

Smoothing Residual Seasonality from Indirectly Adjusted Series

Presented at the first Seasonal Adjustment Practitioners Workshop November 4, 2016

Michel Ferland, France Guindon-Hart and Steve Matthews, Statistics Canada

Outline

- Statistics Canada's Building Permits Survey
- Challenges for Seasonal Adjustment
- Smoothing Approach
- Conclusions

Statistics Canada's Building Permits Survey

- Administrative Data Program
 - Collects monthly data on the value of permits issued by Canadian municipalities
 - Totals published for domains based on type of building and geographic areas
- Seasonal Adjustment
 - X12ARIMA methodology, implemented in production environment around Fortran executable
 - Upcoming transition to SAS-based Time Series Processing System
 - Need to seasonally adjust 110 individual series:
 - 5 Activity Sectors: (Residential (Single or Multi) or Non-Residential (Commercial, Institutional or Industrial)
 - 22 Geographical Areas:
 - 9 Provinces with 2 types of areas (Census Metropolitan Areas (CMA) or Other)
 - 4 Province / Territory totals
 - Total Building Permits is derived by aggregating adjusted components (indirect)

Challenges with Building Permits Data

Identifiable Seasonality Approach

- Adjust those with identifiable seasonality, treat others as summary series
 - Identifiable seasonality based on typical statistics, modelling and graphical analysis
- Many series don't have identifiable seasonal patterns
 - Fairly flat due to even distribution of permits (year-round)
 - Spikes in activity in different months, or sectors over different years

Significant projects (e.g. hospital) introduce volatility

Not always in the same month – but often in same season

Identifiable Seasonality Approach - Description

Identifiable Seasonality approach led to the following results:

Sector	Permit Type	Seasonally Adjusted Series (n)	Seasonally Adjusted Series (%)	Contribution of Seasonally Adjusted Series' to Sector Total
Non-Residential	Commercial	8	36.4%	65.4%
	Institutional	2	9.1%	17.5%
	Industrial	6	27.3%	58.0%
Residential	Multiple	14	63.6%	44.4%
	Single	21	95.5%	99.98%

Identifiable Seasonality Approach - Results

 No residual seasonality in component series (by design)

- Residual Seasonality in Total Value of Permits
 - "Residual seasonality present in the last 3 years at the 5 percent level"
 - Particularly obvious in trend-cycle

Approach 1 - Aggregate cross-sectionally

- Adjust total (or sub-total) directly to address residual seasonality
 - Need additional step to reconcile components to totals
- Issues:
 - Reconciliation available only after system transition
 - Loss of coherence between components and totals
 - Deviations from strict seasonal pattern persist at aggregate level

Activity Sector	Province	Type of Area	2000-01	2000-02	2000-03	2000-04	 2016-08
Non-Residential - Commercial	Newfoundland	CMA	Х	Х	Х	Х	 Х
		Other	Х	Х	Х	Х	 Х
	Prince Edward Island	Total	х	х	x	x	 х
Residential - Singles	British Columbia	Other	X	Х	X	X	 Χ

Approach 2 – Aggregate across time

- Adjust quarterly aggregates for components
 - Quarterly pattern is more stable than monthly pattern
 - Additional step to benchmark adjusted monthly to quarterly values
- Issues:
 - Benchmarking available only after system transition
 - Monthly spikes still present
 - Revisions introduced when quarter is completed

Activity Sector	Province	Type of Area	2000-01	2000-02	2000-03	2000-04	 2016-08
Non-Residential - Commercial	Newfoundland	CMA	Х	Х	Х	Х	 X
		Other	Х	Х	Х	Х	 Χ
	Prince Edward Island	Total	Х	Х	Х	х	 Х
Residential - Singles	British Columbia	Other	Х	Х	Х	Х	 X

Approach 3 - Combine smoothing with seasonal adjustment

- Adjust components that are not strictly seasonal
 - Allow less stability in the seasonal pattern
 - Adjustments would generally be small but could create false signals
 - Consider adjustment of borderline series as a smoothing
 - Increase outlier and extreme value tolerances (inconsistent spikes contribute)
 - Shorten length of seasonal filters

Activity Sector	Province	Type of Area	2000-01	2000-02	2000-03	2000-04	 2016-08
Non-Residential - Commercial	Newfoundland	CMA	X	X	X	X	 X
		Other	X	X	X	X	 X
	Prince Edward Island	Total	Х	х	х	X	 Х
Residential - Singles	British Columbia	Other	X	Χ	X	X	 Х

Approach 3 - Combine smoothing with seasonal adjustment

- Seasonal Adjustment and Smoothing
 - Series that are not strictly seasonal could still be adjusted (smoothed)
 - Target: adjust series representing a minimum of 95% of activity within sector
 - i) Traditional approach where target already met
 - ii) If not, adjust (smooth) seasonal series and largest until 95% of activity is represented

Default parameters (starting point)

- Critical value for RegARIMA outlier detection = 5
- Sigma limits for extreme = 2,4
- Seasonal Filter = S3X3

Approach 3 – Combine smoothing with seasonal adjustment

Combined approach led to the following results:

Sector	Permit Type	Seasonally Adjusted Series (n)	Seasonally Adjusted Series (%)	Contribution of Seasonally Adjusted Series' to Sector Total	
Non-Residential	Commercial	14	63.6%	96.4%	Was 65.4%
	Institutional	12	54.5%	95.1%	Was 17.5%
	Industrial	12	54.5%	95.8%	Was 58.0%
Residential	Multiple	17	77.3%	99.2%	Was 44.4%
	Single	21	95.5%	99.98%	

Before and After

Total value of permits

billions of dollars

billions of dollars

Summary of Combined Approach

- Less strict definition of seasonal pattern for borderline, large series
 - Allows peaks to occur in different months
 - Increase in the number of series that are adjusted
 - Includes unusual observations into estimation of seasonal pattern
- Seasonally adjusted and trend-cycle series are less irregular (smoother).
- Less residual seasonality in seasonally adjusted and trend-cycle estimates for aggregated series
- Increased potential for revisions in historical values of seasonally adjusted and trend-cycle estimates

Higher outlier tolerances -> less robust Shorter seasonal filters -> more impact of individual months

Future Work

- Apply as a quality check for other projects
 - Highlighted power of trend-cycle to detect certain types of residual seasonality
 - Examine trend-cycle estimates for residual seasonality
- Could it be useful in other applications?
 - Use smoothing approach under similar conditions (volatile series with borderline seasonality)
- Update system and re-evaluate options with added flexibility (reconciliation)
- Develop diagnostics to identify residual seasonality, and approaches to address it

Thank you!

For more information, please contact:

Pour plus d'information, veuillez contacter :

Steve Matthews
Time Series Research and Analysis Centre
Statistics Canada
steve.matthews@Canada.ca