Calendar Effects and Omitted Variables in Employment Time Series

Steve Mance

Bureau of Labor Statistics OEUS/DCES-SA Seasonal Adjustment Practitioners Workshop November 4, 2016

Any opinions expressed in this presentation are those of the author and do not constitute policy of the Bureau of Labor Statistics.

Overview

- Very brief explanation of Current Employment Statistics (CES) program
 - ► Focus on subnational data
- Four vs. Five week calendar effect
- Omitted variables and the problems they bring
- Screening for problems with alternate runs

Current Employment Statistics

- Large monthly survey (>600,000 establishments)
 - ► Fed-State cooperative
- Employment, hours, and earnings at National, State, and Area (MSA) level
- Some of the most timely economic indicators
 - ► Most interest: employment change
- Benchmarked to admin. data

Current Employment Statistics

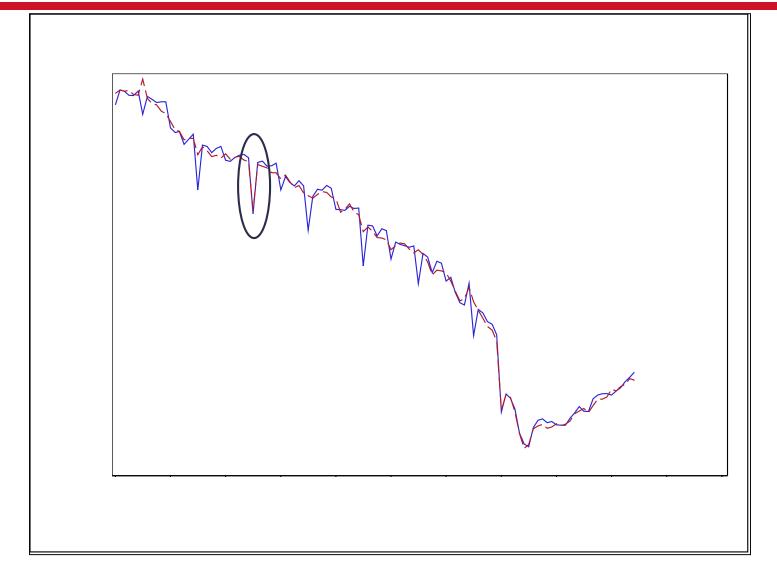
- State/MSA-level seasonal adjustment
 - "Two-Step" due to benchmark technique
 - Projected factors
 - Move to concurrent proposed for 2018
 - ► Publish 2024 SA series (not incl. 3MMA)
- CES reference period: "Pay period including the 12th of the month"
 - ► Time between reference weeks is variable
 - Noticeable in highly seasonal months
 - ► User-defined "4/5 Week Effect"

Four-Five Week Effect

Over-the-month Percent Change in Construction Employment, 1986-2016

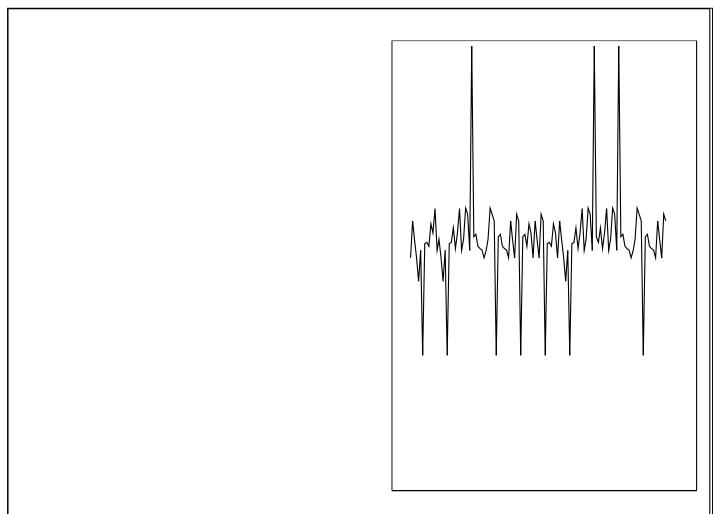
Four-Five Week Effect

Date	Weeks	dum1	dum2	dum3	dum4	dum5	dum6	dum7	dum8	dum9	dum10	dum11
JAN2016	4	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
FEB2016	5	0.0	-0.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MAR2016	5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
APR2016	4	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MAY2016	5	0.0	0.0	0.0	-0.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JUN2016	4	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0
JUL2016	5	0.0	0.0	0.0	0.0	0.0	-0.6	0.0	0.0	0.0	0.0	0.0
AUG2016	5	0.0	0.0	0.0	0.0	0.0	0.0	-0.6	0.0	0.0	0.0	0.0
SEP2016	4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0
OCT2016	5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.6	0.0	0.0
NOV2016	5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.6	0.0
DEC2016	4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0

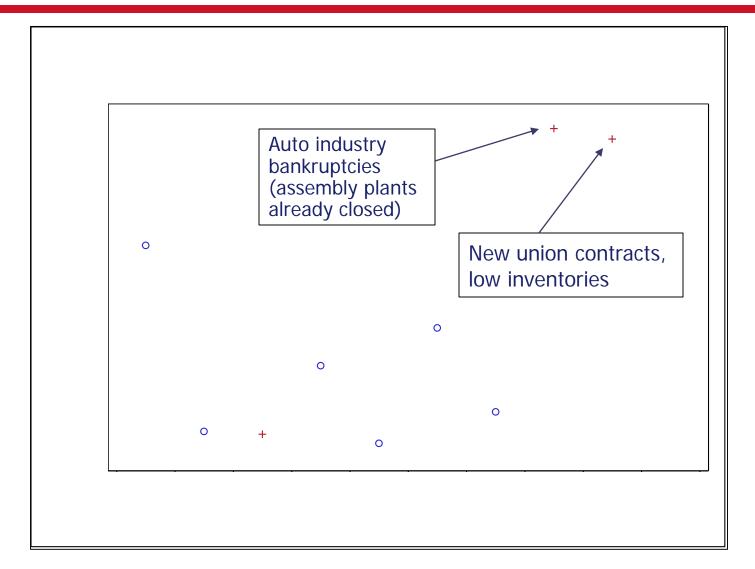


Four-Five Week Effect

- Important to control for fluctuations in the calendar
- Implemented w/ X-12-ARIMA in May 1996 (Cano et al.)
- Ten-year spans (standard CES input) will have few four (or five) week observation for each month
 - ► Potential for over-fitting the data



Ex. Michigan Durable Goods (Historical Problem)



Ex. Michigan Durable Goods (Historical Problem)

Ex. Michigan Durable Goods (Historical Problem)

Historical Problems

- Similar issues found in some other series w/ heavy auto-industry concentration
 - Midwest state-level durable goods mfg.
 - ► Some metro area total nonfarm
- Search for other problem series
 - ► Decennial Census, hurricanes, etc.
 - ► Hard to know what's a problem if not SME
- Bad projected factors: mid-year changes

Omitted Variables

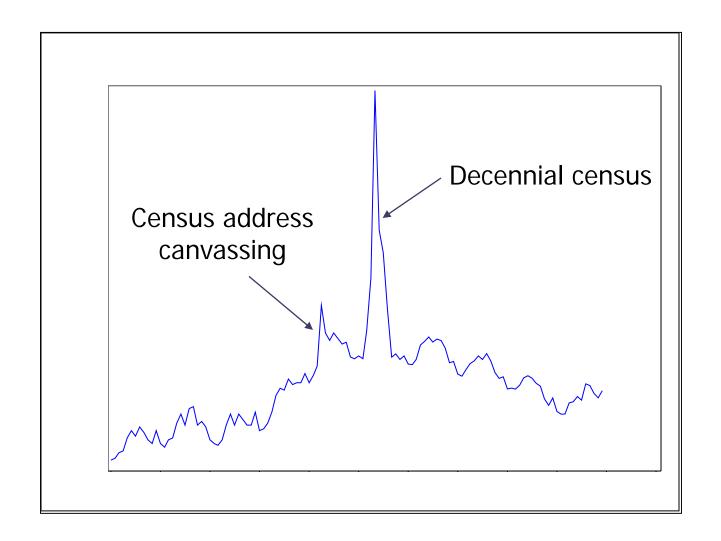
Model 1 ("Short regression"): $Y_{t} = \tilde{\alpha}' M_{t} + \tilde{\beta}' X_{1,t} + Z_{t}$ Model 2 ("Long regression"): $Y_{t} = \alpha' M_{t} + \beta' X_{1,t} + \gamma' X_{2,t} + Z_{t}$

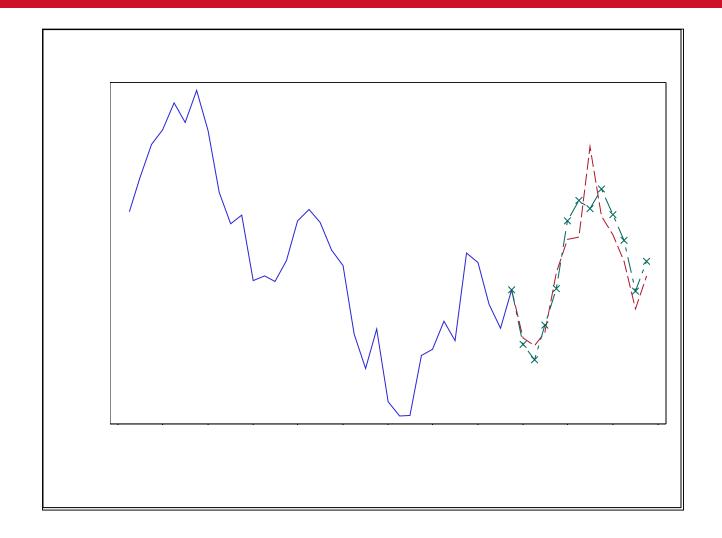
$$M_{t} = Month variables$$

 $X_{1,t}$ = Additive outliers, level shifts, interventions, &c.

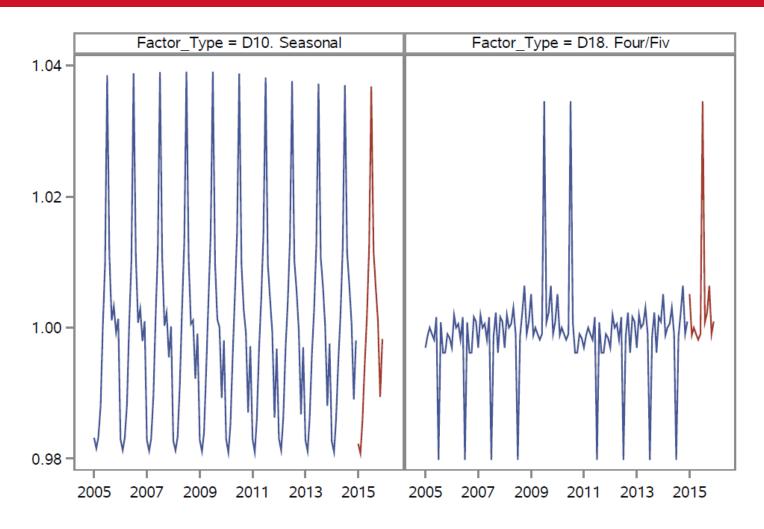
 $X_{2,t} = Other outliers and interventions not in Model 1$

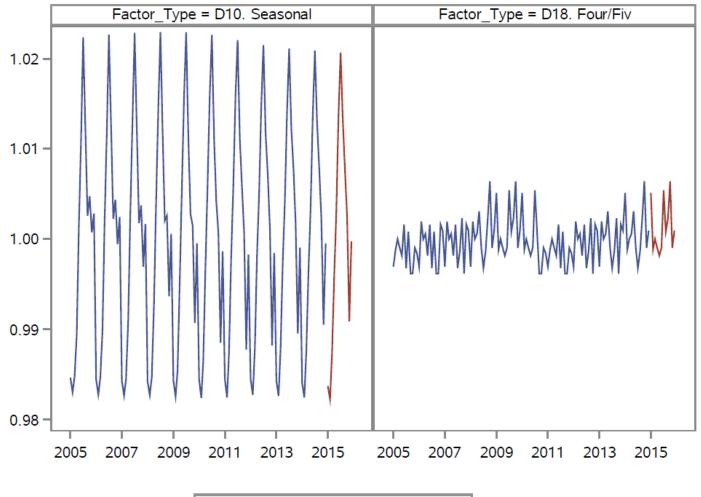
Two-Stage Runs


- Potentially biased estimates of α when omitting $\gamma'X_2$
 - ▶ If calendar and omitted vars correlated
- Proposal: do two runs
 - First run without $\alpha' M_t$
 - Run auto outlier detection
 - \triangleright Second run include $\alpha' M_t$
 - Use outliers from first run in regression spec
- Compare out-of-sample forecast
 - ► At series level and aggregate level


Overall Results

- Slight improvement in forecasts overall
- Noticeable improvement in known decennial census effect
- When BIG differences: alternate run usually better
- Two-stage modeling doesn't have more outliers in model
 - Perhaps better ones
- A variant where series was prior-adjusted using outliers from first run produced very similar results





Standard Run				Two-Stage Run	Two-Stage Run				
	Parameter	Standard				Standard			
Variable	Estimate		t-value	Variable	Estimate		t-value		
User-defined				User-defined					
dum1	0.0016	0.00173	0.91	dum1	0.0013	0.00207	0.64		
dum2	-0.0007	0.00153	-0.45	dum2	0.0009	0.00181	0.49		
dum3	0.0018	0.00186	0.97	dum3	-0.0008	0.00216	-0.37		
dum4	-0.0021	0.00184	-1.14	dum4	-0.0014	0.00216	-0.63		
dum5	0.0033	0.00170	1.91	dum5	0.0018	0.00199	0.90		
<mark>dum6</mark>	0.0118	0.00196	6.0 <mark>1</mark>	<mark>dum6</mark>	0.0021	0.00259	0.80		
dum7	0.0004	0.00168	0.26	dum7	0.0002	0.00201	0.08		
dum8	0.0021	0.00185	1.14	dum8	0.0017	0.00213	0.82		
dum9	0.0029	0.00168	1.71	dum9	0.0019	0.00204	0.96		
dum10	0.0010	0.00155	0.65	dum10	0.0017	0.00189	0.88		
dum11	0.0004	0.00168	0.22	dum11	-0.0003	0.00203	-0.16		
Automatically	Identified Outlie	ers		Outliers Identif	Outliers Identified from Prior Run				
AO2009.Apr	0.0414	0.0043	5 9.52	AO2009.Apr	0.0451	0.00518	8.72		
LS2010.Mar	0.0228	0.00543	3 4.19	LS2010.Apr	0.0417	0.00692	6.02		
AO2010.Apr	0.0375	0.00554	4 6.77	AO2010.May	0.129	6 0.0049	5 26.17		
TC2010.May	0.1838	0.0069	3 26.51	LS2010.Aug	-0.0548	0.00742	-7.38		
LS2010.Jun	-0.0587	0.00599	9 -9.80	TC2010.Sep	-0.0401	0.00636	-6.30		
AO2010.Sep	-0.026	1 0.0041	5 -6.28						

RMSE Ratios

■ RMSER < 1 shows gain

$$RMSER = \frac{RMSE(r_t^B)}{RMSE(r_t^A)}$$

r=over-the-month growth rates

A=standard run

B=two-stage run

RMSE Ratios

	2013	2014	2015
All series	0.97	0.89	0.97
Federal only	0.91	0.84	0.89
Sum-of-			
States	1.08	0.99	1.06

Takeaways

- Be careful when adjusting for calendar effects
 - Correlation of effect and other events causes OVB
- Alternate runs can help to screen for problems
 - ► Two-stage not a default for production
 - ▶ Visual screening may be effective
- Subjective prior adjustments or SMEchosen outliers should be considered

Questions/Comments?

Contact Information

Steve Mance

Bureau of Labor Statistics OEUS/DCES-SA

www.bls.gov/sae 202-691-5484

mance.steven@bls.gov

