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time series analyzed in this presentation are from public or external data sources.
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Overview

Seasonality is present in many regularly-spaced economic time series

Statistical agencies seek to identify and remove (seasonally adjust) the
seasonality, so as to allow easier visualization of trends and cycles

Challenge: how to define (or measure) seasonality? What diagnostic
corresponds to our definition?
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Available diagnostics

There are many diagnostics available, each based on a certain definition
of seasonality:

e Model-based F (MBF): test of seasonal means in a linear model with
time series errors

e QS: seasonal lag autocorrelation
e Visual Significance (VS): peak in spectral density at seasonal frequency

e Root: seasonal roots in autoregressive polynomial
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Critique

1. These diagnostics cannot be defined without first postulating a form
of process: RegARIMA for MBF, difference stationary for QS and VS,
autoregressive for Root.

2. These diagnostics assess different types of seasonality: fixed for MBF,
dynamic for QS and VS and Root.

3. These diagnostics may classify non-seasonal processes as seasonal: e.g.,

QS.

4. These diagnostics are not easily conveyed to non-experts.
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Goal

Define a new seasonality measure (and diagnostic) with these features:

Intuitive definition that is broad, such that when specialized to familiar
processes (e.g., difference stationary, RegARIMA, autoregressive) they
have expected behavior on seasonal and non-seasonal processes.

e Avoids classification problems by incorporating both seasonal
persistence and intra-seasonal association.

Should be scale-free.
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Problem with seasonal autocorrelation

Let s be the integer seasonal period.

Intuitively, a high association between observations s lags apart is
necessary to describe seasonality.

For a stationary process, this would be measured with the lag s
autocorrelation.

But: for the AR(1) process, which is non-seasonal, the lag s
autocorrelation is ¢°. For s = 4 and ¢ = .95, this yields .815, a high
value — a mis-classification.
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Modifying seasonal autocorrelation

The AR(1) case is instructive: the seasonal autocorrelation is really
driven by the high lag 1 autocorrelation, as season-to-season there is a high
association.

We should condition on this intra-seasonal association, to balance
seasonal persistence.

Consider the seasonal sub-series (i.e., annual time series for each season);
if these have a similar pattern, then we say there is intra-seasonal association.
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Seasonal persistence

Let {X;:} be our time series. We first define seasonal persistence by
modifying the seasonal autocovariance slightly: we condition on the recent
past (denoted by {X;.}), which isolates current observations. The seasonal
persistence is defined as

=s = Cov[Xtyst1, Xey1| Xt (1)

The conditioning removes time-dependence from the measure for many
processes, since (1) can be expressed as the covariance of s + 1-step ahead
and 1-step ahead forecast errors.
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Intra-seasonal association

Intra-seasonal association is measured by the s-step ahead forecast error

since this will tend to be large when the seasonal sub-series are tightly
linked.

But intra-seasonal association can be high whether or not the process
has seasonality.

If the process is seasonal, intra-seasonal association should be low.
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Seasonal measures

We can account for intra-seasonal association in the seasonal persistence
measure by introducing conditioning upon the s-step ahead forecast error,
or (equivalently)

Qs = COV[Xt—I—s—I—laXt—|—1|Xt—|—87Xt:]-
It is straightforward to show that

Qg =E5 — COV[Xt—l—S—I—la Xt—i—s‘Xt:] Var[Xt—l—s‘Xt:]_l COV[Xt+S7 Xt—l—l‘Xt:]
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Normalized form

Because ()5 is not scale invariant, we can also consider the partial
correlation:

Ty = Corr[ Xy sq1, Xog1| Xegs, Xe]
\/V3r[Xt—|—s—|—1|Xt—|—saXt:] Var[Xt—l—1|Xt—|—saXt:].

This gives a seasonality measure with values in [—1, 1], with O indicating
no seasonality, and positive values indicating moderate to high degrees of
seasonality. Negative values are designated as anti-seasonality.
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Stationary forecast errors

For many classes of processes the forecast errors will be stationary
(jointly across leads), and hence

vé’“) — COV[Xt+k, Xt—}—h—l—k‘Xt:]
does not depend on t. Then

g = ’Ugl) — Us— 1’018)/ X

1 1 S S
o () ()1U1)/()

1 1) 2 S s+1 5)2 s.
\/(U(<)> o @ 2140 (pHD) 92 1)
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Difference stationary processes
We say { X;} is difference stationary if there exists a unit root polynomial
d(z) such that 6(B)X; = W; is stationary, say with MA (oo) representation

W, = ¢(B)Z;, with {Z;} white noise of variance ¢ and (z) causal. (B
is the backshift operator.) Then forecast errors are stationary, and

k—1
vy =0 > &on,
=0
where £(z) = (z)/d(z). Also

s—1 s—1
Qs — 02 (gs — 58—1 Zfﬁgﬁ—l—l/ Zflg) .
£=0 £=0
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AR(1) process

{X,} is an AR(1), so that ¢(z) = (1 — ¢z)~ " and &= = ¢

QS _ 0_2(¢8 . ¢s—1¢) — 0.

So there is no seasonality present once the intra-seasonal association is
accounted for.
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Cyclic AR(2) process

{X:} is an AR(2) with complex conjugate seasonal roots: (z) =

(1—2pcos(w)z—|—p222)_1, which corresponds to autoregressive roots
p~texp{diw} (for 0 < p < 1), where w = 27¢/s for some integer /.
Then &; = v; = p’ cos(wj), and

s—1

Q, = 0?p° <1 — cos(w) z_: p*[cos(w(2€ + 1)) + cos(w)]/ Z p*cos(w(20)) + 1]
(=0

£=0

Setting s = 4, T4 = .326 for p = .8, and T4 = .454 for p = .9. Therefore,
such a process exhibits seasonality.
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SAR(1) process

{X:} is a seasonal autoregression of order 1 (or SAR(1)), so that
P(z) = (1 — gbszs)_l. So &; = 1, is zero unless j = sk for integer k, in
which case §; = @*. Then

Es — O-2¢S
Qs — O-2¢S

Ts:¢s/\/1+¢§

The maximum value of Y for this process is 1/v/2.
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Seasonal difference process

{X:} is a SARIMA process with differencing polynomial §(z) =1 — 2°,
so that £(z) = ¥(z) + z°¢¥(2) +.... Then

Hs = 0-2(77b8 + 1)

s—1 s—1
Qs =o” <1 + ths — hs—1(Ys—1 + ZWWH)/ Z%D?) :
(=0 (=0
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Seasonal difference process

Further, if ¥(z) =1 — 052°, then

As 6 approaches 1, the nonstationary process resembles a white noise (due
to cancellation of operators), and the seasonality measure tends to zero.
If instead 6, — —1, then ¥, — 2/+/5, which is a higher value than that
attainable by the SAR(1).
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Seasonal and regular difference process

{X:} is a SARIMA process with differencing polynomial §(z) = (1 —
25)(1 — 2). Letting U(2) = 1+ 2+ ...+ 251 we find that £(z) =
V(2)U(z) + 22°¢(2)U(2) + . ... It follows that

Ho=0"(2+ ) ).
k=1
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Airline process

For the airline process ¥(z) = (1 — 012)(1 — 052°), so that

2, =020, —0,)

QS:O'2 ((2—(91—93)

—(1—61)°

1+ (s —2)(1 —6y)
14+ (s—1)1—-6,)°|)

So high positive values of 0, lessen the seasonal persistence. Also, positive
values of #; tend to increase seasonality, up to a point, by decreasing the
intra-seasonal association. See Figures 1 and 2 for the case of s = 4.
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Airline process

0.5

CH 1.0 1.0

Figure 1: Values of €24 for an airline process, as a function of #; and 6.
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Airline process
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Figure 2: Values of T4 for an airline process, as a function of 6; and 6.
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Seasonal Roots

We can analyze ARIMA processes via the roots of its autoegressive
polynomial:

e Seasonal persistency =, is driven by AR roots with near-unit magnitude
and seasonal frequency (argument is a multiple of 27/s)

e Intra-seasonal association is high when a reciprocal root is strong and
close to the lag one autocorrelation
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Other Diagnostics

The seasonality measures can be connected to VS, Root, and QS.

e Spectral peaks occur at frequencies associated with the argument of AR
roots with modulus close to one. So (), is connected to Root and VS
diagnostics.

e For ARIMA processes a large value of (), indicates a large lag s
autocorrelation, so the QS measure will be large; conversely, QS can
be large due to high intra-seasonal association (e.g., AR(1)) even when
(¢ is small.
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Inference

We can estimate €25 and T by replacing covariances of forecast errors
by sample covariances of such, computed in-sample.

A CLT for both estimators has been derived, but the asymptotic variance
depends on quantities not determined by the null hypothesis.

Testing: we may wish to test the null hypothesis 2, = 0, which is

equivalent to vgl)vés) — vé?lvgs) = 0.
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Testing

Consider the estimator

Br = 05— 9,50,

which tends to zero if {2, = 0. This has a CLT with unknown variance,
so we propose studentizing by some St (based on partial sums of forecast
error cross-products) and obtain ({B,.} is standard Brownian Motion)

T1/29T — Uz L 2B
v ST \/fol (BT — TBl)2dT
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Numerical Results

We simulate 10* draws of a quarterly SAR(1) process with ¢, = .8 and
unit innovation variance, for which 2, = .8.

To illustrate the size properties, we center the statistic by uz = .8 (first
column), and for power properties we set uz = 0 (second column).
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Numerical Results

Table 1: Upper one-sided rejection rates for studentized seasonal measure
test statistic applied to a SAR(1) with ¢s = .8, by number of years n,
nominal level «, and centering by u .

n o uz =.8 puz =20
.01 .005 541
n =20 .05 .031 .883
.10 .081 976
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Summary

e Seasonality is defined as seasonal persistence that is not explained by
intra-seasonal association

e Seasonal persistence is defined as lag s covariance conditional on the
past

e Intra-seasonal association is defined as lead s forecast error

e —. measures seasonal persistence, (), measures seasonal persistence
conditional on intra-seasonal association, and Y, is a normalized (),

e These measures have desired values on various SARIMA processes;
correct classification
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Future work
e |nvestigate seasonality measures on seasonally heteroscedastic processes
and stochastic seasonal means (including RegARIMA) processes
e Explore the impact of seasonal adjustment on seasonality measures

e Empirical testing
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tucker.s.mcelroy@census.gov
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