Composite Seasonal Adjustment

Richard Penny ${ }^{1}$
Statistics New Zealand (StatsNZ)

8 June, 2022
${ }^{1}$ The views expressed in this talk are those of the presenter and not necessarily those of Statistics New Zealand

What is a composite Seasonal Adjustment

This talk motivated by R package seasonal V 1.9 .0 which now can handle composite series

- We have a total that it is the arithmetic combination of some component series
- Do we seasonally adjust the components and add, or add and then seasonally adjust?

$$
\subset=A+B . \text { Is } S A(C)=S A(A)+S A(B), \text { or } S A(C)=S A(A+B) ?
$$

■ $S A(C)=S A(A)+S A(B)$ is termed indirect seasonal adjustment
$\square S A(C)=S A(A+B)$ is termed direct seasonal adjustment
■ Direct adjustment does not preserve additivity, so often preference is for indirect

Indirect or Direct - Theory

■ For additive adjustments the way the components interact is straight-forward

$$
\begin{align*}
A+B & =C_{A}+S_{A}+I_{A}+C_{B}+S_{B}+I_{B} \\
& =\left(C_{A}+C_{B}\right)+\left(S_{A}+S_{B}\right)+\left(I_{A}+I_{B}\right) \tag{1}
\end{align*}
$$

■ Multiplicative components are more complicated which I won't go into, but I have document that covers it.

Direct or Indirect - Practice

■ Additive adjustments

$$
\begin{align*}
A+B & =C_{A}+S_{A}+I_{A}+C_{B}+S_{B}+I_{B} \\
& =\left(C_{A}+C_{B}\right)+\left(S_{A}+S_{B}\right)+\left(I_{A}+I_{B}\right) \tag{2}
\end{align*}
$$

■ As the seasonal factors combine nicely it is a case of what the signal to noise ratio is like for indirect versus direct

- Well known that if components are "in-phase" direct adjustment likely be better as the seasonal components reinforce, whereas irregulars not so much (depends on variance in component series)
■ Conversely, series "out of phase" better to indirectly adjust as seasonal patterns cancel out, whereas irregular stays about the same
- In all case we can only estimate the components.

Composite Seasonal Adjustment in StatsNZ Stats

- Introduced into StatsNZ in mid 1980's when we migrated from SAS Proc X11 to Statistics Canada's X-11-ARIMA software

■ Policy was to choose method based on X-11-ARIMA composite quality statistics, though preference for indirect.

- The quality was based on a smoothness criteria, where \hat{X}_{t} are the seasonally adjusted values for both outputs and H is the 13 -term Henderson filter (Dagum, 1979)
- $R_{1}=\sum_{t}\left(\hat{X}_{t}-\hat{X}_{t-1}\right)^{2}$
- $R_{2}=\sum_{t}\left(\hat{X}_{t}-H \hat{X}_{t}\right)^{2}=\sum_{t}\left[(I-H) \hat{X}_{t}\right]^{2}$

■ We programmed into our s.a. system the ability to graph the direct and indirect s.a. series

- If there is a significant difference usually a sign something odd is happening
- Not used as much as it should
- How to work from the bottom to the top. That is, if $A+B=C$ and $D+E=F$ and $C+F=G$, how do we integrate our decisions at the lower level into the upper level? And the intermediate levels.

■ How to handle non-seasonal components
■ Where does the indirect trend come from?

- For that we had to look at the FORTRAN code associated with that module

■ Consider various puzzling output and problems

- Model consistency for composite balances
- That is, composite $C=A-B$ e.g. trade balances
- As the balances have negative values in the time series we have to use additive adjustment. And they look additive too
■ Components are clearly multiplicative
■ Should we worry?
■ Puzzle \#1a How are we going to implement RegARIMA models in a consistent manner?
- The indirect trend should be, ...

■ StatsNZ releases trend series. Just D12 (direct) or ITN (indirect)
■ In two cases for indirect outputs users loaded s.a. components and used Db to create sums (i.e. not .isa). Did the same for trend (added the component .d12).
■ I thought that this "error" would create a less smooth indirect series, but in both cases I was wrong

- The case of the fishing industry
- The components are highly seasonal - though some small values

■ However total is not - probably fishing boat capacity
■ Should we even bother with composite?

- More than one way to create a composite
- That is, $C=A+B$ and $C=D+E$
- Can't do it both ways so
- Pick the most important way to combine?
- Pick the one that is indirect (if other way prefers direct)?

■ Pick the composite with best quality?

- Outliers in different places in components

■ We'll identify outliers in component but unlikely to be aligned to the ones in composite

- Generally not a problem as outliers in components primarily not large (e.g. $2.8 \sigma^{2}-4 \sigma^{2}$)

■ Have had problems with largish outliers in one or two components not being recognised in direct composite. So are we comparing "like with like"?

■ Difference between component story and composite story
■ For a composite series with two components we had decided that direct gave the better adjustment

- One month the components both went down but the composite (direct) went up. Needless to say the client was very worried
■ Never got to the bottom of it as anomaly disappeared next month
- Possibilities

Human Error A very complicated structure underneath. There were about 4 layers below so someone could have made a mistake implementing decisions
Technical glitch There were big partial C17 weights in the components, but not composite Methodologically interesting May inform us as to which composite identifies turning points first

- And the perennial, how do we decide which is the better seasonal adjustment?
- And in StatsNZ's case, also the best trend?

Richard.Penny@stats.govt.nz

