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Probability surveys
• After Neyman (1934), probability surveys gradually 

became the standard in National Statistical Offices    

• Example: First probability survey in Canada in 1945 (Labour 
Force Survey)

• Why?

• Objective method for drawing samples

• Nonparametric approach to inference (Design-based): validity 
does not depend on model assumptions

• Some striking examples of nonprobability samples that led to 
dramatically wrong conclusions (ex.: 1936 U.S. pre-electoral poll)
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Wind of change
• Other types of data sources are increasingly considered

• Three main reasons:

• Decline of survey response rates       bias

• High cost of conducting probability surveys

• Proliferation of nonprobability sources (ex.: Web panel 
surveys, administrative data, social media data, …)

• Less costly, larger sample size, speed up the 
production of estimates

3



Delivering insight through data, for a better Canada

Are nonprobability surveys a panacea?

• “Representativity” Bias

• Selection/Coverage bias

• Large sample size is not a guarantee of high-quality 
estimates (Meng, 2018): does not address bias

• Measurement errors

• Ex.: Online nonprobability surveys (Kennedy, Mercer and 
Lau, 2024)
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• Computed estimates of the proportion of people having 
a university degree in Canada from three data sources 
(June 2020):

• Crowdsourcing sample (nonprobability sample with 31,415 
participants)

• LFS (probability sample with 87,779 respondents and 
response rate around 70%)

• CPSS (probability sample with 4,209 respondents and 
response rate around 15%) 5

Illustration of representativity bias 
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Why and how to use non-probability sample data?

• Why? To reduce costs, time and burden on survey 
respondents (by reducing survey data collection efforts) 

• A relevant question:

• How can data of a non-probability sample be used to 
produce accurate estimates ?

• A possible answer:

• Through data integration methods: integration of 
nonprobability sample data with existing data from a 
probability sample (that does not contain the variables of 
interest)
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Available data
• Population parameter:

• Variable of interest: 

• Nonprobability sample:

• Subset of       

•        is observed (assuming without error)

• A vector of auxiliary variables is also observed:      

• Indicator of inclusion in         :
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Available data
• Probability sample:

• Subset of      randomly drawn           c                         

• Survey weight:

• Assumption: survey weighted estimates are 
approximately unbiased (nonsampling biases are small) 

• Does not contain        but        is observed
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Model-based methods

• Naïve estimator:

• Can be very biased (Bethlehem, 2016)

• Objective of data integration methods:

• Bias reduction through a vector of auxiliary variables       
observed in both samples

• Review three methods: Prediction/Calibration, Statistical 
Matching and Inverse Probability Weighting

• Require the validity of model assumptions
10
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A key assumption for all the methods
• Noninformative selection/participation:

•                                                or 

• Key to removing bias

• Bias reduction is achieved by considering auxiliary 
variables that are associated with both       and

• The richer the auxiliary information, the more realistic the 
assumption

11

( | , ) ( | )k k k k kF y F y =x x Pr( 1| , ) Pr( 1| )k k k k ky = = =x x

kyk



Delivering insight through data, for a better Canada

A key assumption for all the methods
• What can be done at the design stage (before data are 

collected in the NP sample) to tend to non-
informativeness?

• What auxiliary information would be useful to have in the 
NP sample that is already available in an existing
probability sample?

• Add (a few) questions to the NP sample

• Add variables to the NP sample through record linkage?
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Prediction / Calibration
• Idea (Royall, 1970; Elliott and Valliant, 2017):

• Model the relationship between        and        by using a 
nonprobability sample

• Predict       for units                           (provided       is available 
for the entire population)

• Predictor:
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Prediction / Calibration 
• If a linear model is used, the resulting predictor is 

equivalent to a calibration predictor of     :

• These calibration weights minimize a (weighted) sum of 
squares subject to

• If      is unknown, it can be replaced with an unbiased 
estimator (probability survey):      14
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Prediction / Calibration 

• The calibration predictor is unbiased provided that

• Noninformative selection/participation assumption holds

• Linear model is correctly specified

• If the linear model does not hold, model calibration can 
be considered (Wu and Sitter, 2001)
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Statistical matching  / Mass imputation
• Idea:

• Model the relationship between       and       using the 
nonprobability sample

• Predict (impute)       in a probability sample that contains 
the auxiliary variables  

• Predictor of the total    :
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Statistical matching / Mass imputation

• For a linear model, statistical matching is equivalent in 
most cases to calibration of the NP sample using 
estimated totals

• Donor imputation is often considered

• Sample matching (Rivers, 2007)

• Nonparametric method

• Other nonparametric methods: Yang, Kim and Hwang 
(2021), Chen, Xu and Cutler (2025)
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Inverse probability weighting

• Idea:

• Model the relationship between        and

• Estimate the participation probability                                    

• Estimator:                                        , where

•           can be further calibrated to improve precision and 
obtain a double robustness property:

18

kxk

( )Pr 1k k kp = = x

ˆ
NP

IPW IPW

k kk s
w y


= ˆ1IPW

k kw p=

IPW

kw

,

NP P

IPW CAL

k k k kk s k s
w w

 
= x x



Delivering insight through data, for a better Canada

Inverse probability weighting 

• Main advantage of IPW:  

• Simplifies the modelling effort when there are many variables 
of interest (only one participation indicator to model) 

• Main assumptions:

• Noninformative selection/participation

•  

• Parametric model (ex.: logistic): 

• Estimated probability:
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Inverse probability weighting  
• How to estimate     ?

• Maximum likelihood

• Requires knowing        for the entire population

• Pseudo maximum likelihood (Chen, Li and Wu, 2020)

• Requires knowing        in a probability sample

• Inefficient when the probability sample is small

• More efficient alternatives:

• Beaumont et al. (2024); Kim and Kwon (2024)

• Better use of available auxiliary information
20
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Inverse probability weighting  

• Robustness to model misspecifications may be achieved 
by 

• creating homogeneous groups

• using machine learning methods

• Machine learning methods:

• Easier to justify if the overlap between both samples is 
negligible (Beaumont et al., 2024; Elliott and Valliant, 2017)

• Stack both samples and ignore overlap
21



Delivering insight through data, for a better Canada

Conclusions from empirical experiments  

• Conducted several experiments with StatCan data

• General conclusion:

• Data integration methods reduce bias but do not 
eliminate it: sometimes a significant bias remains

22



Delivering insight through data, for a better Canada

Conclusion 
• Data integration methods require the validity of a 

model/assumptions
• Essential to plan sufficient time and resources for modelling: 

Baker et al. (2013)

• Should they be used?
• Main advantages: 

• Reduce burden and costs, Improve timeliness

• Main disadvantage: 

• Lower accuracy (unless assumptions are satisfied)

• It depends on the objectives and how important accuracy is 
compared with costs and timeliness
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Probability sampling

• Finite population, U = {1, 2, . . . , k, . . . ,N}
• Inferential target

Ty =
∑
k∈U

yk

for a study variable of interest, yk

• For A ⊂ U, define sample membership indicators

Ak =

1, with probability πA
k , if k ∈ A

0, with probability 1− πA
k , if k /∈ A

• A is a probability sample if πA
k > 0 for all k ∈ U
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Unbiased estimation under probability sampling

• Minimal conditions for unbiased estimation:

1. All elements in the universe have positive probabilities of

selection, πA
k > 0 for k ∈ U

2. Sampled elements have known probabilities of selection,

{πA
k }k∈A

• Under repeated sampling, an unbiased estimator of the

population total Ty =
∑

k∈U yk is∑
k∈A

yk
πA
k

=
∑
k∈U

yk
Ak

πA
k

,

because

E

[∑
k∈U

yk
Ak

πA
k

]
=

∑
k∈U

yk
E [Ak ]

πA
k

=
∑
k∈U

yk
πA
k

πA
k

= Ty
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Nonprobability sampling

• All samples that have either . . .
1. Zero probabilities of inclusion for some population elements, or

2. Unknown probabilities of inclusion for some sampled elements

. . . can be considered nonprobability samples

• Failing to account for nonprobability sampling yields biased

estimators

• For B ⊂ U, model the membership indicators as independent

random variables:

Bk =

1, with probability πB
k , if k ∈ B

0, with probability 1− πB
k , if k /∈ B

• πB
k is unknown and might be zero

• sometimes called quasi-randomization model

• {Ak} uses randomization and does not require a model
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Nonprobability examples

• Convenience samples: easier to access, more likely to

respond, etc.

• Judgment samples: field crews may use their judgment to

“improve” a sample or substitute for missing units

• Snowball/respondent-driven samples: participants recruit

additional participants from among their acquaintances

• Quota samples, administrative/commercial databases,

broken probability samples, opt-in online samples, . . .

• In each example, what does the nonprobability sample

represent?
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Concerns about representation of nonprobability samples

• Good probability samples are representative

• sampling error is precisely controlled and described

• other errors are carefully studied and mitigated

• sampling weights reflect the part of the population

represented by the sample

• safe, defensible inferences

• often time-consuming and expensive

• Nonprobability samples are usually not representative

• typically have minimal control of non-observation errors

(coverage errors, sampling/selection, and nonresponse)

• not clear what part of the population is represented by the

sample

• dangerous for inference due to selection bias

• often fast and cheap
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Combining probability and nonprobability samples

• Assume that we have both A and B and look for a trade-off:

• low bias/high cost/small sample size of prob sample A

• high bias/low cost/large sample size of nonprob sample B

• For both k ∈ A and k ∈ B, we have an auxiliary vector xk

• assumed sufficiently rich to explain participation in B

• Consider two versions of this problem:

• if yk is observed only for B, we are doing data integration

• if yk is observed for both A and B, we are doing data fusion

• Methods for both problems are related

• General idea: “borrow representation” from the probability

sample and apply it to the nonprobability sample
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Data integration via mass imputation

• For data integration, yk is missing on A:

Sample Probability? xk yk Weight

A Yes ✓ •
(
πA
k

)−1

B No ✓ ✓ •

• Mass imputation: impute all the missing {yk}k∈A

Sample Probability? xk yk Weight

A Yes ✓ y∗
k

(
πA
k

)−1

B No ✓ ✓ •

• . . . then apply A-weights to this specific {y∗
k }k∈A:

T̂y ,MI =
∑
k∈A

y∗k
πA
k
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Data integration via inverse probability weighting

• For data integration, B has no weights:

Sample Probability? xk yk Weight

A Yes ✓ •
(
πA
k

)−1

B No ✓ ✓ •

• Inverse probability weighting: estimate missing {πB
k }k∈B

Sample Probability? xk yk Weight

A Yes ✓ •
(
πA
k

)−1

B No ✓ ✓
(
π̂B

k
)−1

• . . . then apply B-weights to any {yk}k∈B :

T̂y ,IPW =
∑
k∈B

yk
π̂B
k
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Data fusion example: Large Pelagics Intercept Survey

• US National Marine Fisheries Service is interested in fishing

trips that target pelagic species (tuna, sharks, billfish, etc.)

• How many Wahoo were caught by recreational anglers along

the US Atlantic coast in 2025?
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Sampling the large pelagics fishery

• Sample from population of

site-days:

U = {access sites} ×
{days in season}

• Send field staff to selected

site-days, A

• Count the number of

pelagics trips, {zk}k∈A
• Collect catch by species for

pelagics trips, generically

denoted {yk}k∈A
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Judgment sampling in LPIS

• Large Pelagics Intercept Survey (LPIS) data are used to

estimate catch rate: average recreational catch per large

pelagic trip, by species: Ty/Tz

• Problem: Many site-days have no pelagics trips: zk = 0

• field crews want to choose their own site-days!

• Designed compromise: select an initial probability sample of
site-days S ⊂ U and randomly divide it into A and B

• A is maintained as a strict probability sample, with known

inclusion probabilities πA
k > 0

• field crew can leave B as-is or move anywhere in U \ A
• B is a nonprobability sample because it relies on field crew

judgment and has unknown inclusion probabilities πB
k
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LPIS is an ideal data fusion problem

• Data fusion: Obtain number of pelagics trips zk and catch

by species yk for both probability sample A and

nonprobability judgment sample B

• From a total survey error perspective, LPIS example is an

ideal data fusion problem!
• On the measurement side,

• same mode: in-person interviewing

• same data collection instrument and protocols

• same interviewers

• unified process within one agency for editing data

• On the representation side,
• same population, frame, and coverage issues

• different selection of A versus B

• same nonresponse of anglers within site-days

• unified process within one agency for estimation
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Dual-frame approach for LPIS data fusion

• Site-days can enter the combined sample, A ∪ B, via two

paths:

P [k ∈ A ∪ B] = P [k ∈ A] + P [k ∈ B]− P [k ∈ A ∩ B]

= πA
k + (1− πA

k )ρk

• If we knew the combined probability above for all k ∈ A ∪ B,

we could construct the unbiased dual-frame estimator

T̃y =
∑
k∈U

Ak + (1− Ak)Bk

πA
k + (1− πA

k )ρk
yk
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Dual-frame IPW estimator for LPIS

• Model ρk as logistic function of auxiliary vector xk and fit

using combined A ∪ B data to obtain ρ̂k

• Dual-frame IPW estimator from combined sample is

T̂y =
∑

k∈A∪B

yk
πA
k + (1− πA

k )ρ̂k

• Advantage: even if ρ̂k are small or zero, dual-frame weights

are stable:

1 ≤ 1

πA
k + (1− πA

k )ρ̂k
≤ 1

πA
k

• Challenge 1: need estimated ρk (and hence estimated πB
k ) for

k ∈ A ∪ B, not just k ∈ B

• Challenge 2: need to know πA
k for k ∈ B, not just k ∈ A
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Monte Carlo evaluation of dual-frame IPW approach

• Developed methodology in joint work with Chien-Min Huang

and tested via extensive Monte Carlo

• Used historical LPIS data to create population with 30 strata

and 57,388 site-days, each with known “pressure” (expected

fishing activity)

• Given pressure, simulate trips zk using zero-inflated Poisson

• Simulate catch yk | zk for 11 different “fish species” with

various relationships to trips

• Given the simulated population, draw 1000 samples

following traditional LPIS design (stratified probability

proportional to pressure)
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Monte Carlo evaluation, continued

• Given simulated sample S , split into 75% pure probability (A)

and 25% judgment (B)

• No Move: keep B sample as originally selected

• Unskilled: move the sample completely at random
• Skilled: seven judgment variants

• Finding some trips instead of zero trips: field crew reduces

zero-trip site-days, without affecting non-zero-trip site days

• Finding more trips when there are some trips: field crew

increases trips on non-zero-trip site-days, without affecting

zero-trip site-days

• Field crew improves at both finding some trips and more trips

when there are some trips

• Across (11 catch characteristics)×(9 judgment types), data

fusion with dual-frame IPW has lower mean squared error

than 100% probability sample
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Pilot study evaluation of dual-frame IPW approach

• National Marine Fisheries Service field-tested the judgment
sampling and data fusion approach

• 10 northern Atlantic US states

• fishing seasons 2020–2023

• across all states and seasons, |A| = 2410 and |B| = 957

• Judgment sample leads to more pelagic boat trips

Productivity Measure in A in B Increase

at least one eligible trip 29.7% 50.1% up 69%

private boats per hour 0.17 0.22 up 29%

charter boats per hour 0.11 0.19 up 73%

• Data fusion with dual-frame IPW improves productivity while

yielding defensible inferences
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Recommendations for nonprobability sampling

• Whenever possible, combine nonprobability sample B with a
probability sample A

• fall-back position if B is a disaster!

• allows assessment of selection bias in B

• allows adjustment to mitigate selection bias in B

• Compare A and B via total survey error framework
• carefully assess trade-offs in timing/cost/bias/variance

• wherever possible, minimize measurement and representation

differences at the design stage

• Whenever possible, opt for data fusion over data integration
• always safer inferences if we have yk from both probability and

nonprobability

• at a minimum, collect a rich auxiliary vector xk as similarly as

possible across A and B

• Proceed with caution! Inherently more dangerous inferences
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