The Size Effect Revisited

Andrey Sarantsev

October 19, 2019

Joint work with Brandon Flores and Taran Grove.
University of Nevada in Reno

Total Return

We measure time in quarters. In quarter t, stock has end-of-quarter price S(t) and pays dividends D(t)

Total return is from price increase and dividends:

$$Q(t) := \ln \frac{S(t) + D(t)}{S(t-1)}.$$

Same for a mutual fund or an exchange-traded fund (ETF):

m VTSMX: Vanguard Total Stock Market Index Fund

SPY: SPDR S&P 500 ETF

IYY: iShares Dow Jones ETF

Equity Premium

A 3-month Treasury bill has rate r(t-1) at end of quarter t-1

Invest 1 at end of quarter t-1, get 1+r(t-1)/4 at end of quarter t

This provides total return

$$R(t) = \ln\left(1 + \frac{r(t-1)}{4}\right)$$

Equity premium: the different between stock and bond returns

$$P(t) = Q(t) - R(t)$$

Alpha and Beta

Benchmark: Standard & Poor 500 index, equity premium P_0

Any stock or portfolio with equity premium P: Regress

$$P(t) = \alpha + \beta P_0(t) + \varepsilon(t)$$

with residuals $\varepsilon(t)$ having mean 0 and variance σ^2

 α : excess return

 β : market exposure

Standard & Poor Funds

BlackRock iShares S&P ETFs:

IJH (S&P 400 Mid-Cap), IJR (S&P 600 Small-Cap)

Benchmark: IVV (S&P 500 Large-Cap)

Mid-cap: $\alpha = 0.0053$, $\beta = 1.069$, $\sigma = 0.0304$, $R^2 = 0.894$

Small-cap: $\alpha = 0.0071$, $\beta = 1.087$, $\sigma = 0.0395$, $R^2 = 0.837$

We can reject $\beta = 1$, but not $\alpha = 0$

Regression explains almost all signal

Shapiro-Wilk normality test for residuals is passed

Implications for Asset Allocation

Recall again:

$$Q(t) - R(t) = \alpha + \beta(Q_0(t) - R(t)) + \varepsilon(t)$$

If lpha= 0, eta= 1.05 for small-cap $\mathit{Q}(t)$ and large-cap $\mathit{Q}_{0}(t)$, then:

$$Q(t) = 1.05Q_0(t) - 0.05R(t) + \varepsilon(t)$$

Buy small stocks = short T-bills + buy large stocks

Morningstar Funds

BlackRock iShares Morningstar ETFs:

 $m JKG\ Mid\mbox{-}Cap,\ JKJ\ Small\mbox{-}Cap$

Benchmark: JKD Large-Cap

Mid-cap: $\alpha = 0$, $\beta = 1.107$, $\sigma = 0.0339$, $R^2 = 0.858$

Small-cap: $\alpha = 0$, $\beta = 1.207$, $\sigma = 0.0431$, $R^2 = 0.816$

We can reject $\beta = 1$

Shapiro-Wilk normality test for residuals is passed

Morningstar Box

Type/Size	Blend	Growth	Value
Large	JKD	JKE	JKF
Mid	JKG	JKH	JKI
Small	JKJ	JKK	JKL

Value = Stocks with low prices relative to fundamentals (earnings, dividends, book price); Growth = Stocks with price growth potential, high prices relative to fundamentals

Regress equity premium for Mid row or Small row upon Large row

T=171 quarters, Shapiro-Wilk test passed

Morningstar Box: Results

CI = 95% confidence interval

Mid-cap vs Large-cap:
$$\alpha = 0.00019$$
, CI [-0.005 , 0.005], $\beta = 1.117$, CI [1.054 , 1.180], $\sigma = 0.0323$, $R^2 = 88.4\%$

Small-cap vs Large-cap:
$$\alpha = -0.0027$$
, CI $[-0.009, 0.004]$, $\beta = 1.1636$, CI $[1.078, 1.249]$, $\sigma = 0.0438$, $R^2 = 81.1\%$

Summary: No excess return α , but additional market exposure β , and regression again explains almost all signal

We can do similar a box for iShares S&P funds

Vanguard Funds

Benchmark: VFINX Vanguard 500 Index Fund Target: NAESX Vanguard Small-Cap Index Fund

Risk-free: VMFXX Vanguard Federal Money Market Fund

Dynamic returns: Dividends are reinvested the day they were collected

T = 152 quarters, Q3 1981 – Q2 2019

p = 0.578 for Shapiro-Wilk test, residuals are normal

$$R^2 = 81\%$$
, $\alpha = -0.0083$, $\beta = 1.2719$

We can reject both $\alpha=0$ and $\beta=1$

Foreign Equity

Invesco mutual funds: $\label{eq:QIVAX} QIVAX \text{ total stock market} \\ OSMAX \text{ small-cap stocks} \\ \text{For risk-free asset, take } VMFXX \text{ Vanguard money market fund}$

Results: Residuals fail Shapiro-Wilk normality test

Reason: Different countries have different short-term interest rates

Random Portfolios: Construction

S&P 500 constituent stocks as of July 7, 2019

Q3 1989 – Q2 2019, T = 120 quarters

Beginning: 240 stocks, end: 500 stocks

Every quarter, generate a random portfolio, uniformly distributed weights on the simplex $\{\pi_i \geq 0, \sum \pi_i = 1\}$

Benchmark: Equally-weighted portfolio, corrects for survivor bias

Random Portfolios: Results

 $P_{\pi}(t)=$ equity premium for portfolio π $P_{0}(t)=$ equity premium for equally-weighted portfolio

$$V_{\pi}(t) = \ln C_{\pi}(t) - \ln \overline{C}(t)$$

$$P_{\pi}(t) = \alpha_0 + \alpha_1 V_{\pi}(t) + (\beta_0 + \beta_1 V_{\pi}(t)) P_0(t) + \varepsilon(t)$$

Residuals are not normal, $R^2 = 99\%$, $\sigma = 0.0082$

Point estimates:

$$\alpha_0 = 0.0002, \ \alpha_1 = -0.0001, \ \beta_0 = 0.9826, \ \beta_1 = -0.0152$$

We are most interested in β_1 : Decrease in weighted market cap of π by 10 adds $\ln(10) \cdot 0.0152 = 0.035$ to market exposure β

Future Research

Do longer time steps for simulated portfolios to see whether normality of residuals is restored

Try for various sectors: Utilities, REITs

Try delisted stocks, to get all 500 stocks or all existing stocks at every quarter: See whether the result changes

Thank You!