009). P-values are
not recommended for decision making.
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4. Assessing balance
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Inverse weighting

• Up to this point we have considered using the propensity
score for strati�cation, matching, or adjustment.

• In each case, the goal is to produce directly comparable
groups of treated and untreated individuals.

• The idea behind inverse weighting is to constructs a
`pseudo-sample' in which there are no imbalances on
measured covariates between the exposure groups.
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Inverse weighting

• The basic formula for the average potential outcome if the
whole population was treated is

Ê[Y (1)] =
1

n

n∑
i=1

ziyi
P (zi = 1|Xi)

. (IPW0)

• If there are lots of people with a given characteristic who
are treated, but few with this characteristic who are not
treated, then P (zi = 1|Xi) will be `large' and its inverse is
`small' so this individual will be downweighted in the
sample.

• Similarly, using a weight of 1/P (zi = 0|Xi), we can
reweight those in the alternative treatment group so that
the distribution of covariates matches that of the whole
population.

48



IPW: where does this come from?

• Since we can only ever observe one of the two
counterfactuals, Y (0) or Y (1), we recast the estimation of
the ATE as a missing data problem, and up- or
down-weight individuals to create a sample in which Z is
independent of X.

• That is, we create a pseudo-population of subjects in which
there exists no confounding.

• Because there is no confounding, there is no need to
condition on or further adjust for X!
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IPW: Motivation

• This approach is well-known in the survey sampling
literature (Horvitz-Thompson), where it is used to adjust
for unequal sampling fractions (typically oversampling of
certain subgroups in a population).

• In a missing data setting, there is an indicator R of whether
an observation is observed (R = 1) or not (R = 0).

• In attempting to compute, say, an average, we are faced
with the challenge that

E[Y ] ̸= E[Y |R = 1]

unless missingness is completely at random.
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IPW: Motivation

• However, if missingess is at random (i.e., can be predicted
from observed covariates), then we can adjust the estimator
by noting that:

E[Y ] = E{E[Y |X]}

= E

{
E[Y |X]× E[R|X]

E[R|X]

}
= E

{
E[RY |X]

E[R|X]

}
,

suggesting the estimator

Ê[Y ] =
1

n

n∑
i=1

riyi
P (Ri = 1|Xi)

.
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Implementation

The IPW estimation procedure is straightforward:

1. Fit treatment models: �t a (e.g., logistic regression) model for
the probability of being exposed.

2. Determine the weights:

(a) Use the models in (1) to predict the probability that a
person received the exposure he did in fact receive.

(b) Set each individual's weight to one over the probability
computed in (2a). (Optional: truncate extreme weights.)
Normalize so weights sum to 1.

(c) Check for balance in the weighted sample.

3. Fit a response model: weighting each individual by the weights
computed in (2b), use standard software to �t a regression model
for the response given exposure.

4. Compute standard errors analytically or via bootstrap.
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Implementation: Further details

• IPW assumes: NUC, positivity, correctly speci�ed
propensity score

• Most regression software performs noromalization
automatically.

• Truncation is an ad-hoc approach to reducing the in�uence
of highly �unusual� people.
▶ Introduces a little bias, but can substantially reduce

variance.
▶ Truncation at the 99th or 99.5th quantile is fairly common.
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Key considerations for propensity scores

• Model for the propensity score should be correctly
speci�ed: should correctly capture the relationship between
the exposure and the confounders. We focus on
▶ identifying the confounders,
▶ ignoring the `instruments': instruments do not predict the

outcome, therefore cannot be a source of bias; can increase
the variability of the resulting propensity score estimators,

▶ the need for the speci�ed propensity model to induce
balance;

▶ ensuring positivity,
▶ e�ective model selection.
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Key considerations for propensity scores

• Note 1: Conventional model selection techniques (stepwise
selection, selection via information criteria, sparse selection,
ensemble methods) should not be used when constructing
the propensity score.
▶ These techniques prioritize the accurate prediction of

exposure conditional on the other predictors; however, this
is not the goal of the analysis: the goal is balance.

• Note 2: A conservative approach is to build rich (highly
parameterized) models for the propensity score →
prioritizes bias elimination at the cost of variance in�ation
for the resulting estimators.
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Key considerations for propensity scores

• Note 3: Statistical approaches to model selection (or
`causal discovery') are no substitute for expert, subject-area
knowledge relating to the likely data generating
mechanisms.

• Note 4: Balance should not be assumed, but rather it
must be veri�ed in the data.
▶ Calculate SMDs.
▶ Compare empirical CDFs or QQ plots for continuous

covariates.

56



So what is `causal inference'?

• As we have seen, even in simple settings (continuous
outcome, a single binary treatment), many methods can
provide causal estimators.

• Causal inference is not one technique, but rather a
framework for how to carefully approach an analysis to
reduce imbalance (and therefore bias) in the estimation and
inference for a given treatment.
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Bradford Hill revisited: `The Statistician in Medicine'
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`The Statistician in Medicine': On medicine

[The statistician] must learn a great deal of medicine and [...]
not only have facility in speaking two languages, he must be
able to think in two.

• Bilingualism!

• Context is critical in implementing any analysis.

• Subject-matter knowledge must be used to inform
modelling, but equally critical to note what is known
vs. what is assumed.

• DAG
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`The Statistician in Medicine': On medicine

Recall: Confounding occurs when the exposure and response
have a common cause:

Common 

cause

Exposure Outcome?
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`The Statistician in Medicine': On medicine
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`The Statistician in Medicine': On medicine
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`The Statistician in Medicine': On medicine

No medical statistician - and no doctor - can be familiar with
the details and intricacies of every disease. But he can be
familiar - or make himself familiar as the occasion arises - with
the speci�c diseases involved in trials, just as the medical man
can, and should, make himself familiar with the outlines of
statistical methodology and the statistician's line of thought. It
is a symbiosis that we must seek; if the blind lead the blind shall
not they both fall into the ditch?
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`The Statistician in Medicine': On heterogeneity

[T]he medical statistician recognizes, and is familiar with the
pros and cons of, that di�cult question - should a �xed dose be
given to all patients in a trial or should it be allowed to vary
with the apparent needs of each patient [...]?

• Causal inference literature of the last two decades has
moved away from conditional e�ects estimated via
regression models.

• Focus predominantly on average treatment e�ects and
variations.

• Give rise to answers for di�erent interrogators.
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Summary

• Rubin's counterfactual framework helps to formalize
causality and confounding.
▶ Counterfactuals are �what if� quantities that can help to

formalize the de�nition of a causal quantity that can be
estimated using data with statistical methods.

▶ Causal estimation can be accomplished by design in a
randomized trial setting.

▶ Causal estimation using non-experimental data requires
modelling to account for confounding.
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Summary

• Today, we have brie�y covered estimation approaches for a
single treatment (not longitudinal) via:
▶ outcome regression - direct interpretation of coe�cients,

regression imputation, regression with the propensity score
as a covariate;

▶ strati�cation and matching - conditioning on confounders;
▶ propensity score methods to achieve covariate balance;

as well as balance checks as part of the propensity score
model building.
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Summary

• Returning to Bradford Hill's causal considerations, he can
be seen as a scientist ahead of his time.

1. Strength

→ confounding

2. Consistency

→ confounding

3. Speci�city

→ bilingualism and precision

4. Temporality

→ DAGs (?)

5. Biological gradient

→ robustness?

6. Plausibility

→ bilingualism!

7. Coherence

→ bilingualism!

8. Experiment

→ confounding

9. Analogy

→ bilingualism!
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Summary

• Though less explicit in his statistical formulations than
Rubin, Bradford Hill had important insights that are worth
revisiting.

• The statistical framework for causal inference tries to
formalize assumptions and make them as clear and explicit
as possible; we mustn't forget that they are present and the
foundation for our conclusions.

• The stakes in medicine are too high to be sloppy.
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