Estimating the Trend-Cycle in Topsy-Turvy Times

Canadä

Outline

- What is a trend-cycle?
- Method used for estimation at Statistics Canada
 - Initial selection criteria
 - Lessons Learned in the pandemic
- Other options
 - Description
 - Comparison
 - Preferred Option

What is the trend-cycle?

100

Descriptions:

- OECD Glossary: the component that represents variations of low frequency in a time series, the high frequency fluctuations having been filtered out...variations with a period longer than a certain threshold
- <u>www.statcan.gc.ca</u>: Trend-cycle data represent a smoothed version of a <u>seasonally adjusted time series</u>
- The trend is the long-term upward or downward movement observed in the data over several years or decades. The cycle is a sequence of smooth fluctuations around the long-term trend characterized by alternating periods of expansion and contraction.

In practice:

Best practice involves judging nature of shocks and reacting accordingly

Convention for which components should absorb different types of "events"

What is the trend-cycle?

We can use tried and true methods to extract empirical trends

- Apply X-12-ARIMA with automatic options, including automatic detection of AO, LS
- Apply TRAMO-SEATS with automatic options, including automatic detection of AO, LS

Resulting Trend-cycle is very similar

* Results from automatic detection of LS and AO seems quite intuitive.

Empirical Trends (X-12-ARIMA and TRAMO-SEATS)

Method Used for Estimation at Statistic Canada

Initial Selection Criteria

- Properties of resulting Trend-Cycle estimates
 - Minimize Revisions
 - Maximize Smoothness
 - Minimize lag and error in detecting turning points
- Transparency of Method
 - Linear / Additive
 - Reproducibility

Method Used for Estimation at Statistic Canada

Cascade Linear Filter proposed by Dagum and Luati (2009) has been used at Statistics Canada since 2015 to produce trend-cycle estimates for key economic indicators

Simplification to Asymmetric Filters "Cut-and-normalize"

A linear approximation to "Dagum 2-Step" proposed in Dagum, E. B. (1996).

 method includes forecasting, outlier detection and smoothing via 2 passes of X-12-ARIMA

References:

Dagum, E. B. (1996). "A new method to reduce unwanted ripples and revisions in trend-cycle estimates from X11-ARIMA". *Survey Methodology*, **22**, 77-83.

Dagum, E. B. and Luati, A. (2009). "A Cascade Linear Filter to Reduce Revisions and False Turning Points for Real Time Trend-Cycle Estimation". *Econometric Reviews*, **28:1-3**, 40-59.

Cascade Linear Filter

thousands 19,600 19,400 19,200 19,000 18,800 18,600 18,400 18,200 18,000 17,800 Feb. 2015 2016 2017 2018 2019 Seasonally adjusted ■ Trend-cycle Source(s): Table 14-10-0287-01 (formerly CANSIM table 282-0087).

Note(s): The higher variability associated with the trend-cycle estimates is indicated with a dotted line on the chart for the current reference month and the three previous months. For more information, see the note to readers.

Trend-cycle estimates are included in selected charts as a complement to the seasonally adjusted series. These data represent a smoothed version of the seasonally adjusted time series and provide information on longer-term movements including changes in direction underlying the series. For information on trend-cycle data, see Irend-cycle data, see Irend-cycle estimates - Irend-cycle estimates</a

Both seasonally adjusted data and trend-cycle estimates are subject to revision as additional observations become available. These revisions could be large and could even lead to a reversal of movement, especially for reference months near the end of the series or during periods of economic disruptions.

Trend-cycle estimates - Frequently Asked Questions: https://www.statcan.gc.ca/en/dai/btd/tce-faq

Details on calculation of trend-cycle estimates at Statistics Canada

https://www.statcan.gc.ca/en/dai/btd/trend-cycle

Our experience during the pandemic

Scenario 1 – Short-term Recovery

Our experience during the pandemic

Scenario 2 – Extended Recovery

Real-time Trend-Cycles during economic shocks

- Since the onset of the pandemic we observed:
 - Larger than usual revisions
 - Some delay in reacting to pace of change and detected turning points
 - Counterintuitive bumps

Real-time Trend-Cycles during economic shocks

Suppressed Trend-Cycle Extended Recovery: 2019 - present

Going forward, we will need to deal with shocks in real-time

- What is the best for the user?
 - Publish concurrent estimates as they evolve in real-time?
 - With appropriate caveats
 - Suspend publication of TC until future periods are available?
 - Start / stop based on objective criteria (TBD)

Retroactive Trend-Cycles with economic shocks

- Turning points
 - Onset SA: Feb 2020, TC: Sept 2019
 - Recovery SA: March 2020, TC: April 2020
- Shocks partially attributed to trendcycle
 - Consecutive irregular effects with same sign
- Waves
 - CLF smooths out bumps and dips as expected (i.e. filters to irregular)

Retroactive Trend-cycles with economic shocks

Modified CLF Options for Trend-Cycle Break (single significant level shift)

Impose Level Shift: Estimate LS in ARIMA model, apply CLF to LS-adjusted series, remove LS adjustment to finalize Trend-Cycle

<u>Two-sided segmented CLF</u>: break series at shock, estimate Trend-Cycle for each segment with CLF, join segments to produce Trend-Cycle

One-sided segmented CLF: estimate entire Trend-Cycle with CLF, overwrite after shock with estimated Trend-Cycle for that segment

Retroactive Trend-cycles with economic shocks

Modified CLF Options for Irregular Break (two opposite significant level shifts in close proximity)

<u>Impose Level Shift</u>: Estimate LS in ARIMA model, apply CLF to LS-adjusted series, undo LS adjustment to finalize Trend-Cycle (Linear interpolation between level shifts)

<u>Two-sided segmented CLF</u>: divide series, estimate Trend-Cycle for each segment with CLF, join segments to finalize Trend-Cycle, linear interpolation

One-sided segmented CLF: estimate entire Trend-Cycle with CLF, overwrite with estimated Trend-Cycle for segment after break, linear interpolation

Preferred Option: Two-sided segmented CLF

- Break series and use asymmetric filters before and after
 - Closely approximates target (D12 from X-12-ARIMA)
 - Some loss in transparency
 - Need to specific break points to replicate
 - Linear/Additive
 - Order invariant
 - Preserves desirable properties of Cascade Linear Filters

Next Steps

- Gather feedback from internal analysts for specific programs
- Formalize a standard method for the agency's publications
 - Define criteria and fine-tune parameters
 - E.g.
 - Trend-Cycle Breaks: if Level Shift with t-value > 5, apply revised methodology
 - Irregular breaks: If 2 level shifts within 6 months with t-value > 5 in opposite directions, introduce break at both points and apply linear interpolation in between
- Update calculations in systems and documentation
- Publish Trend-Cycles according to revised methodology in 2023

Thank you / Merci!

• For more information, please contact me at:

steve.matthews@statcan.gc.ca

