Bayesian Dependent Functional Mixture Estimation for Area and Time-Indexed Data: An Application for the Prediction of Monthly County Employment

Terrance D. Savitsky ¹ Matthew R. Williams ²

¹ U.S. Bureau of Labor Statistics (Office of Survey Methods Research)

²RTI International (Division for Statistical and Data Sciences)

Seasonal Adjustment Practitioners Workshop June 7-8, 2022

Outline

Motivation: LAUS Forecasts

Model: Four Major Components

Forecast Performance: Comparing Alternatives

Background

- ► Local Area Un/employment "survey" (LAUS) publishes by county
 - ► Employment and Unemployment totals
 - Monthly
 - ► For *every* county and Municipal Civil Division (MCD) in the U.S.
 - ▶ ... there is no survey.

Background (2)

- ► LAUS project forward census instrument
 - Quarterly Census of Employment and Wages (QCEW)
 - ▶ by 7 months
 - for each county time series, separately
 - Includes seasonality
- Simultaneously model collection of county time-series
 - ► To produce more accurate predictions.

LAUS Employment Estimation

- LAUS (Local Area Unemployment Survey) partners with States for county-level monthly employment
- ► CES (Current Employment Statistics) is unavailable for 1751 out of 3108 counties
- ► Partnering with QCEW (Quarterly Census of Employment and Wages) program to use lagged data and project forward 7 months
- ▶ Data set is $N = 3108 \times T = 180$,
- i = 1, ..., (N = 3108) counties
- ▶ j = 1, ..., (T = 180) months
 - ▶ Observe Jan 2002 May 2016
 - ▶ Predict 7 months, June December 2016
- ▶ Project monthly values, by county, for remainder of 2016.

Outline

Motivation: LAUS Forecasts

Model: Four Major Components

Forecast Performance: Comparing Alternatives

County-indexed Time Series

- $\qquad \qquad \mathbf{y}_{ij} \sim \mathcal{N}\left(f_{ij} = \mathbf{pred}_{ij} + \mathbf{tr}_{ij} + \mathbf{seas}_{ij}, \tau_y^{-1}\right)$
- $lackbox{pred}_{ij} = \mathbf{x}_{ij}^{'} oldsymbol{eta}_i; oldsymbol{eta}_i \sim \mathcal{N}_P\left(oldsymbol{\mu}_i, \Lambda_i^{-1}
 ight)$
- ightharpoonup T imes 1, $\operatorname{tr}_i \sim f_{\nu_i}$, autoregressive, bw $1 \ (\operatorname{tr}_{i,j-1},\operatorname{tr}_{i,j+1})$.

$$\operatorname{tr}_{i} \stackrel{\operatorname{ind}}{\sim} \nu_{i}^{\frac{T-1}{2}} \exp\left(-\frac{\nu_{i}}{2} \sum_{j=1}^{T-1} \left(\operatorname{tr}_{i(j+1)} - \operatorname{tr}_{ij}\right)^{2}\right) \tag{1}$$

$$=\nu_i^{\frac{T-1}{2}}\exp\left(-\frac{\nu_i}{2}\mathsf{tr}_i^TQ\mathsf{tr}_i\right) \tag{2}$$

- ▶ Precision matrix, $Q = (D \Omega)$
- Rank-deficient since mean level not identified
- Probabilistic local smoother

County-indexed Time Series

- $ightharpoonup y_{ij} \sim \mathcal{N}\left(f_{ij} = \operatorname{pred}_{ij} + \operatorname{tr}_{ij} + \operatorname{seas}_{ij}, \tau_y^{-1}\right)$
- ightharpoonup pred $_{ij}=\mathbf{x}_{ij}^{'}oldsymbol{eta}_{i};\,oldsymbol{eta}_{i}\sim\mathcal{N}_{P}\left(oldsymbol{\mu}_{i},\Lambda_{i}^{-1}
 ight)$
- ightharpoonup T imes 1, $\operatorname{tr}_i \sim f_{\nu_i}$, autoregressive, bw $1 \ (\operatorname{tr}_{i,j-1},\operatorname{tr}_{i,j+1})$.
- ▶ 2 options for $T \times 1$, seas_i:
 - seas_i $\sim g_{\phi_i}$, autoregressive, bw (O=12)-1 (seas_{ij},..., seas_{i(j+(O-1))})
 - ▶ Improper, local, seas_i = $\mathcal{N}_T \left(\mathbf{0}, Q_i^{-1} = \left[\tau_i \left(D \Omega \right) \right]^{-1} \right)$
 - Proper, global seas_i = $\mathcal{N}_T \left(\mathbf{0}, Q_i^{-1} = \left[\tau_i \left(D \rho_i \Omega \right) \right]^{-1} \right)$
 - $\begin{array}{l} \blacktriangleright \ \operatorname{seas}_{ij} = \operatorname{fourier\ basis} = \\ \begin{bmatrix} {}^{O-1\times 1} \\ \mathbf{z}_{ij} \end{bmatrix} = & \left\{ \cos\left(\frac{2\pi k_1 j}{O}\right), \sin\left(\frac{2\pi k_2 j}{O}\right) \right\}_{k_1 = 1, \ldots, O/2, \ k_2 = 1, \ldots, (O/2-1)} \end{bmatrix} \times \kappa_i \\ \blacktriangleright \ \mathbf{x}_{ij} \leftarrow (\mathbf{x}_{ij}, \mathbf{z}_{ij}) \ \operatorname{and} \ \boldsymbol{\beta}_i \leftarrow (\boldsymbol{\beta}_i, \kappa_i). \end{aligned}$

County-indexed Time Series

- $\blacktriangleright y_{ij} \sim \mathcal{N}\left(f_{ij} = \operatorname{pred}_{ij} + \operatorname{tr}_{ij} + \operatorname{seas}_{ij}, \tau_y^{-1}\right)$
- ightharpoonup pred $_{ij}=\mathbf{x}_{ij}^{'}oldsymbol{eta}_{i};\,oldsymbol{eta}_{i}\sim\mathcal{N}_{P}\left(oldsymbol{\mu}_{i},\Lambda_{i}^{-1}
 ight)$
- ightharpoonup T imes 1, $\operatorname{tr}_i \sim f_{\nu_i}$, autoregressive, bw $1 \ (\operatorname{tr}_{i,j-1},\operatorname{tr}_{i,j+1})$.
- ▶ 2 options for $T \times 1$, seas_i:
 - ▶ seas_i $\sim g_{\phi_i}$, autoregressive, bw (O = 12) 1 (seas_{ij}, . . . , seas_{i(j+(O-1))})
 - ► seas_{ij} = fourier basis = ${\mathbf{z}_{ij}^{O-1 \times 1}} \times \kappa_i$ ► $\mathbf{x}_{ii} \leftarrow (\mathbf{x}_{ij}, \mathbf{z}_{ij})$ and $\beta_i \leftarrow (\beta_i, \kappa_i)$.
- Probabilistic Clustering:
 - ightharpoonup Collect, $oldsymbol{ heta}_i = (
 u_i, \phi_i, oldsymbol{\mu}_i, \Lambda_i)$
 - ▶ Unique cluster parameter values, θ_k^* , $k = 1, ..., K \le n$
 - ▶ If counties $i, \ell \in \mathsf{cluster}\ k \to \pmb{\theta}_i = \pmb{\theta}_\ell = \pmb{\theta}_k^*$

Predictors Used for Clustering

- ▶ location quotient $\in [0,1]$, employment concentration of economic sector in county compared to national average.
- ► Sectors constructed from the first 2— digits of detailed NAICS industry code
- Sectors: Construction, Transportation, Services, Leisure, Public, Mining, Manufacturing, Information, Education.
- Assertion: location quotient more useful than spatial contiguity.
 - e.g., Rural county adjacent to urban county
 - ► Distinct economic drivers / bases
- Other predictors:
 - Unemployment insurance (UI) claims in each month for each county to measure economic health.
 - ► Latitude and Longitude, computed based on population (rather than geographic) centroids

Outline

Motivation: LAUS Forecasts

Model: Four Major Components

Forecast Performance: Comparing Alternatives

Compare Seasonality Methods: Less Expressed

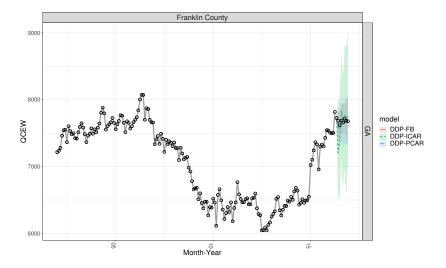


Figure: Fourier Basis (pink). Proper AR (blue), Local AR (green).

Compare Seasonality Methods: More Expressed

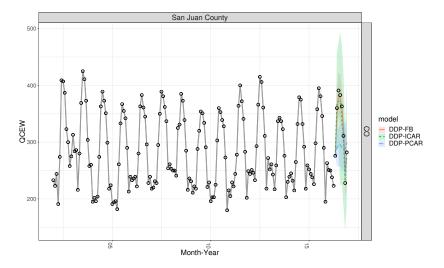


Figure: Fourier Basis (pink). Proper AR (blue), Local AR (green).

Smaller County

► Little seasonality expressed

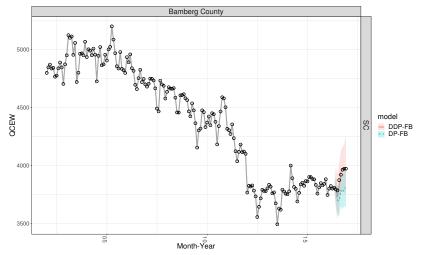


Figure: Predictor Assist (pink). Unsupervised (turquoise).

Medium-sized County

► Higher, but irregular seasonality expressed



Figure: Predictor Assist (pink). Unsupervised (turquoise).

Tiny County

► Fibrilation

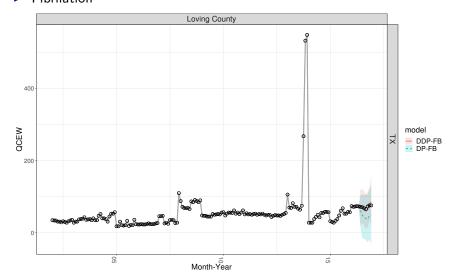


Figure: Predictor Assist (pink). Unsupervised (turquoise).

Spatial Process vs. Time-series

Higher, but irregular seasonality expressed

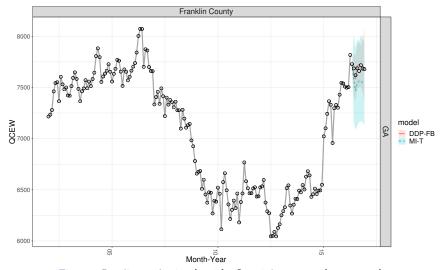


Figure: Predictor Assist (pink). Spatial process (turquoise).

Compare Prediction Errors of Models

Model	RMSPE	MAPE-C
Predictor Ast. Fourier (DDP - FB)	919	1.29%
Unsupervised Fourier (DP - FB)	1570	2.11%
Predictor Ast. Global (DDP - PCAR)	1688	2.45%
Predictor Ast. Local (DDP - ICAR)	2103	2.71%
Spatial Model (MI-t)	2987	3.37%
LAUS Production (SAEE)		2.49%

Comments:

- ► The models differentiated on seasonality
- ► DDP-FB performs best
- ► SAEE is the current production model

Summary

Bayesian Analysis, Advance Publication 1-25 2021. https://doi.org/10.1214/21-BA1274

- ▶ Heterogeneity between counties for seasonal structures is a challenge
- ► The Fourier Basis shows marked improvement over Autoregressive Smoothers
- ► The Predictor Assisted clustering (DDP) shows marked improvement over unsupervised clustering (DP)
- Co-modelling time series leads to better prediction vs. modelling time series separately
- ► Clustering based on similar economic indices improves performance.
- Modelling a spatially-varying time series was much more effective than modelling a time-varying spatial process

Thanks to:

 Garret Schmitt, Tyler Bohnsack, Nic Aakre, Andrew Bean, Walter Sylva

CONTACT INFORMATION

Savitsky.Terrance@bls.gov mrwilliams@rti.org

Bayesian Analysis, Advance Publication 1-25 2021. https://doi.org/10.1214/21-BA1274