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Outline 

•  Stochastic Models: First joint models for duration N, magnitude X and maximum Y of 
events: (N, X, Y) in the exponential and heavy tail cases. 

•  Decision: light or heavy tailed model?  A likelihood ratio test for exponential versus 
Pareto distribution.  

•  Examples 

•  Summary 

•  Motivation: Extreme hydroclimatic and weather events, e.g.  
drought, flood, heat waves; financial modeling, energy use. 

“From the tropics to the arctic, climate and weather have powerful direct and indirect 
impacts on human life. Extremes of heat and cold can cause potentially fatal 
illnesses, .... Other weather extremes,  such as heavy rains, floods, and hurricanes, also 
have severe impacts on health. Approximately 600 000 deaths occurred worldwide as a 
result of weather-related natural disasters in the 1990s.”  
The WHO, 12 November, 2008 
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Start with a process:  
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GOAL: Model for the random vector 

•  Climate and hydrology – drought, 
•  Climate and weather  – heat waves, 
•  Financial growth/decline episodes, 
•  Peak over Threshold theory 

 

MOTIVATION/EXAMPLES 
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Motivation: Climate and hydrology - drought 

Original precipitation data in standard 
deviation units plotted as difference from a 
threshold (source: western juniper tree 
rings). 

Precipitation “events” or  episodes” 
Episodes: wet and dry 
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An episode is a period with the process staying consecutively above/below threshold: 
e.g. “dry”, “wet” year, drought, flood, etc.  

 
Threshold for “dry” or “wet” depends on the definition of the episode (e.g. drought).   

Threshold 

"DUST BOWL" - Great drought of the 1930s in the USA, the 
setting of John Steinbeck's "Grapes of Wrath".  

(Kozubowski, Panorska (2005, 2007), Biondi et al. (2007), Saito et al. (2008)) 
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Motivation: Climate and weather  – heat waves 

What are the chances that a heat wave longer than 6 days and larger than 
current 98th percentile of heat waves’ magnitudes? 

Heat waves of 2019 and their public health toll are being studied now. 

•  In August 2003, France experienced an extreme heat wave, that resulted in an 
estimated 14,802 deaths*.  

•  Hot event: consecutive observations above the 33oC. 

*Dhainaut et al. 2004. 
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Hot events 

What are the chances 
that a large heat wave 
will happen again?  

What are the chances 
of a hot event with 
duration equal to  
this one, 11 days? 
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Motivation: Climate and hydrology –
floods 

Example: Flood events in Reno, NV. 

Main question: What is the size of hydrological or weather extremes, that is 
the size of high percentiles of hydroclimatic processes (e.g. precipitation, 
stream flow, temperature)?  

1907 

2005 

Reno, NV, USA  

Reno, NV, USA  

What are the chances of a flood of given magnitude?  
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Motivation: Financial growth/decline episodes 
 Daily exchange rates between Japanese Yen and British pound quoted in UK 

pounds, Jan. 2, 1980-May 21, 1996. 

Process Xi: Daily log returns, Xi=log(Rate_day_i/Rate_day_i-1), n=4274. 

Episodes: consecutive days when the exchange rates were growing/declining, i.e.:    
Growth Xi >0, Decline Xi <0. 

Nolan 2001, Kozubowski and Podgorski 2001, Kozubowski and Panorska 2004, 2007, 2011 

N = length of a growth period, X=ΣXi=cumulative log return over a growth period, 
Y=maximum log return over the growth period. 

Xi 

i 

Decline episodes 

Growth 
episodes 
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Random vector 
11

( , ,max ) ( , , )
N

i ii Ni
N X X N X Y

≤ ≤
=

=∑
GOAL:  Construct a mathematically natural model for the JOINT distribution 
of (duration, magnitude X and maximum Y) of events. 

Notable properties of the random vector (N, X, Y): 

•  All components are related/dependent, the joint behavior of X and Y is not trivial, 

•  The sum and maximum are of random number of random observations. 

Hierarchical approach: 
1.  Specify distribution of N 
2.  Given N=n, find conditional distr.                         of (X, Y|N=n) = 
   
 3.  Get the joint distribution of (N, X, Y) as 
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Basic Model: Xi’s iid exponential 

• Kozubowski, Panorska (2005, 2008), Biondi, Kozubowski, Panorska (2005, 2007 (a, b)), Saito, 
Biondi, Kozubowski, Panorska (2008), Qeadan, Kozubowski, Panorska (2008, 2011, 2012) 
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BEG: Bivariate distr. with 
exponential and geometric 
marginals 

BTLG: Bivariate distr. 
with truncated logistic 
and geometric marginals 

Trivariate model: N-Geo(p),   Xi’s iid exp(β), independent of N. All distributions 
below have explicit representations in terms of pdf and/or cdf.  
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Main component: 

Other bivariate marginals: 

BGGE: Bivariate Distribution with 
Gamma and Generalized 
Exponential Marginals  
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where                                       are iid exponential β, and T is independent of Ei  random  
 

variable with Gamma(1/ α, 1/ α ) distribution.  

T may be thought of as the “background” or “common” risk. Marginal distributions are 
univariate Pareto II with survival functions 

 
 
 
 
Applications of vector                                  : reliability, finance, insurance etc.  
(see for example  Asimit, Furman and Vernic (2010), Asimit, Vernic and Zitikis (2013), Cai 
and Tan (2007), Chiragiev and Landsman (2007), Langseth (2007), and the refs therein) 
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What if light tails are too restrictive? Data shows possibility of 
heavy tail? 

  with a multivariate Pareto type II, MP(α, β) (Lomax) 
distribution, Arnold 1983, with representation 
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Heavy Tail Model: (X1, …, Xn) Multivariate Pareto MP(α, β) vector 

Arendarczyk, Kozubowski, Panorska (2018), J of Multivariate Analysis 

Trivariate model: N-Geo(p), (X1, …, Xn) Multivariate Pareto(α, β) vector independent 
of N.  
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Main component: 

Distributions of all other marginals and conditionals (pdf, cdf, estimation) is known exactly. 

SMP: Sum and Maximum of 
Pareto variables  

•  1-d Marginal distributions: N- geo(p); X – Pareto II(α, βp);  
                                          Y – known but not explicit formula for pdf    
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PDF of Geometric Sum, Maximum, and 
Duration of Pareto variables  
  

•  Domain of the pdf x/n ≤ y ≤ x 
 
•  PDF formula fn

(k)   will depend on 
the sector k of the plane. 

  f (x, y | n) = Γ(n+1/α)
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•  We obtain exact trivariate pdf:  

• NOTE: As              , we obtain the pdf for the model with exponential distribution 0→α

)()|,(),,( nfnyxfyxnf N=



A Note on Estimation of Parameters 

•  Maximum likelihood estimators always exist for all parameters 

•  Get MLEs using standard numerical methods. 

•  Interesting statistical point: Computation of MLEs uses only 
data on X and N, not on Y. However, we will see very 
reasonable fit of the marginal distributions to Y. 

14 
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A Practical Question: Which model should we use: 
exponential or Pareto?  

 

QUESTION: Are the observations of (X, Y, N) coming from a distribution 
with light or heavy tail? 

 
 
NEED a decision tool/test differentiating between Pareto and exponential 

distributions.  
 
 
Motivation: Why bother with designing a test? Why tails matter? 
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Why tails matter? 
An example: flood 

Started with precipitation- it is not influenced 
by people and drives river flow, floods, and 
droughts. 

What is the size of hydrological or weather 
extremes, that is the size of high percentiles of 
hydroclimatic processes (e.g. precipitation, stream 
flow, temperature)?  

NEED:  Study the nature of daily precipitation 
distribution tails to find realistic estimates of 
high precipitation percentiles.   

Why important? 

 It influences  
       - the size of climatic and hydrological risk (insurance and safety); 
       - safe engineering design standards (USGS, US  Corps of Engineers); 
       - water management policies and procedures; 
       - insurance policies. 

Extremes change in the changing global climate. 

1907 

2005 

Reno, NV, USA  

Reno, NV, USA  



17 17 

 
                                              

Decide if the observations are from a distribution with a light or heavy tail.  

1/1( ) ,  0, 0, 0.
1 /

S x x s
x s

ω

ω
ω

⎛ ⎞= ≥ > ≥⎜ ⎟+⎝ ⎠

Used the following model for the observations from Pareto II, survival 
function: 

This model encompasses Pareto II : (ω > 0) and exponential : (ω=0)  

(with the understanding that ω=0 corresponds to the limiting exponential 
case ω → 0 ) . 

Likelihood Ratio Test for exponential versus Pareto* 

• *We just finished work on a new and more general test for tail index of a Generalized 
Pareto using Greenwood statistic – stay tuned. 
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Proposition. Under the null hypothesis, the asymptotic distribution of the deviance 
statistic -2logλn, where λn is the test statistic, is the same as that of IW, where I 
and W are two independent random variables having a Bernoulli distribution with 
parameter ½ and a chi-square distribution with one degree of freedom, 
respectively. 

 

IW   -2logDeviance n

d
== λ

Bern(0.5)         χ2(1)    

Mixed distribution 

Deciding about exp versus heavy tail: Likelihood Ratio 
Test of Exponentiality versus Pareto 

0 1H : 0 (exponentiality) vs. H : 0 (Pareto II)ω ω= >The Problem:  Test 

Kozubowski, et al. (2009). Testing exponentiality versus Pareto distribution via likelihood ratio. 
Communications in Statistics: Simulation and Computation. 38 (1), pp. 118-139. 

Asymptotic Distribution of the Test Statistic 



Example 1: Pareto case 
PRECIPITATION in Miami, Fl, USA 

 
DATA: Total daily precipitation, January 1, 1950 to Dec 31, 2013, (23741 obs). Used 
excesses over the 95th percentile. 
 
Fit of conditionals: X|N 
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Example 2: Pareto case 
Returns on IBM stock: Jan 2, 1962 to March 10, 2016 

 
DATA: 13,635 returns, used (absolute) excesses below 5th  
percentile. Test stat= 3.346, . 
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EXAMPLE: Pareto case -Tail Measures of Risk, Tail Conditional 
Expectation* 

•  Consider                                   - MP random risks/losses of a financial institution (e.g. 
lines of business, portfolio allocations, etc.) 

•  Let X= total risk, Y= max risk.  
•  Existing work: Tail Conditional Expectations   (TCE)                      
                                
                                K(s)=E(X|X>s), Kmax = E(Y|Y>s) 
      
         
•  New work: We compute mixed measures of risk: E(X|Y>t) and E(Y|X>s)- need joint 

distribution of (X, Y) to compute them (focus: influence of max on the porfolio) 

•  Both can be computed for our model, and result in closed (albeit long and messy) 
form formulas. 

Note: Hua and Joe (2011, ‘12, ‘14) considered E(X|Y>t) and E(Y|X>s) asymptotically, 
when s, t approach infinity (focus: influence of one asset on the portfolio) 

21 

 )X, ,X ,(X  n21 …

• References: Arendarczyk, Kozubowski, Panorska (2018), *Vernic (2011), Chiragiev and Landsman 
(2007), Forman and Zitikis (2008), Hua and Joe (2011, 2012, 2014)  and the refs therein. 
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Examples of answers to practical questions:  
• Probability of a drought longer or larger than the 'Dust Bowl' is 0.08; 

•  Probability of a drought longer and larger than 'Dust Bowl' is  0.06.  

•  Conditional probability  of a drought with at least 'Dust Bowl'’s magnitude given 

that duration is 11 years is 0.46  

Magnitude=X=7 

Maximum=Y= 1.04  

The data: Dendroclimatic (western 
juniper) reconstruction of 
precipitation from 300 BC to 
AD 2001 in the Walker River 
watershed (California/Nevada). 
California Climate Division 3. 

EXAMPLE: Exponential Case: Climate 
and Hydrology - THE “DUST BOWL” 
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EXAMPLE: Exponential case: Paris heat wave of the 2003 

In August 2003, France experienced an extreme heat wave, that 
resulted in an estimated 14,802 deaths*.  
 
Definition of a hot event: consecutive observations above the 33oC. 

N=11 days 

• Probability of a hot event with 
the same duration of 11 days is 
0.000075; 

• Conditional probability  of a 
heat wave with at least that 
magnitude given that duration is 
11 days is about 5.5e-4. 

• Probability of a heat wave 
longer than 6 days and larger 
than 100 (98th percentile of 
magnitudes) is 0.005.  

 

Magnitude=479 
Max=64 

*Dhainaut et al. 2004.,  Data from http://eca.knmi.nl/, station ID 104969  

Note: Maximum Y = 64deg C*10 (really 39.4oC) 

Zero level=330C 
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Examples: Exponential Case- Financial Data 

Nolan 2001, Kozubowski and Podgorski 2001, Kozubowski and Panorska 2004, 2008, 2011. 

For the exchange rates data (Japanese Yen and GBP in GBP,  
Jan 2, 1980 – May 21, 1996), we constructed data set of episodes. 
Growth Xi >0, decline Xi <0 
For analysis, considered episodes of growth: Xi >0.   
 
Our data were 1902 triples (X, Y, N) of growth episodes. We checked that: 
•  Positive log-returns come from exponential distribution; 
•  Magnitudes of growth periods also come from exponential distribution; 
•  The fit of all bivariate marginals and conditional distributions is quite reasonable; 

OVERALL CONCLUSION: REASONABLE FIT of all the trivariate and marginal 
(bivariate) models (for the growth episodes) 
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In the matter of tails…..an Illustration  
 

Precipitation: Diversity drives Volatility – North American Data 
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o Pareto

The heaviest tails: regions with large 
variety of the synoptic systems 
producing precipitation.  

 
Exponential tails: only in regions with 

similar synoptic systems causing 
precipitation.  

 
Diversity in causes/types of precipitation 
 
  
Enhance volatility in precipitation    
 
 
        Heavy tailed excesses.  
 
 

Data: Daily total precip. from 560 meteo. Stations: Canada, U.S., and Mexico; Jan. 1, 1950 to Dec. 
31, 2001. Tested the distribution of excesses over local 75th percentile threshold.   

Spatial distribution of the decision 
(exp. or Pareto) regarding the tails of 
the excesses. 81% classified as Pareto 
on 5% significance level. 

Q: Are extreme precipitation events of exponential or Pareto type? 
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Cavanaugh, N. R., A. Gershunov, A. K., Panorska, and T. J. Kozubowski (2015),The probability 
distribution of intense daily precipitation, Geophys. Res. Lett.,42, 1560–1567, doi:
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● exp 
● Pareto  
●   “Pareto leaning” 

Precipitation: Diversity Drives Volatility - Global Data 
 

Data: Daily total precip., 22,000 best quality stations from Global Historical Climatology Network 
Daily; Jan. 1, 1950 to Dec. 31, 2013. Tested the distribution of excesses over local 90th percentile 
threshold.   

About 65% Pareto, about 91% Pareto leaning or Pareto 



Current and Future research 

•  Ilaria Vinci and Francesco Zuniga (PhD students): spatial and 
regression models for heat waves; 

•  Questions of goodness of fit for stochastic models 

•  Heavy tails in applications, tests and confidence intervals; 

•  Truncated distributions. 
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Thank You 


