Effects of Different Temporary Change Decay Rates in Monthly Retail Sales Time Series

Eric Valentine

Seasonal Adjustment Practitioners
Workshop 2022

Disclaimer

 Any views expressed are those of the author and not those of the U.S. Census Bureau.

Outline

Background on Retail Sales Data

Temporary Change Regressor

Phase 1 Research

Phase 2 Research

Monthly Retail Trade Survey (MRTS)

- Retail and food services stores and inventories
- Survey is authorized by Title 13, U.S. Code
- 13,000 retail businesses
- Stratified sample drawn from the Business Register
- Data users from government, academic, and business communities

Monthly Retail Trade Survey (MRTS)

- Not adjusted and seasonally adjusted series
 - 65 published not adjusted series
 - 38 published seasonally adjusted series
- Annual Review
 - Team of reviewers from across the Economic Statistical Methods Division
 - Pandemic Effects
 - Temporary Change Regressor

Temporary Change (TC) Regressor

TCdate = TCyyyy.mm(TC2020.04 or TC2020.4 or TC2020.Apr

Temporary Change (TC) Regressor

Temporary change at t₀

$$TC_t^{(t_0)} = \begin{cases} 0 & for \ t < t_0 \\ \alpha^{t-t_0} & for \ t \ge t_0 \end{cases}$$

where α is the rate of decay back to the previous level, $0 < \alpha < 1$ (default: 0.7 for monthly and 0.343 for quarterly series)

Phase 1 research

- 65 retail sales time series
 - January 2002 to June 2021
 - Automatic model: ARIMA, outliers, trading day, easter
 - Decay rates: 0.2, 0.5, 0.7, 0.9
- Error running one of the models
 - Decay Rate = 0.2
 - Regression matrix singularity
- Two options
 - Remove that series or set outliers

Phase 1 research

Removed problem series

64 remaining series

- Counts and frequencies at each decay rate
 - AR, MA, outliers, TCs, trading day, easter
 - Different regressor sets

Proportion of models with nonseasonal MAs

Proportion of models with seasonal MAs

Proportion of models with nonseasonal ARs

Proportion of models with seasonal ARs

Average number of outliers

Average number of TCs

Average number of trading day variables

Proportion of models with Easter Holiday

Phase 2 research

- ARMA coefficient cross correlations
- Union of outliers
- Rerun the models
 - Potentially four sets of regression models for each series at each decay rate
 - Same ARIMA model in each regression set
 - AICC comparisons
- Changing coefficients
 - Hard coded vs auto

Phase 2 research

Percent of lowest AICCs			
Regression Set	Best Decay Rate	Total models with at least one TC	Percent
Decay rate = 0.2	0.2	57	68.4%
Decay rate = 0.5	0.5	54	88.9%
Decay rate = 0.7	0.7	54	64.8%
Decay rate = 0.9	0.9	54	57.4%

- Removed series without TC regressors
- Best performing decay rate is 0.5

Conclusions

 Decay rate of 0.5 may be best for retail sales time series

Finding only relate to Retail Sales time series

Further research to come

References

- https://www.census.gov/retail/mrts/about_the_survey s.html
- Ladiray and Quenneville. 2001. Seasonal Adjustment with the X-11 Method. Lecture Notes in Statistics.
 Springer-Verlag New York, Inc. Springer, New York, NY
- Time Series Research Staff. 2021. X-13ARIMA-SEATS reference manual, accessible HTML output version, version 1.1. Center for Statistical Research and Methodology. U. S. Census Bureau. https://www2.census.gov/software/x-13arima-seats/x13as/unix-linux/documentation/docx13ashtml.pdf.

QUESTIONS?

eric.valentine@census.gov

