
So You Just Got 300
New Series You Need
to Seasonally Adjust...

Brian C. Monsell and Osbert Pang
Brian.C.Monsell@census.gov

SAPW 2016
November 4, 2016

mailto:Brian.C.Monsell@census.gov

Disclaimer
 Any views expressed are those of the

author(s) and not necessarily those of the U.S.
Census Bureau.

2

Outline

 The problem
 364 Business Formation Series
 Our planned procedure

 Creating a diagnostic summary in R
 Seasonal package
 The udg() function

3

The problem
 The Center for Economic Studies is planning

on publishing seasonally adjusted estimates
for quarterly Business Formation series
 7 types of series
 In each type, there is an estimate for each state,

the District of Columbia, and the total for the US

 Plan a quick turnaround time

What was needed?
 A way to do a quick triage of the series
 Examine plots of the series
 Run all the series with default options
 Flag those that seemed problematic
 Do more extensive modeling and option checking for

the problematic series

 Do a final check with the final models and plots of
components

Plots of the time series
 Helpful in determining
 Span of modeling
 Transformation of the series
 Possible outliers

 Since data not yet released, no plots in this
presentation

Diagnostic summary
 Win X-13 produces an excellent summary of

available diagnostics and other model
information
 Allows the user to set limits for which

diagnostics to flag and at what level
 Win X-13 could also be used to generate the

spec files

Win X-13 diagnostic summary

Diagnostic threshold

However
 For security reasons we needed to run the

series from a specific drive
 Generating output files from X-13ARIMA-

SEATS (particularly HTML output files) caused
storage problems

R seasonal package
 Allows users to run X-13ARIMA-SEATS with R
 Eliminates many of the external files

generated by X-13ARIMA-SEATS
 Data and diagnostic information can be stored

in efficient data structures within R

Example
load seasonal package
library("seasonal")
Sys.setenv(X13_PATH = "h:/x13ashtml")
checkX13()

run Airline Series,
do X-11 seasonal adjustment
m <- seas(AirPassengers, x11="")
examine output file for run
out(m)

R seasonal package
 Have access to series and diagnostics

information for X-13 runs within R
 A new function for accessing the diagnostic

information is the udg() function
 Allows access to information from the .udg file

generated from X-13ARIMA-SEATS
 Can pull out all the output, or output for

individual keywords

date: Sep 22, 2016
time: 09.07.36
version: 1.1
build: 34
output: html
srstit: X-13ARIMA-SEATS run of airline
srsnam: airline
freq: 12
span: 1st month,1949 to 12th month,1960
constant: 0.0000000000E+00
transform: Log(y)
nfcst: 60
ciprob: 0.950000
lognormal: no
mvval: 0.1000000000E+10
iqtype: ljungbox
samode: multiplicative seasonal adjustment

airNfcst <- udg(m,"nfcst")
nfcst = 60, a number

airOutput <- udg(m,"output")
airOutput = "html", a string

airQSori <- udg(m,"qsori")
airQSori = 167.64858 0.00000,
a numeric vector

Running multiple series
 First, we’ll store the data in a list object
 An object with named sets of other objects
 thisData$series01

 Use lapply() to apply the seas()
function to each element of the data list
 Similar to running X-13ARIMA-SEATS in data

metafile mode

setwd("N:/timeSeriesCSRM")
ahq.data.list <- list(

state01 = import.ts("ahq_state01.dat"),
state02 = import.ts("ahq_state02.dat"),
state04 = import.ts("ahq_state04.dat"),
state05 = import.ts("ahq_state05.dat"),
us = import.ts("ahq_us.dat"))

#
ahq.data.list$state01 and
ahq.data.list[[1]] are equivalent
#

ahq.lauto <- lapply(ahq.data.list,
function(x) try(seas(x, x11 = "")))

Result is a list of seas objects that
can be used with udg() and other
functions to get diagnostic information
#
Example: to view output for state1 –

out(ahq.lauto$state1)

Construct diagnostic summary

 Use similar criteria as Win X-13
 Slightly modified for quarterly series
 Create a number of R functions that use the
udg() function

Series of diagnostic tests
 Significant Seasonality using QS diagnostic
 Basic regARIMA Model diagnostics
 ACF and PACF diagnostics
 Residual Seasonality
 regARIMA residuals (QS)
 Seasonally adjusted series and irregular series

(QS)
 D11 F-test

Series of diagnostic tests
 Seasonal Adjustment Diagnostics
 Sliding Spans Diagnostic
 Q2, M7 Diagnostic

 Note – if these were monthly series, we would
also want to check
 Spectral peak results
 Presences of calendar effects

R functions for diagnostics
 For each set of diagnostics we want to test, we

have two types of functions
 A function that returns a value of “pass”, “fail” or

“warn” for each series in the list, depending on
the criteria (Example: QS.test())
 A function that returns a text string that gives the

reason why a series failed or got a warning
(Example: QS.test.why())

R functions for diagnostics
 Again, we’ll use the lapply() function to

apply these functions to each series

ahq.qs.test <- lapply(ahq.lauto,
function(x) try(QS.test(x, testspan=FALSE)))

ahq.qs.fail <- UDGmatch(ahq.qs.test,"fail")
if (ahq.qs.fail[[1]] != "none") {
ahq.qs.fail.why <- lapply(ahq.lauto[ahq.qs.fail],

function(x) try(QS.test.why(x)))
} else { ahq.qs.fail.why <- "none" }

ahq.qs.warn <- UDGmatch(ahq.qs.test,"warn")
if (ahq.qs.warn[[1]] != "none") {
ahq.qs.warn.why <- lapply(ahq.lauto[ahq.qs.warn],

function(x) try(QS.test.why(x)))
} else { ahq.qs.warn.why <- "none" }

Final diagnostic summary
 The diagDF() function (Osbert Pang)
 Takes the output from all the tests and put

them into one data table
 First column gives the series name
 Each column is a different test
 If a test doesn’t pass for all series, there is a

column after that column showing the reason for
the fail or warn state

Example diagnostic file
 Used the write.csv() function to store

the diagnostic summary into a separate file

What next?
 Identify series that need extra attention
 View the X-13ARIMA-SEATS output using the
out() function
 Rerun seas with updated options
 Function called saveSpecFile() will save the

seas function call used to generate a given m
object into a separate file

Example
saveSpecFile("ahq","us")
contents of ahq.us.r is below:

x <- ahq.data.list$us
m.us <-
seas(x = x, transform.function = "log", x11 = "",

slidingspans = "", forecast.maxlead = 8,
check.print = "pacf",
regression.variables = "ls2007.4",
arima.model = "(1 1 0)(0 1 1)",
regression.aictest = NULL,
outlier = NULL)

Save final options
 Once we have a final set of options:
 Store the final seas object into the list of seas

objects
 Use the static() function to create a set of

final seas objects that can be used when new
data are added to the data list

Save final options

ahq.lauto$us <- m.ahq.us

ahq.lcall <- lapply(ahq.lauto, static,
x11.filter = TRUE, test = FALSE)

re-evaluate static calls with new data
Map(function(x, call) eval(call),

x = ahq.lnewdta,
call = ahq.lcall lcall)

Future work
 Go back over the functions
 Simpler
 More modular
 Not dependent on naming conventions

 Integrate this with what James is doing

Questions?

Brian C. Monsell
Email : brian.c.monsell@census.gov

mailto:brian.c.monsell@census.gov

	So You Just Got 300 New Series You Need to Seasonally Adjust...
	Disclaimer
	Outline
	The problem
	What was needed?
	Plots of the time series
	Diagnostic summary
	Win X-13 diagnostic summary
	Diagnostic threshold
	However
	R seasonal package
	Example
	R seasonal package
	Slide Number 14
	Slide Number 15
	Running multiple series
	Slide Number 17
	Slide Number 18
	Construct diagnostic summary
	Series of diagnostic tests
	Series of diagnostic tests
	R functions for diagnostics
	R functions for diagnostics
	Slide Number 24
	Final diagnostic summary
	Example diagnostic file
	What next?
	Example
	Save final options
	Save final options
	Future work
	Questions?

