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Content 

 

 

We define seasonal and trend components under which the X-11 ARIMA estimators of them 
are almost unbiased at least in the central part of the series. 

 

We define the Variance and Mean Square Error (MSE) of X-11 ARIMA and Basic State-
Space Structural Model (BSM) estimators with respect to the newly defined trend and 
seasonal components and propose estimators for the Bias, Variance and MSE. 

 

We investigate the behavior of the X-11 ARIMA and BSM estimators of the newly defined 
trend and seasonal components and their MSE estimators in a small simulation study based 
on real data.  
 

 

 

 

 

 

 

 



 
 

 

Definitions 

,t t ty G e             ,...,0, 1,..., , 1,...,

t

start

y observed unobservedunobserved

t t N N



   ; 

ty  - target time series  (observed for 1,...,t N  only)  

tG - signal (unobserved),         te  - Error (unobserved)  

Assumptions: , t te G   independent, ( ) 0tE e  ,  ( )tVar e   

Signal and Error can be defined in several ways. We consider the following alternative 
definitions: 

I)  Signal ( tG ) = Trend ( tT ) + Seasonal component ( tS ), 

     Error ( te ) = Irregular term ( tI ) + Sampling error ( t ) (Pfeffermann, 1994).                                                      

II)  Signal ( tG ) = Trend ( tT ) + Seasonal component ( tS ) + Irregular term ( tI ), 

      Error ( te ) = Sampling error ( t ) (Bell and Kramer 1999). 

Components of interest 

Seasonally Adjusted Series t t tA T I  , and/or Trend tT . 

 

 



 
 

X-11 ARIMA Estimators 

 

X-11 ARIMA estimators of trend and seasonal components can be approximated as: 
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Filters 
S

ktw  and 
T

ktw  defined by the X-11 ARIMA program options and length of series, N .   

 

At center part of series, filters time-invariant & symmetric;  

T T

kt kw = w , 
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S S
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X-11 ARIMA Estimators (cont.) 

 

Notice: X-11 ARIMA contains “non-linear” operations: 

Identification and estimation of ARIMA models,  

Identification and gradual replacement of extreme observations. 

 

We assume:  

Time series under consideration already corrected for outliers,  

Effects of identification and estimation of ARIMA models are negligible (verified in previous 
studies). 

 

 

 

 

 

 

 

 

 



 
 

What does X-11 ARIMA  estimate? 

 

Model implies:  ˆ( | )tE S G
( 1)

N t
S

kt t k t

k t

w G S



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
def

,   where 1( , ,...)
start startt tG G G . 

 (Similarly for trend and seasonally adjusted components.) 

 

  ˆ
tS  - unbiased estimator of tS  but tS  not time-invariant. For example, NS  based on 

1,..., Ny y   is not equal to  NS  based on 1 1 2,..., , ,...,N N Ny y y y . 

  { ,  0,..., }tS t  S  not a seasonal component (not defined uniquely). 

 

 

 

 

 

 

 

 



 
 

X-11 decomposition 

 

Assuming startt  << 0 define “X-11 trend and seasonal components” as: 
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(Bell & Kramer,1999) 

    X-11 decomposes the observed series into the “X-11-components” 

 

11 11 11x x x

t t t ty T S e   ;     
11 11 11x x x

t t t te y T S    

 

 X-11 estimators almost unbiased at the center part of the series with  

      respect to this decomposition.  

 

 

 

 

 



 
 

X-11 decomposition (cont.) 

 X-11 ARIMA in common use all over the world. Users trust the method.  

        Important to study what is estimated. 

 

  Estimator defines the parameter; not parameter defines the estimator.  

 

 Conditioning on signal   viewing trend & seasonal effects as fixed 

       population parameters   conforms with classical sampling theory.  

 

 Parameters must be defined by symmetric filters. 

 

 

 

 

 

 

 



 
 

 

Conditional Bias, variance and MSE of  X-11 ARIMA estimators 
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  

ˆ[ ]tMSE S  can be estimated by estimating ˆ[ | ]tVar S G  and ˆ[ | ]tBias S G  

 Similar expressions for any estimator 
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   with arbitrary weights { }kth , 

e.g., Basic Structural Model 

 



 
 

Bell and Kramer (1999)  

 BK propose same target components. They estimate the components by augmenting 

the series with sufficient minimum mean squared error forecasts and backcasts under the 

ARIMA model, such that the symmetric filters can be applied to the augmented series at 

every time point with observation.  
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*

t k t ky y   if t ky   observed, 
*

t ky  = forecast or backcast otherwise. 

*( ) 0t k t kE y y    (unconditionally)   11 *ˆ( ) [ ]
S S
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a a
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(unconditionally).   
 

 BK estimate 
11ˆ( )BK X

t tT TVar  over distributions of sampling errors and 

       forecast & backcast prediction errors. 
  

 Time series irregulars considered as part of the signal.  



 
 

Where do we differ? 

We condition on { , ,..., }t startG t t  G , in which case in general 
11ˆ[( ) | ] 0BK X

t tE T T G  

Bias may also exist even unconditionally when extrapolating less than required for use of 

symmetric filters, depending on distribution of the signal.  

 

 Estimation of conditional MSE not restricted to full forecasts and backcasts, and can 

be applied when estimating the target components with only one or two years of forecasts 

and backcasts (common case?) or without ARIMA extrapolations, or when estimating the 

components by fitting different models (e.g., Basic Structural Model).  

 

 

 

 

 

 

 



 
 

Where do we differ? (cont.) 

We attempt to estimate the conditional MSE, given the signal.  

Alternatively, when the bias estimator is obtained optimally under a model, it may be viewed 

as estimating the unconditional bias over all possible realizations of the signal under 

the model, given the observed series (see below).  

 The proposed approach is applicable also when the signal consists of only the trend and 

the seasonal effect, and the time series irregular is part of the error. 



 
 

Estimation of conditional MSE 

Conditional variance  

 When the time series irregular is part of the signal, 

ˆˆ ( | )tT GVar 2

( 1)

ˆ ( )
N t

T

kt t k

k t

E w 




 

  = ˆ ( , )T T

kt lt t k t l

k l

w w Cov    .  

Easily computable when estimators of the variances and covariances of the sampling errors 

are available.  

 

 When the irregular is not part of the signal, 
t t tG S T   , t t te I   ; 

ˆˆ ( | )tT GVar ˆ ( , )T T

kt lt t k t l

k l

w w Cov e e  . 

Methods for estimating ( , )t k t lCov e e   considered in literature  

(Pfeffermann 1994, Pfeffermann & Scott (1997), Chen et al. (2003)) 

 



 
 

Idea of estimating ( , )t k t lCov e e  :  

( 1) ( 1)

ˆ ˆ( , | ) [ , ] ( , )
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ˆ ˆ( , | )t mCov R R G  - can be estimated 

Assuming tI  - stationary, ( , ) 0,  | |t k t lCov I I k l Const      and ˆ ( , )t k t lCov     are 

available  

or  

assuming te  - stationary and ( , ) 0,  | |t k t lCov e e k l Const      

(1) can be solved 

 

 

 

 



 
 

 

Estimation of conditional bias 

Within X-11 ARIMA framework, the signal can be estimated conveniently (but not 
efficiently) as:    

(a) Use the model chosen by program to forecast–backcast ( , )T S= max a am  observations. 

Let  2N m aug
N . 

(b) Estimate 
, ,

( 1) ( 1)
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aug

t ty y  if ty  observed, 
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ty = forecast (backcast) otherwise.  

11

( 1)

ˆ ˆ ˆ[ | ] [( ) | ˆˆ ] ˆ
T

T

aN t
X T T

t t t kt k

k t k a

T E T T w w


  

    G G
aug aug

t+k t+kBias G G ;  1,...,t N .   



 
 

Estimation of conditional bias (cont.) 

Signal can be estimated more efficiently by extracting the models for the trend and seasonal 

effects using signal extraction, and then estimate within the observation period, and 

forecast and backcast under the extracted models. 

  Estimators of components are in this case minimum MSE (MMSE) under the 

       models. 

 MMSE estimator is the conditional expectation given the observed series. The bias 

estimator is then the unconditional expectation of the bias over all possible realizations of 

the signal given the observed series.  

 When predicting the signal many time points ahead, estimators may perform 

       very badly.  

 The filter weights   fast when moving away from the time point of interest     possibly 

large biases of estimators of the signal for distant time points may have little effect on the 

bias of the bias estimator. 



 
 

Figure 1. Central and end weights when estimating the trend by default X-11 and under 

Basic Structural Model. 

  

 

                   ---- Central X-11     ;  ---- Central BSM  

  ---- End point X-11 ;  ---- End point BSM 

 



 
 

Estimation of conditional MSE 

ˆ ˆ ˆ( |ˆ ) ( | ) ( | )ˆ ˆ
t t tT T T G G G

2
MSE Var Bias .                                                                      

Generally, over-estimator because,  

2 ˆˆ[ ( | ) | ]tE Bias T G G  

2ˆˆ{ [ ( | )] | }tE Bias T G G ˆˆ[ ( | ) | ]tVar Bias T G G  
2ˆˆ{ [ ( | )] | }tE Bias T G G .  

Overestimation corrected by subtracting ˆˆ[ ( ) |ˆ | ]tBias T G GVar .  

 ˆˆ ( | )tBias T G  is again a linear combination of the observed values so the variance is 

estimated similarly to the estimation of the variance of the estimators of the components. 

 

 

 

 

 

 



 
 

Simulation study 

Simulate series from model fitted to the series “Employment to Population Ratio in DC”. 

 

 Erratic series: X-11 ARIMA residual component explains 55% of month to month 

changes and 32% of yearly changes. Major portion of the residual is sampling error.



 
 

Figure 2. Employment to Population Ratio in DC, 1999-2000. Original series  

and  trends estimated by X-11 ARIMA with 12  forecasts and under BSM. 

 

 

                 ---- Original series ; ---- Trend X11 ARIMA ;  ---- Trend  BSM  



 
 

Basic Structural Model (BSM) used for simulation 
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, ,, , ,t Rt Sj t Sj tI     are mutually independent normal disturbances. 

   ( )t AR(15~ )sam . err   accounts for CPS sampling design. 



 
 

Simulation plan 

S1- Generate 1,000 series , 1,...,1,000b

ty b   of length 300 from BSM;  

, 1,...,300b b b b b

t t t t ty T S I t     . For present study, t t t tG T S I   .  

Generate additional 1,000 series as:  fix the signal of 2nd  series and add the sampling errors 

from the first 1,000 series to the fixed signal.  
 

 First set of series illustrates unconditional properties.  

       2nd set illustrates conditional properties, given signal. 

 

S2- Compute default X-11 estimator of trend and seasonal component for each simulated 

signal to obtain the target X-11 components for central 180 months.  

S3- Remove first and last 60 observations from simulated series and apply X-11 ARIMA with 

12 and 60 forecasts, using default filters and ARIMA (0,1,1),(0,1,1) model. (Model chosen 

by method for first 10 series in each of two data sets.)  

S4- Fit the BSM for each of the series of length 180. 

 



 
 

Figure 3. Empirical unconditional bias of X-11 ARIMA trend estimates with 60 forecasts 

and mean of bias estimates, signals estimated by X-11 ARIMA.  

 

                     ---- Empirical bias  ;  ---- Mean of estimates 

 

 



 
 

Figure 4. Empirical conditional Bias of X-11 ARIMA trend estimates with 60 forecasts and 

mean of bias estimates, signal estimated by X-11 ARIMA. 

 

             ---- Empirical conditional bias  ; ---- Mean of estimates 

 

 



 
 

Figure 5. Empirical unconditional bias of BSM trend estimates and mean of bias 

estimates, signals estimated by X-11 ARIMA. 

 

---- Empirical bias  ;  ---- Mean of estimates 

 



 
 

Figure 6. Empirical conditional bias of BSM trend estimates and mean of bias estimates, 

signal estimated by X-11 ARIMA. 

 

               ---- Empirical bias  ;  ---- Mean of bias estimates 

 



 
 

Figure 7. Empirical unconditional RMSE of X-11 ARIMA trend estimates with 60 

forecasts and mean of RMSE estimates, signals estimated by X-11 ARIMA. 

 

---- Empirical RMSE  ;  ---- Mean of estimates 

 

 



 
 

Figure 8. Empirical conditional RMSE of X-11 ARIMA trend estimates with 60 forecasts 

and mean of RMSE estimates, signal estimated by X-11 ARIMA. 

 

---- Empirical RMSE  ;  ---- Mean of estimates 



 
 

Figure 9. Empirical unconditional RMSE of BSM trend estimates and mean of RMSE 

estimates, signals generated from BSM and estimated by X-11 ARIMA. 

 

---- Empirical RMSE  ;  ---- Mean of estimates 



 
 

Figure 10. Empirical conditional RMSE of BSM trend estimates and mean of RMSE 

estimates, signal estimated by X-11 ARIMA.  

 

---- Empirical RMSE  ;  ---- Mean of estimates 



 
 

Figure 11. Empirical unconditional RMSE of X-11 ARIMA trend estimates with 12 

forecasts (blue), 60 forecasts (red) and BSM (black), signals estimated by X-11 ARIMA. 

 

 



 
 

Figure 12. Empirical conditional RMSE of X-11 ARIMA trend estimates with 12 forecasts 

(blue), 60 forecasts (red) and BSM (black), signal estimated by X-11 ARIMA.  

 

 

 



 
 

Conclusions 

 Method seems to work but need to experiment with many  

       more simulated and real series, 
 

 Investigate the robustness of the method to possbile model misspecification 

 

  Study efficient estimation of signal under appropriate models. 

 

Thanks!!!    (Sverchkov.Michael@bls.gov) 
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