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Overview of Rho, Inc.

Privately-held CRO
Research Triangle Park, NC
Founded 35 years ago

More than 400 employees IBDO

— 90% on-site in the RTP office Z LifFeSciences
— >50% have been at Rho for >5 years Awards x

Federal and Commercial activities P%?:Se%sw
Strong support for Statistics and Data Management - WEeRrk

Troovas Bsiiess Jursi

CRO

Provides support for all clinical research services

LEADERSHIP
AWARDS
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http://www.rhoworld.com/

Full Service Capabillities

‘ Protocol Development

Observational ‘ Site Start Up
Registries
Mechanistic studies
Genetics studies
Translational research

‘ Study Implementation

‘ Close Out

‘ Manuscripts & Publications
‘ Data Sharing




Medical and Public Health Research at Rho

NIAID / NIH  ADCT — Autoimmune Diseases Clinical Trials Autoimmune and Stem Cell Transplantation
NIAID / NIH  ADRN — Atopic Dermatitis Research Network Atopic Dermatitis

NIAID / NIH  CTOT - Clinical Trials of Organ Transplantation Transplant

NIAID / NIH  ICAC — Inner City Asthma Consortium Asthma

Autoimmune, Allergy/Asthma, and

NIAID / NIH ITN — Immune Tolerance Network
Transplant

CROMS - Clinical Research Operations and

MIDEIR Y Wl Management Support

Dental, Craniofacial, Pain, Oncology

NINDS / NIH Regulatory Support Contract Neurological Disease & Stroke



MACHINE LEARNING INTRODUCTION



Machine learning (ML)

» Subset of Artificial Intelligence (Al)

“Field of study that gives computers
the ability to learn without being
explicitly programmed”

- Arthur Samuel, 1959




Ride Sharing — e.g. Uber, Lyft, Grab
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Help me Buy a (Cheaper) Ticket

‘New York, NY
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Handwriting Recognition

i e box pelow.
% |mportant:Al cdges must fit th
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Error Rate of 1%
(99% accuracy)
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Phone Photo Search

£ Collections Moments Q  Select Chair
Thursday J ? < Search 11 Possible Matches Select
Friday >




Recommendations

FIRA AT TveT VBT
(54 Onks Apartments
£
o Hon, N
" .
4
%

>

-

¢ Getting Started with D3 Data Visualization with Data Points: Visualization
» Mika Dewar D3.js Cookbook That ...
18

Mick Qi Zhu » Nathan Yau

Paperback 3 21
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An Algorithmic Sense of Humor?

Context:
dealership, salesman,
car, windows

Anomaly:
animal legs, mouth,
teeth, furry legs

14



An Algorithmic Sense of Humor?

What’s it going to take to get you in this car today?

------------------------------------
------------------------------

----------------------------

oooooooooooooooooooooooooooooo

She runs like a dream I once had.
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What is ML?

Highly efficient algorithms
designed to “learn”
how to complete a specific task,

using past performance
to predict and improve future performance



Why do we need ML in Clinical Research?

Traditional exploratory research

» Application of statistical methods to test causal
explanations using a priori theoretical constructs

Predictive research

» Application of statistical methods and/or data mining

techniques, without a priori theoretical constructs to
predict future outcomes

» Causality is neither a primary aim nor a requirement for
variable inclusion

17



Common Data Sets from Clinical Trials

» Small n x p data sets (e.g. gPCR with <20 features)
» Regression techniques (e.g. logistic regression)
» Backward-elimination

STEP 1. Determine significance level to stay in model (e.g. SL = 0.05)

L

STEP 2: Fit full model with all possible features

4

STEP 3: Consider the feature with the highest p-value.
p>SL or p<= SL

STEP 4: Remove feature ‘

4

STEP 5: Fit model without this feature

18



Why do we need ML?

Social graph
Biosensors
Imaging

19
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ML is Changing Medicine

dentification / Diagnosis
Personalized Treatment

Drug Discovery / Manufacturing
Clinical Trial Research
Radiology and Radiotherapy
Smart Electronic Health Records
Epidemic Outbreak Prediction

20



ML is Changing Medicine

=
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How Artificial Intelligence
Can Help Burn Victims

Machine learning allows computers to see patterns in medical images
that are invisible to human doctors.

Ads are being blocked

For us to continue writing great
stories, we need to display ads.

Un-block

000000 (O —

ADRIENNE LAFRANCE 9:52 AM ET TECHNOLOGY

https://www.theatlantic.com/technology/archive/2016/08/how-machine-learning-

could-help-burn-victims-recover-faster/495926/

Zebra Medical debuts two machine learning algorithms to
predict heart disease risk

by Amirah Al Idrus | Aug 15, 2016 5:00am

https://www.fiercebiotech.com/medical-devices/zebra-medical-debuts-2-machine-learning-algorithms-to-
predict-heart-disease-risk
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ML is Changing Medicine

Deep Learning Algorithm beats radiologists in

: diagnosing x-rays
Study: Deep Learning Drops Error Rate for Breast https:,g,’arxiv,org,ag,lm_OQQZS

Cancer Diagnoses by 85%

https://arxiv.org/abs/1606.05718

22



MACHINE LEARNING PRINCIPLES



ML Algorithms

Unsupervised
Not Labeled Data h
Clustering Classification Regression
Non-ordered or Discrete Data Ordered or Continuous Data
/+ Hierarchical N (- Random Forest ) (* DecisionTree )
e K-means * Neural Network * Linear Regression
* Gaussian Mixture * Gradient Boosting * Random Forest
Model Trees * Neural Network
* Decision Tree * Gradient Boosting
* Logistic Regression Tree
* Naive Bayes
U J & SVM AN J

24



Training ~ Validation ~ Test

LOCK-BOX APPROACH

Complete / Full Data Set

~
~
~
~
~
~

Model Tuning

<

Model Building Model Performance

Validation Data

Test Data

Training Data (internal/external)

25



PREDICTION ERROR

Bias-Variance Trade-off

« High Bias / Low Variance Low Bias f High Variance

MODEL COMPLEXITY

Overfitting:

An analysis that corresponds
too closely or exactly to a
particular set of data, and
may therefore fail to fit
additional data or predict
future observations reliably.
~ Oxford Dictionaries

26



Control over- & underfitting

» Check similarity of train and test datasets

140

120

100

Frequency
s s

b
=]

o

Histogram of Age

Train Distribut ion
B Test Dstribut ion

20 25 30 35 @& 45 S0 S5 60 65 70 75 80 85 More
Age in years
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Control over- & underfitting

@Cartcnn
a1

" KDnuggets

“Remember, the other team

is using Machine Learning on your

games to predict your play.
S0, kick the ball with your other foot!”
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Control over- & underfitting

e

» Dimension reduction

» Check for Independent and ldentically Distributed (11D)
observations

» K-fold cross-validation
» Ensembles/Stacking/Bagging/Randomized Averaging

29



Training ~ Validation ~ Test

Complete / Full Data Set

~
~
~
~
~
~

Model Tuning

e \

Model Building Model Performance

Training Data (k-fold CV) —_—
Train Train Validation Data
Train

Train >

Train

Train

Train

Test Data

Train

Train

Train

(internal/external)

Train Train Train

Train Train

Train
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Wisdom of Crowds

Francis Galton

Who Wanis o be a Millionaire - Courtesy 2waytraffic

31



Wisdom of Crowds in ML

Ensembles:

Combine a diverse
set of models

Into a stronger,

high-performing model

32



Ensemble Learning / Stacked Models

\ J

|
{ ! ! ’
TRAINNG (m, | (m,] [m;] .. <: glzg
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| { | {

FINAL PREDICTION ‘
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Ensemble of Machine & Human

0.04

3.5%

0.035

2.9%

0.03

Error 0.025

Rate* 0.02

(Algorithm + Pathologist) > Pathologist

0.015

0.01
0.5%

0.005

Study Al model Al model

Pathologist + Study
Pathologist
* Error rate defined as 1 — Area under the Receiver Operator Curve g
** A study pathologist, blinded to the ground fruth diagnoses,
independently scored all evaluation slides.

https://blogs.nvidia.com/blog/2016/09/19/deep-learning-breast-cancer-diagnosis/
34



Clinical Trial Challenges

» Small sample size
— Resampling / Cross-validation
— External test set

» |mbalanced classifier
— Can get very high prediction accuracy with low event rates
— Solutions:
e Simple models
e Data class weighting

* Oversample / Undersample
e Search over a variety of models & perform hyper-parameter search

11l Remain critical !!!

35



Traditional / Predictive Modeling

Uncertainty is inherent and signal-noise ratio is  Signal-noise ratio is large and outcome being

not large predicted doesn’'t have a strong component of
randomness

|solate effects of small number of variables Overall prediction is the goal, without the need
to succinctly describe the impact of any one
variable

Uncertainty in overall prediction or the effect of Not interested in estimating uncertainty in

a predictor is sought forecasts or in effects of selected predictors

Small sample size Sample size is HUGE

Isolate effects of “special” variables such as No need to isolate effect of a special variable

treatment as a risk factor such as treatment

Entire model needs to be interpretable Not concerned that the model is a ‘black box’

https://www.fharrell.com/post/stat-ml/ 36
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MACHINE LEARNING PIPELINE



ML Pipeline

Machine
Learning
Algorithms

Data Pre-
Processing

Steps

Processing Data Algorithms Model Model

U

Ilterate until data is ready lterate for best model Application
Tune hyperparameters
Grid search
Cross-validation

38



Data Pre-Processing

cNNPOENOaRNNOO

group_B
o]

”J‘.;

ofu

* Remove duplicate records

* Remove outliers if true measurement
errors

* Remove and/or impute missing values

* Summarize, Visualize
* R Packages: skimr, ggplot2

* R packages: mice, caret

group_C
0
0
1

°
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&

Value

B L e r e p—

Cleaning SN

Feature

Cleaning

*0One-Hot Encoding of character vars
*Normalization/Scaling/Standardization
*Dimension Reduction: PCA

*R packages: caret

» Remove highly correlated features / PCA
* Remove features with near-zero variance

* Remove features that are linear
combinations of other features

* R package: caret
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Value

Cleaning

* Remove duplicate records

* Remove outliers if true measurement

errors

* Remove and/or impute missing values

* R packages: mice, caret
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Feature

Cleaning

* Remove highly correlated features / PCA
* Remove features with near-zero variance

* Remove features that are linear
combinations of other features

* R package: caret

1] i)

o

1
B

i

R 0
& "

-5

(K
£

L]

iy

mm

,.;Esi:
il

i
s
R

i Luun
]

...--.E-*-
gt
i

1]

e
msEms

1

41



Feature Selection

» Select discriminative features
E.g. differentially expressed between groups

» Recursive Feature Elimination

1.0

OO8-ALICDt = 0.6 (Kopt = 52)

E.g. through optimization of the AUC
 R::AUCRF

» Algorithm decides _ {\

Q0B-AUC
05 06 07 08 09

— Feature importance
—Least assumptions “ PR
— Allows for possible interactions/mediations of features

42




Algorithm Selection

Familiar

Simple

Easy to interpret /
understand clinically

Reasonable
prediction

Versus

Unfamiliar — black box

Complex

Harder to interpret /
understand

Excellent prediction with

high-accuracy

43




Algorithm Selection

Paper by Olsen et al 2018 “Data-driven advice for applying
machine learning to bioinformatics problems”:

All Problems

o

Mean Ranking
(=>]

w

o

KNN
AdaBoost
ernoulli NB

NB

Extra Trees
PAC
Multinomial NB

B
Gaussian

Gradient Tree Boosting =
Random Forest
SvC

T
SGD
Decision Tree
Logistic Regress

» Use Ensemble Trees
when in time crunch

» No silver bullet algorithm

— Test a suite of
algorithms AND

— Test a suite of
parameters for each
algorithm (tuning)

1 REMAIN CRITICAL !

44



Model Tuning / Evaluation

Validate on:

» Train / validation split
(hold-out set)

» K-fold cross-validation
» Bootstrap resampling
» Visualization

Performance metrics:

Supervised
» AUC /logloss
» MSE / RMSE

Unsupervised
» AIC, BIC, TSS

45



In Practice

Demand for ML experts has outpaced the supply, despite
the surge of people entering the field

ML software
—Easy to use interfaces

—Non-expert use

Automate process of training a large selection of
candidate models
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H20.ai Experiment c8b071

0.85+L0CAL B340

TRAINING DATA
DATASET
creqitcarg_cat.csv

AOWE COLLMNS OROPPED COLS TEST DATASET
24K 20 1

TARGET COLLIMM

default.payment.next.month

TYPE COLNT LINIGUE FREI]

.
nt 239499 2 18630

ITERATION SCORES - INTERNAL VALIDATION

seariiINNERRNENNNE :!- -
: gl

0.2

& UL 7SR

STATUS: COMPLETE
THIS MODEL
SCORE ON ANDTHER DATASET

DOWHLOAD [HOLDOUT TRAINING PREDICTIONS

DOWMLOAD TRANEFDRMED TRAIMING DATA

DOWHNLOAD LDGS

DOWHNLOAD SCORING PACKAGE

VARIABLE IMPORTANCE

B_Freg_PAY_ D

B0_CW_TE_PAY_B_PAY 3 0
28 TruncEV0 PAY AMTZ BILL AMT1 BILL AMTE PAY AMTL.

JE_TruncaVU_SILLAMT_PAY_AMIE_LIMIT_BaL O
AE_TnuncEVT_BILL_AMTY_AILL_aMT4_LIMT_RAL 1

3E_TruncEVO_BILL_AMTI_BILL_AMT4_LIMT_HAL O
AB_TruncEVD_PAY_AMTE_BILL_AMT2_0

23_LIMIT B

21 AILL_AMT1
JF_TuncEV0_PAY_AMTI_PAY_AMTE_PAY_AMTI_D
17_PAY_AMTZ

5 OV TE PAY 20

16_PAY_AMTI

A4 Y CotMumEnc_PAY 3 PAY AMTE mean

EXPERIMENT SETTINGS

O

ACCURALCY

(s

TIME

(s

Show Experimants

MAE

STERPRETABILITY GiMl

CPU f MEMORY

il L s bl AL L AL,

MEM

GPU USAGE




AutoML by H20

Simple wrapper function, interface with R and Python

Performs a large number of modeling-related tasks

— no need for lots of lines of code

Freeing up time to focus on other aspects of the data science pipeline
— E.g. data pre-processing, feature engineering, model deployment

Automatic training and tuning of many models with user-specified stopping
criteria

— Time-limit
— Performance metric
Automatically trains Ensembles on the collection of individual models

— Produces highly predictive ensemble model which in most cases will be
the top preforming model in the AutoML Leaderboard



RStudio in the Cloud

» Free-up local resources
» Work from any location
» Lots of computing power at your fingertips

RStudio image
Scalable

Parallel computing
Minimal cost

49



Example: Classification Pipeline

» Subacute rejection versus Transplant Excellent
» 536 samples
» Gene expression of 17,947 genes

Optimize AUC through
recursive feature elimination

GE Data
Complete GE Filtered Gen Random External m AUC (test)
Data Set WG D Forest
ata >e correlated Cohort
(17,947 Genes) Models 92 0.67

>=0.9

Feature Selection — 2 step
- Corr>=0.9

- AUC-RF -
AUC (test
= T
Cohort
Model ohor 92 0.73

U



Example: H20 AutoML R Code

library(h20)

h2o.init(nthreads =-1)

train <- h2o.importFile(data_path)
test <- h2o.importFile(data_path)

y <-'pheno’
X <-setdiff(names(train), y)

aml <- h2o.automl(x = X,
y=Y,
training_frame = train,
max_runtime_secs = 3600/2,
stopping_metric ="AUC",
seed = 12345)

## Save model
h2o0.saveModel(aml@leader, path="/project/automl_results", force=TRUE)

## print leaderboard
print(aml@leaderboard)

## Predictions & Performance
h2o.predict(aml, test)
h2o.performance(aml@leader, test)

51



MACHINE LEARNING INTERPRETATION



ML Challenges

ML models are often hard to explain — lots of high-degree
Interactions and non-linear model behavior.

Some algorithms learn how to weigh complex combinations of
Input variables

Input Output

| BLACK-BOX D




What is ML Interpretability?

“The ability to explain or to present
In understandable terms
to a human”

-- Finale Doshi-Velez and Been Kim. “Towards a rigorous science of interpretable machine learning.” In: arXiv preprint 2017
URL.: https://arxiv.org/pdf/1702.08608.pdf

What Is a Good Explanation?
“When you can no longer keep asking why”

-- Gilpin, Leilani H et al. (2018). “Explaining Explanations: An Approach to Evaluating Interpretability of Machine Learning.” In: arXiv
preprint arXiv:1806.00069. URL: https://arxiv.org/pdf/1806.00069.pdf.

54



Interpretable Model vs a ML model

Linear Models =i o0 o eeeee,
Strong model locality 3 . . LR
i Linear Models 2
Usually stable models and explanations E o ® . Wasted marketing.
[-9
Exact explanations for s *
approximate models. 2 ° SRR
S L] . .
= “For a one unit increase in age, the number
of purchases increases by 0.8 on average.”
1 1 — Age
E.g. Linear Regression  y = wy + wyx; + wyx, + ...+ wnxn
9 =~ f(x) % oo
E ! "Slope begins to A Y
ﬁ decrease here. Act”to AN
Machine Learning é P oo optimize savings. \
. i o increase here sharply.
Machine Learning ' Approximate explanations & e praie
for exact models. e

Weak model locality
Sometimes unstable models and explanations
(a.k.a. The Multiplicity of Good Models )

Age
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Why should we Care about Interpretability?

ML models have entered critical areas like health care, justice systems and financial industry.

» Financial industry: highly regulated and loan issuers are required by law to make fair
decisions and explain their credit models to provide reasons whenever they decide to
decline a loan application

» A medical diagnosis model is responsible for human life. How can we be confident
enough to treat a patient as instructed by a black-box model?

» When using a criminal decision model to predict the risk of recidivism at court, we have to
make sure the model behaves in an equitable, honest and nondiscriminatory manner -
prevent sociological biases.

» If a self-driving car suddenly acts abnormally and we cannot explain why, are we going to
be comfortable enough to use the technigue in real traffic in larger scale?

56



What do we want to Achieve with Interpretability?

Answer questions like

Vv Vv ¥

— Why did the algorithm make certain decisions?
— What variables were the most important in predictions?
— Is the model trustworthy?

Explain hypothesis

Explain why phenomena are happening

Complete transparency & accountabllity

Ensure ML models are unbiased, fair and trustworthy

57



RN

Model

sneeze Flu

weight
headache
no fatigue

age 7

Data and Prediction

sneeze

Explainer
(LIME)

headache

no fatigue 4

Explanation

Human makes decision
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SAMSI — IMSM Workshop SamS|

Duke NCSU UNC

Statistical and Mathematical Sciences Institute
https://www.samsi.info/

Workshops, Visiting scholars, Research fellows, Outreach

Industrial Mathematical and Statistical Modeling (IMSM) workshop

1995 — present
Held in July in SAS Hall at NCSU

— ~ 6 industrial problem presenters

— ~ 6 faculty mentors

— 30 - 45 math/stat/engineering graduate students
— 9 days to complete the project

Rho was problem presenter for 9t consecutive year this year

59
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https://www.samsi.info/imsm-history-and-past-workshops/

SAMSI Project: Predicting Liver Disease

Open Source Data set:

» Indian Liver Patient data set -- From North East India
» 583 subjects: 416 with liver disease & 167 without

» For model building: 467 Training & 116 Test

Outcome: Liver Disease (Yes/No)

Predictors (10): Age, Gender, Total Bilirubin, Direct Bilirubin, Alkaline Phosphatase,
Alamine Aminotransferase, Aspartate Aminotransferase, Total Proteins, Albumin,
Albumin and Globulin Ratio

GBM model built with H20

- Develop/explore methodologies to explain and visualize how this model made its
predictions

60



ML Interpretability Methodologies

Global Interpretation:
» Variable Importance Plots (VIP)
» Surrogate Models
» Partial Dependency Plots (PDP)

Local Interpretation:
» Individual Conditional Expectation (ICE) plots
» Local Interpretable Model-agnostic Explanations (LIME) plots

61



Global - Variable Importance Plots

Alkaline Phosphotase

Age

Albumin

Total Proteins

Alanine Aminotransferase

Direct Bilirubin

Albumin Globulin Ratio

Aspartate Aminotransferase

Total Bilirubin

Gender

0.0

06

10 -
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Global — Surrogate Model

X1
CUSTOMER_DTI LOAN_PURPOSE CHANNEL h14 ~—
0 0.18 MORT 7 Xo hz1
1 0.42 HELOC 10 M hi2 )
—
0 0.11 MORT 10 x3 / h22
0 0.21 MORT 1 h13
1. Train a complex machine learning model X4 Complex neural network
N\
CUSTOMER_DTI LOAN_PURPOSE CHANNEL “ F.
0 0.47 0.18 MORT 7
; ) a3 e T w Interpretable decision tree
0 0.18 0.11 MORT 10 or
0 0.12 0.21 MORT 1 .
CJ

2. Train an interpretable model on the original inputs and the

L ]
predicted target values of the complex model Interpretable linear

model
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Global — Surrogate Model

Key
Variable Abbreviation
Total Bilirubin TB
Direct Bilirubin DB
Alanine Aminotransferase ALT
Aspartate Aminotransferase AST
Alkaline Phosphatase ALP Con
Age Age Qﬂ%)
e 8 Te—
- <15 T
062 .
- Yes ALP “No N B Yes DB No
056 <207 oo o076 <095
3% '@‘) 'Q"")
Yes pst Noo Yes a1 No Yes pgr No
. 34% 5% o 17% 3% 6%
__,_Yes; A;e “No_ _Yes pge No

049 %7 7 086 059 92 4 o071



Partial dependence

Partial dependence

Global — Partial Dependency Plots (PDP)

Partial dependence of house value on nonlocat Partial dependence of house value on median

for the California housing dataset age and average occupancy
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Global — Partial Dependency Plots (PDP)
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Local — Individual Conditional Expectation (ICE) plots
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Visualizes the dependency of the predicted response on a feature
for EACH instance separately, resulting in multiple lines



Local Interpretable Model-agnostic Explanations (LIME)

Perturbed Instances | P(tree frog)

—%
065 Locally weighted

regression

Original Image '

P(tree frog) = 0.54

0.52

Explanation
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Feature

Local Interpretable Model-agnostic Explanations (LIME)

Case: 71

Label: No

Probability: 0.72
Explanation Fit: 0.165

age == 30
direct_bilirubin == 0.20
total_bilirubin == 0.70

21 = alamine_aminotransferase <= 30

0.9 = albumin_and_globulin_ratio == 1.0

0.000 0.025 0.050 0.075

Case: 74

Label: Yes
Probability: 0.99
Explanation Fit: 0.253

1.58 =< direct_bilirubin

74 = alamine_aminotransferase
3.10 = total_bilirubin

103.0 < aspartate_aminotransferase

3.0 =albumin==34

0

0 0.03 0.06 0.09

Case: 28

Label: No

Probability: 0.77
Explanation Fit: 0.197

age <= 30

direct_bilirubin == 0.20
alamine_aminotransferase == 21
total_bilirubin == 0.70

1.0 = albumin_and_globulin_ratio == 1.2

0.00 0.03 0.06
Case: 76
Label: Yes
Probability: 0.98

Explanation Fit: 0.258
1.58 = direct_bilirubin

74 = alamine_aminotransferase
3.10 < total_bilirubin
1032.0 = aspartate_aminotransferase

albumin_and_globulin_ratio == 0.7

0.00 0.03 0.06

0.09

Case: 46

Label: No

Probability: 0.76
Explanation Fit: 0.078

alamine_aminotransferase == 21
0.20 = direct_bilirubin == 0.50
0.90 = total_bilirupin == 1,36

1.2 < albumin_and_globulin_ratio

004 -002 000 002 004 006

Case: 92

Label: Yes
Probability: 0.96
Explanation Fit: 0.124

332 = alkaline_phosphotase

direct_bilirubin == 0.20

albumin <= 25 |
0

103.0 = aspartate_aminotransferase

total_bilirubin <= 0.70

-0.04 0.00 0.04

Weight

. Supports . Contradicts



Conclusions on Liver Disease Prediction

* Global-Variable Importance Plot (VIP)
1. Alkaline Phosphatase
2. Age
3. Albumin
e Global/Local — PDP & Independent Conditional Expectation (ICE)
» Alkaline phosphatase (extreme lower and higher levels)
» Age and total bilirubin (direct positive relation)
« Local-Locally Interpretable Model Explanations (LIME)

* Age (elderly), alanine phosphatase, and bilirubin (higher
levels)
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Interpretation Summary

Use simpler low-fidelity or sparse explanations to
understand more complex high-fidelity explanations

Global and local explanatory techniques are often
needed to explain a model

Seek consistent results across multiple explanatory
techniques

To Increase adoption, production deployment of
explanatory methods must be straightforward - work in

progress
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Resources - R packages

Caret http://topepo.qgithub.io/caret/index.html

mlr https://cran.r-project.org/web/packages/mir/index.html

h20 https://cran.r-project.org/web/packages/h2o/index.html
https://www.h20.al/

DALEX https://cran.r-project.org/web/packages/DALEX/index.html

Lime https://t.co/Ztn5YgfVVvH
https://cran.r-project.org/web/packages/lime/index.html

ShapleyR https://t.co/pZLhbVVs5a

Iml https://cran.r-project.org/web/packages/iml/vignettes/intro.html

ICEbox https://github.com/kapelner/ICEbox

live https://t.co/zaQnLBtbfO

xgboostExplainer https://t.co/lwgpgD8HL4

breakDown https://t.co/FmvLgJXsFO and
https://pbiecek.qgithub.io/breakDown/
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Resources

» Book on ML interpretation
https://christophm.qgithub.io/interpretable-ml-book/

» Book: An Introduction to Machine Learning Interpretability

https://www.safaribooksonline.com/library/view/an-introduction-
t0/9781492033158/

» Blogs
https.//ssearch.oreilly.com/?g=+interpretability

https://lilanweng.qgithub.io/lil-log/2017/08/01/how-to-explain-the-prediction-
of-a-machine-learning-model.html

» Implementations (examples) with LIME:
http://projects.rajivshah.com/inter/ReasonCode NFL.html

http://www.business-
science.io/business/2017/09/18/hr_employee attrition.html (LIME and H20)
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