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Overview

Seasonality is present in many regularly-spaced economic time series

Statistical agencies seek to identify and remove (seasonally adjust) the
seasonality, so as to allow easier visualization of trends and cycles

Challenge: how to define (or measure) seasonality? What diagnostic
corresponds to our definition?



Available diagnostics

There are many diagnostics available, each based on a certain definition
of seasonality:

• Model-based F (MBF): test of seasonal means in a linear model with
time series errors

• QS: seasonal lag autocorrelation

• Visual Significance (VS): peak in spectral density at seasonal frequency

• Root: seasonal roots in autoregressive polynomial



Critique

1. These diagnostics cannot be defined without first postulating a form
of process: RegARIMA for MBF, difference stationary for QS and VS,
autoregressive for Root.

2. These diagnostics assess different types of seasonality: fixed for MBF,
dynamic for QS and VS and Root.

3. These diagnostics may classify non-seasonal processes as seasonal: e.g.,
QS.

4. These diagnostics are not easily conveyed to non-experts.



Goal

Define a new seasonality measure (and diagnostic) with these features:

• Intuitive definition that is broad, such that when specialized to familiar
processes (e.g., difference stationary, RegARIMA, autoregressive) they
have expected behavior on seasonal and non-seasonal processes.

• Avoids classification problems by incorporating both seasonal
persistence and intra-seasonal association.

• Should be scale-free.



Problem with seasonal autocorrelation

Let s be the integer seasonal period.

Intuitively, a high association between observations s lags apart is
necessary to describe seasonality.

For a stationary process, this would be measured with the lag s
autocorrelation.

But: for the AR(1) process, which is non-seasonal, the lag s
autocorrelation is ϕs. For s = 4 and ϕ = .95, this yields .815, a high
value – a mis-classification.



Modifying seasonal autocorrelation

The AR(1) case is instructive: the seasonal autocorrelation is really
driven by the high lag 1 autocorrelation, as season-to-season there is a high
association.

We should condition on this intra-seasonal association, to balance
seasonal persistence.

Consider the seasonal sub-series (i.e., annual time series for each season);
if these have a similar pattern, then we say there is intra-seasonal association.



Seasonal persistence

Let {Xt} be our time series. We first define seasonal persistence by
modifying the seasonal autocovariance slightly: we condition on the recent
past (denoted by {Xt:}), which isolates current observations. The seasonal
persistence is defined as

Ξs = Cov[Xt+s+1, Xt+1|Xt:]. (1)

The conditioning removes time-dependence from the measure for many
processes, since (1) can be expressed as the covariance of s+ 1-step ahead
and 1-step ahead forecast errors.



Intra-seasonal association

Intra-seasonal association is measured by the s-step ahead forecast error

Xt+s − X̂t+s|t:,

since this will tend to be large when the seasonal sub-series are tightly
linked.

But intra-seasonal association can be high whether or not the process
has seasonality.

If the process is seasonal, intra-seasonal association should be low.



Seasonal measures

We can account for intra-seasonal association in the seasonal persistence
measure by introducing conditioning upon the s-step ahead forecast error,
or (equivalently)

Ωs = Cov[Xt+s+1, Xt+1|Xt+s, Xt:].

It is straightforward to show that

Ωs = Ξs − Cov[Xt+s+1, Xt+s|Xt:]Var[Xt+s|Xt:]
−1Cov[Xt+s, Xt+1|Xt:]



Normalized form

Because Ωs is not scale invariant, we can also consider the partial
correlation:

Υs = Corr[Xt+s+1, Xt+1|Xt+s, Xt:]

=
Ωs√

Var[Xt+s+1|Xt+s, Xt:]Var[Xt+1|Xt+s, Xt:]
.

This gives a seasonality measure with values in [−1, 1], with 0 indicating
no seasonality, and positive values indicating moderate to high degrees of
seasonality. Negative values are designated as anti-seasonality.



Stationary forecast errors

For many classes of processes the forecast errors will be stationary
(jointly across leads), and hence
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Difference stationary processes

We say {Xt} is difference stationary if there exists a unit root polynomial
δ(z) such that δ(B)Xt =Wt is stationary, say with MA (∞) representation
Wt = ψ(B)Zt, with {Zt} white noise of variance σ2 and ψ(z) causal. (B
is the backshift operator.) Then forecast errors are stationary, and

υ
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where ξ(z) = ψ(z)/δ(z). Also
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AR(1) process

{Xt} is an AR(1), so that ψ(z) = (1− ϕz)
−1 and ξj = ψj = ϕj:

Ξs = σ2ϕs

Ωs = σ2(ϕs − ϕs−1ϕ) = 0.

So there is no seasonality present once the intra-seasonal association is
accounted for.



Cyclic AR(2) process

{Xt} is an AR(2) with complex conjugate seasonal roots: ψ(z) =

(1− 2ρ cos(ω)z + ρ2z2)
−1

, which corresponds to autoregressive roots
ρ−1 exp{±iω} (for 0 < ρ < 1), where ω = 2πℓ/s for some integer ℓ.
Then ξj = ψj = ρj cos(ωj), and

Ξs = σ2ρs

Ωs = σ2ρs

(
1− cos(ω)
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)
.

Setting s = 4, Υ4 = .326 for ρ = .8, and Υ4 = .454 for ρ = .9. Therefore,
such a process exhibits seasonality.



SAR(1) process

{Xt} is a seasonal autoregression of order 1 (or SAR(1)), so that
ψ(z) = (1− ϕsz

s)
−1. So ξj = ψj is zero unless j = sk for integer k, in

which case ξj = ϕks . Then

Ξs = σ2ϕs

Ωs = σ2ϕs

Υs = ϕs/
√
1 + ϕ2s.

The maximum value of Υs for this process is 1/
√
2.



Seasonal difference process

{Xt} is a SARIMA process with differencing polynomial δ(z) = 1− zs,
so that ξ(z) = ψ(z) + zsψ(z) + . . .. Then

Ξs = σ2(ψs + 1)

Ωs = σ2

(
1 + ψs − ψs−1(ψs−1 +
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Seasonal difference process

Further, if ψ(z) = 1− θsz
s, then

Ξs = Ωs = σ2(1− θs)

Υs = (1− θs)/

√
1 + (1− θs)

2
.

As θs approaches 1, the nonstationary process resembles a white noise (due
to cancellation of operators), and the seasonality measure tends to zero.
If instead θs → −1, then Υs → 2/

√
5, which is a higher value than that

attainable by the SAR(1).



Seasonal and regular difference process

{Xt} is a SARIMA process with differencing polynomial δ(z) = (1 −
zs)(1 − z). Letting U(z) = 1 + z + . . . + zs−1, we find that ξ(z) =
ψ(z)U(z) + 2zsψ(z)U(z) + . . .. It follows that

Ξs = σ2(2 +

s∑
k=1

ψk).



Airline process

For the airline process ψ(z) = (1− θ1z)(1− θsz
s), so that

Ξs = σ2(2− θ1 − θs)

Ωs = σ2
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So high positive values of θs lessen the seasonal persistence. Also, positive
values of θ1 tend to increase seasonality, up to a point, by decreasing the
intra-seasonal association. See Figures 1 and 2 for the case of s = 4.



Airline process
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Figure 1: Values of Ω4 for an airline process, as a function of θ1 and θs.



Airline process
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Figure 2: Values of Υ4 for an airline process, as a function of θ1 and θs.



Seasonal Roots

We can analyze ARIMA processes via the roots of its autoegressive
polynomial:

• Seasonal persistency Ξs is driven by AR roots with near-unit magnitude
and seasonal frequency (argument is a multiple of 2π/s)

• Intra-seasonal association is high when a reciprocal root is strong and
close to the lag one autocorrelation



Other Diagnostics

The seasonality measures can be connected to VS, Root, and QS.

• Spectral peaks occur at frequencies associated with the argument of AR
roots with modulus close to one. So Ωs is connected to Root and VS
diagnostics.

• For ARIMA processes a large value of Ωs indicates a large lag s
autocorrelation, so the QS measure will be large; conversely, QS can
be large due to high intra-seasonal association (e.g., AR(1)) even when
Ωs is small.



Inference

We can estimate Ωs and Υs by replacing covariances of forecast errors
by sample covariances of such, computed in-sample.

A CLT for both estimators has been derived, but the asymptotic variance
depends on quantities not determined by the null hypothesis.

Testing: we may wish to test the null hypothesis Ωs = 0, which is

equivalent to υ
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s υ
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Testing

Consider the estimator

θ̂T = υ̂(1)s υ̂
(s)
0 − υ̂

(1)
s−1υ̂

(s)
1 ,

which tends to zero if Ωs = 0. This has a CLT with unknown variance,
so we propose studentizing by some ST (based on partial sums of forecast
error cross-products) and obtain ({Br} is standard Brownian Motion)

T 1/2 θ̂T − µZ√
ST

L
=⇒ 2B1√∫ 1

0
(Br − rB1)

2
dr
.



Numerical Results

We simulate 104 draws of a quarterly SAR(1) process with ϕs = .8 and
unit innovation variance, for which Ωs = .8.

To illustrate the size properties, we center the statistic by µZ = .8 (first
column), and for power properties we set µZ = 0 (second column).



Numerical Results

Table 1: Upper one-sided rejection rates for studentized seasonal measure
test statistic applied to a SAR(1) with ϕs = .8, by number of years n,
nominal level α, and centering by µZ.

n α µZ = .8 µZ = 0

n = 20
.01 .005 .541
.05 .031 .883
.10 .081 .976



Summary

• Seasonality is defined as seasonal persistence that is not explained by
intra-seasonal association

• Seasonal persistence is defined as lag s covariance conditional on the
past

• Intra-seasonal association is defined as lead s forecast error

• Ξs measures seasonal persistence, Ωs measures seasonal persistence
conditional on intra-seasonal association, and Υs is a normalized Ωs

• These measures have desired values on various SARIMA processes;
correct classification



Future work

• Investigate seasonality measures on seasonally heteroscedastic processes
and stochastic seasonal means (including RegARIMA) processes

• Explore the impact of seasonal adjustment on seasonality measures

• Empirical testing
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