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A Call for Help

I teach a biostatistics course at a four-year
undergraduate university. The students taking this
course are from the departments of nursing,
occupational therapy, medical technology, health
sciences and biology. The majority of these
students are juniors and have very little
mathematical background (often only Algebra I

/7aken 5 to 10 years previously in high school).

They are required to take this biostatistics course as
- a prerequisite for the research course in their own
department. The departments want their students to

be able to understand and critically evaluate current.

research, but not to originate statistical analyses.
Most information I have received via this Section
on Teaching Statistics in the Health Sciences
pertains to graduate and/or medical school
curricula. We are currently re-evaluating the
contents of our course, and I would like to receive
suggestions as to what people believe should be
covered in a one-semester biostatistics at OUR level
here at Towson State. I know that the diversity of
departments will likely produce enough core
material for a 10-credit course, but nevertheless, I
would find these opinions very valuable in
‘restructuring  our  course. The concerned
departments here at Towson State will also be
giving me their opinions, but a variety of external
opinions is very useful.

e Thank you,

Howard Kaplon
Towson State University

MEDTREE:
An Introduction to Decision Analysis
Peter B. Imrey
Medical Information Science

University of Illinois

Formal decision analysis has become
increasingly important in the analysis of clinical
practices in the health professions including
whether or not to intervene, choice of therapeutic
modality, use of diagnostic tests, and screening
strategies. This article describes an interactive
microcomputer-based self-instructional program
which has been used at the University of Illinois to
introduce second-year medical students to the
rudiments of decision analysis. MEDTREE is
implemented on PC-compatibles, requires 261K
disk space, and will be available shortly at no
charge (see below).

MEDTREE wuses a maximum expected
utility approach to decision-making, and teaches
this through a simple but general example: the
decision of whether or not to employ a risky
diagnostic test prior to making a therapeutic choice
between two alternatives (one of which might be
"do nothing"). It is assumed that the test has a
small probability of a result with zero utility, e.g.
test mortality, as might occur rarely with a coronary
angiogram or a liver biopsy, and that expected two
year survival proportion is the utility measure.
Since no test is totally accurate, the decision
analysis incorporates parameters of test accuracy
into the calculation of expected utility, and thus




includes instructional material on predictive values
of diagnostic tests.

MEDTREE leads the student through the
construction of a decision tree which begins with
the choice of whether or not to do the test. The tree
branches depending on whether the patient survives
the test, branches again on the outcome of the test
for the survivors, once more on the therapeutic
decision, and finally on the true disease state.
Utilities for each combination of true disease state
and therapeutic decision, as well as for test
mortality, are then "folded back" towards the trunk
of the tree, using the assumed pre-test probabilities
of each disease state, of test-associated mortality,
and the test's positive and negative predictive values
(based on pre-test probabilities, sensitivity, and
specificity).

Although we have used MEDTREE in
conjunction with classroom lectures, it is a self-
contained and quite flexible instructional module.
Beginning with introductory material on the basic
ideas of decision analysis (material which can be
bypassed by a knowledgeable student), the program
constructs a decision tree for the above problem
step by step. At various points, students are
prompted to interact with the program in this
construction. As the tree is built, explanations
corresponding to each node, branch, and utility are
superimposed over portions of the tree, and
removed as the tree grows. Once the tree is mature,
the student is encouraged to alter any parameters of
the problem, and watch how the utilities at each
node, and possibly the appropriate decision, change
immediately in response. The student can play with
one parameter, or combinations of parameters, to
study how sensitive the maximum-utility decision is
to the diagnostic test's risk, the- specificity and
sensitivity of the diagnostic test, and to the pretest
probabilities of each diagnosis.

To summarize the conditional relationship
of the maximum-utility decision to any single
parameter of the problem, with others fixed, the
program will prepare a simultaneous graph of the
utilities of each of three clinical strategies against
varying values of the indicated parameter. The
strategies are: i) skip the test, and use therapy 1; ii)
skip the test, and use therapy 2; and iii) perform the
test, accepting its risk, and choose the appropriate
therapy depending on the outcome. The parameters
which may be individually varied are the utilities of

each disease state-treatment combination, the
mortality, sensitivity and specificity of the
diagnostic test, and the pretest probability of each
disease state. Each plot is marked with vertical
lines at values of the parameter where the
maximum-utility decision changes, and each region
on the plot is labeled with the maximum-utility
decision for the corresponding range of parameter
values. A student may customize both the decision
tree and related graphs to a particular problem by
making substitutions for the generic names for
disease states and treatments which the program
otherwise uses.

When working with a decision tree, the
student may access extensive help facilities at any
time. Pressing one key after highlighting any node
of the tree makes available an explanation of how
the utility of that node was obtained by the "folding
back" process.
brief explanation, and a fully-detailed explanation
including all appropriate = formulae  with
commentary. Definitions are available for all
fundamental terms used in the program, such as
node, utility, sensitivity, specificity, and predictive
values. A user may bypass all explanatory material
when entering MEDTREE, and move directly to
working with the full decision tree and associated
graphs. However, the utility explanations,
definitions, and all bypassed introductory and
explanatory material are accessible directly from
the tree through appropriate Help selections.
MEDTREE can be used with specific "lab
assignments”, or students may just play with the
program, to develop intuition about the effects of
changing in combinations of parameters on the
preference regions for various strategies. On
leaving MEDTREE the user is given an opportunity
to provide comments, which are stored in a file for
later examination at the instructor's convenience.

Arrangements for routine distribution of
MEDTREE by computer network are currently
being developed, in conjunction with exploring the
possibility of a general computer archive of
materials that might prove useful to members of
this Section. Members who wish to receive
MEDTREE when arrangements for distribution are
complete may notify me by letter (University of
Illinois, 506 S. Mathews Ave., Urbana, IL 61801-
3618), phone (217 333-2427), or e-mail (p-
imrey@uiuc.edu or imrey @uiucvmd.bitnet). You
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The user may choose between a .
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/" distribution has been worked out.

will receive either the software, or instructions for
obtaining it, when the mechanism for electronic
A brief user's
guide will be included, although use of the program
is virtually self-explanatory. MEDTREE is not
supported or warranted, but we have found the
program useful, and hope others may also. While
several general and powerful programs are available
for decision analysis, its simplicity makes
MEDTREE exceptionally friendly to the user and
appropriate for elementary instruction.

Peter Imrey, Allan Levy, and John
Mirowsky are responsible for the content and
structure of MEDTREE, which was motivated by
Fineberg, H. V., Bull Cancer (Paris) 67:395-404.
MEDTREE was programmed by William Jockusch
and Grant Jenkins in PASCAL. Development was
partially supported by a Project Excel grant from
the IBM Corporation and the Univ. of Illinois to the
Dept. of Medical Information Science, College of
Medicine at Urbana-Champaign.

Bayes' Theorem

Robert Elston
Bill Johnson
L.S.U. Medical Center, New Orleans

The following pictorial method of teaching Bayes'
theorem is contributed by Robert Elston and Bill
Johnson of the L.S.U. Medical Center, New
Orleans. Itis an extract from the forthcoming
second edition of their book "Essentials of
Biostatistics" to be published early next year by
F.A. Davis, Philadelphia. It is reproduced here with
permission of the publishers.

The Englishman Thomas Bayes wrote an
essay on probability that he was hesitant to publish
because he recognized the flaw in assuming, as he
did in his essay, that all possible outcomes are
equally likely.  The essay was nevertheless
published in 1763, after his death, by a friend.
What is now called "Bayes' theorem” evolved from
this essay and does not contain the original flaw.
The theorem gives us a method of calculating new
probabilities to take account of new information.
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See you at
the Section's
General Business Meeting
6:00 p.m.

Tuesday, August 11

_ Suppose that twenty percent of a particular
population has a certain disease, D. For example,
the disease might be hypertension, defined as
having an average diastolic blood pressure of 95
mm Hg or greater taken over a period of five days.
In figure 4.2 we represent the whole population by
a square whose sides are unity. The probability that
a person has the disease, P(D), and the probability
that a person does not have the disease, P(D) =1 -
P(D), are indicated along the bottom axis. Thus the
areas of the two rectangles are the same as these
two probabilities.

Now suppose we have a test that picks up a
particular symptom, S, associated with the disease.
In our example, the test might be to take just one
reading of the diastolic blood pressure, and S might
be defined as this one pressure being 95 mm Hg or
greater. Alternatively, we could say that the test
result is positive if this one blood pressure is 95 mm
Hg or greater, negative otherwise. Before being
tested, a random person from the population has a
20% probability of having the disease. How does
this probability change if it becomes known that the
symptom is present?
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FIGURE 4.2 In the whole population, represented by a square whose sides are unity, the probability
of having the disease is P(D), and of not having the discasc is P(D), as indicated along the horizontal
axis.
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FIGURE 4.3 Within each subpopulation, D and D, the conditional probability of having a positive
test result or symptom, S, is indicated along the verucal axis. The dark rectangles represent the joint
probabilities P(D) P(SID) = P(S,D) and P(D) P(SID) =P(S,D).

Assume that the symptom is present in 90% of all those ‘with the disease but only 10% of all
those without the disease, i.e. P(SID) = 0.9 and P(SID) = 0.1. In other words, the sensitivity and the
specificity of the test are both 0.9. These conditional probabilities are indicated along the vertical axis
in Figure 4.3. The hatched rectangles represent the joint probabilities that the symptom is present and
that the disease is present or not: ’

P(S and D) =P(D) P(SID) = (.2) (.9) = .18
P(S and D) = P(D) P(SID) = (.8) (.1) .08.
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If we know that the symptom is present, then we know that only the dark areas are relevant, i.e. we can
write symbolically, :

P(D|S) = P(D| I_ ) =

P(S and D) _ P(D)P(SID)
P(Sand D) + P(SandD)  P(D)P(SID) + P(D)P(SID)

(0.2)(0.9) =0.69,
(0.2) (0.9Y + (0.8)(0.1)

which is théﬁﬁposm{%é pred ve value of the test. =~ o -

This, in essence, is Bayes' theorem. We start w1th a prior probability of the dxsease P(D),
which is then converted into a posterior probability, P(DIS). given the new knowledge that symptom
S is present.

More generally, we can give the theorem as follows. Let the new information that is available
be that the event S occurred. Now suppose the event S-can occur in any one of k distinct, mutally
exclusive ways. Call these ways D,, D,, . . ., D, (in the above example there were just two ways, the
person either had the disease or did not have the disease; in general there may be k alternative
diagnoses possible). Suppose that with no knowledge about S these have prior probabilities P(D,),
P(D,), . . ., and P(D,), respectively. Then the theorem states that the posterior probability of a
particular D, say D;, conditional on S having occurred, is

P(D.IS) = P(D;)P(SID;)
(D;13) P(D,)P(SID,) + P(D2)P(SID2) + ...+ P(D)PSID,)
P(D; and S)
P(D,andS) + P(D,andS) + ... + P(D, andS)

The theorem can thus be remembered as "the joint probability divided by the sum of the joint
probabilities" (i.e. the posterior probability of a particular D, given that S has occurred, is equal to the
joint probability of D and S occurring, divided by the sum of the joint probabilities of each of the D's
and S occurring). This is illustrated in Figure 4.4.
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FIGURE 4.4. Bayes' theorem. The probability of various diagnoses, D, D,. . . D,,... D,, are indicated on the horizontal axis and the
conditional probability of a particular symptom, within each diagnostic class D,, is md1cated on the vemcal axls Thus each —~
hatched rectangle is the joint probablhty ‘of the symptom and each diagnostic class. - N i !
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- Steven Verhulst
Southern Illinois University
School of Medicine
Division of :
Statistics and Research Consulting
P.O. Box 19230
Springfield, Illinois
62794-9230
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