

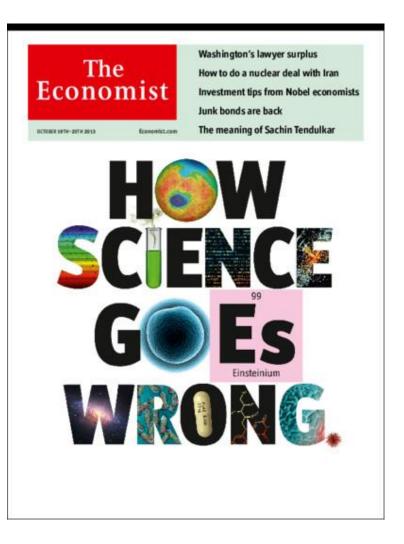
## HOW RARE IS RARE? THE IMPORTANCE OF VALIDATION

Dr. Aric LaBarr Institute for Advanced Analytics



## HOW GOOD ARE YOUR RESULTS?

#### **Prediction Evaluation**


 Extremely important to evaluate your predictions from a model to know how good your model actually is.

- Accuracy predicting training data well
- Validation predicting new data well



## 

#### Validation is Important!



- "Simple idea underpins science: 'trust, but verify'. Results should always be subject to challenge from experiment."
- "Modern scientists are doing too much trusting and not enough verifying – to the detriment of the whole of science, and of humanity."

## **Crisis of False Findings**

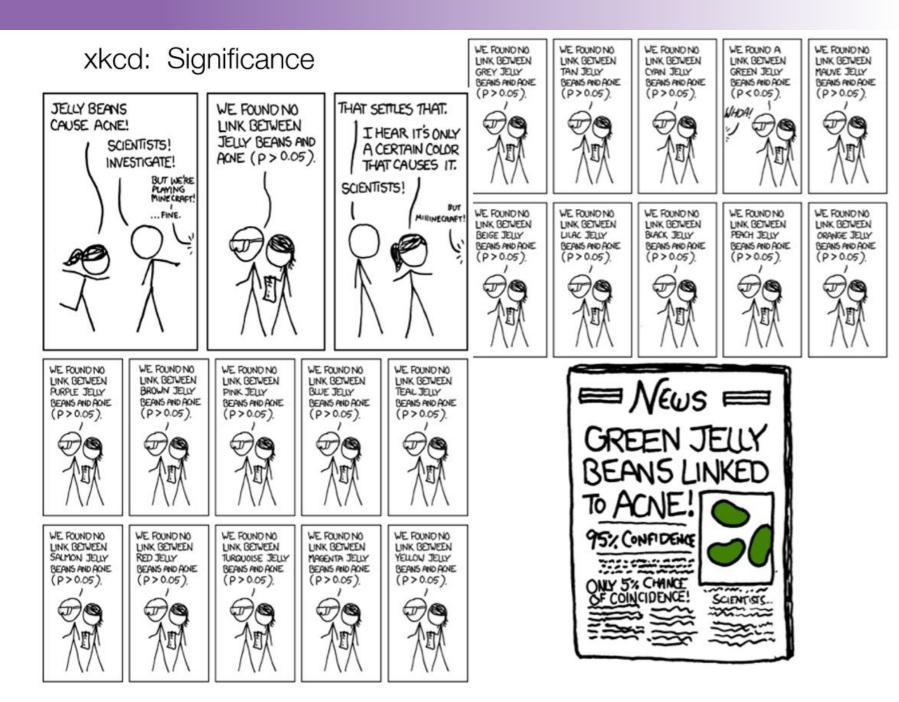
- British Medical Journal experiment:
  - 92% of 1,500 referees missed serious errors
- Lancet accepts 5% of papers, but estimates half of those are worthless
- Bayer Healthcare replicated only 25% of 67 studies
- Stan Young examined controlled experiments trying to replicate 12 data "discoveries":
  - 0 replicated; 7 neutral; 5 reversed



## Is Data Science a Science? Possibly!

science *noun* 

/'sai·əns/


the **systematic study** of the structure and behavior of the natural and physical world, or **knowledge** obtained about the world by **observing** and **experimenting** 

#### experiment *noun*

#### /ik'sper·ə·mənt/

a **test** done in order to **learn** something or to **discover** whether something **works or is true** 





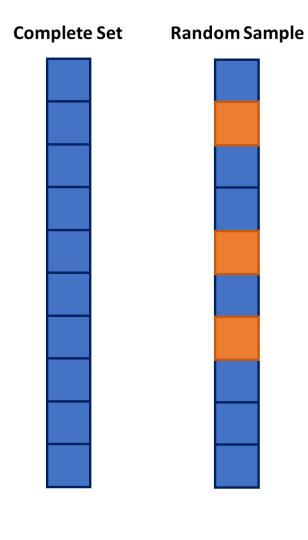


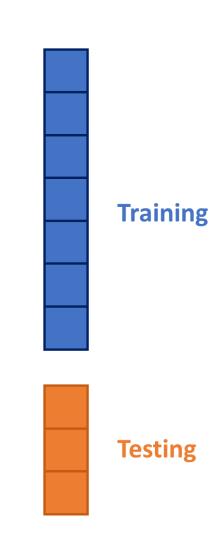








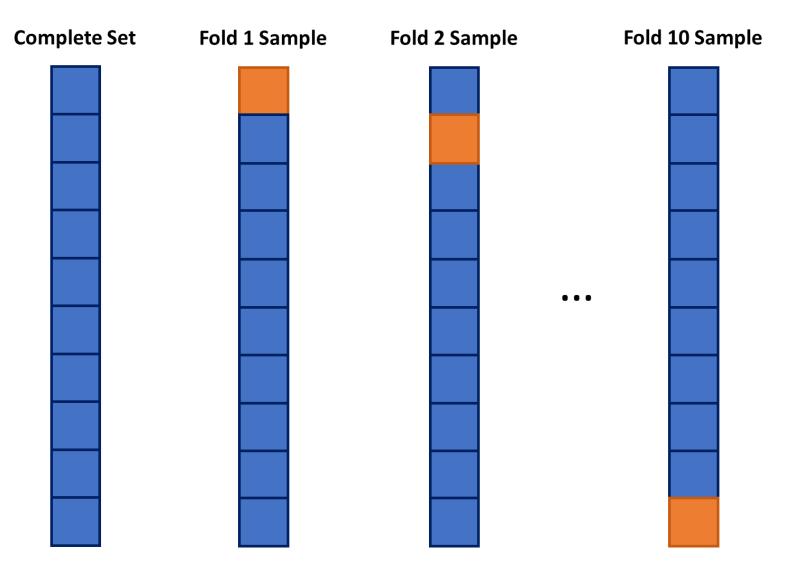





## DATA SPLITTING

#### Train vs. Test






- Split your data into two or three sections of data
  - Training
  - Validation
  - Testing
- Common percentages:
  - 60-20-20
  - 70-20-10
  - 40-40-20
  - Etc.



#### **Cross-Validation**





## **TARGET SHUFFLING**



### Target Shuffling

| Income   | Student | Default? |  |  |
|----------|---------|----------|--|--|
| \$23,909 | Yes     | 1        |  |  |
| \$49,354 | No      | 0        |  |  |
| \$50,404 | No      | 0        |  |  |
| \$27,690 | No      | 1        |  |  |
| \$11,179 | Yes     | 0        |  |  |
|          |         |          |  |  |
| \$18,475 | Yes     | 1        |  |  |



## Target Shuffling

| Income      | Student | Default? |  |  |  |
|-------------|---------|----------|--|--|--|
| \$23,909    | Yes     | 1        |  |  |  |
| \$49,354    | No      | 0        |  |  |  |
| \$50,404    | No      | 0        |  |  |  |
| \$27,690    | No      | 1        |  |  |  |
| \$11,179    | Yes     | 0        |  |  |  |
|             |         |          |  |  |  |
| \$18,475    | Yes     | 1        |  |  |  |
| Build Model |         |          |  |  |  |



## What is Target Shuffling?

1. Randomly shuffle the values of the target variable, while leaving the input variable values in the same location. This removes any possible relationship between the target variables and the inputs.



## Target Shuffling

| Income   | Student | Default? | <i>Y</i> <sub>1</sub> |  |
|----------|---------|----------|-----------------------|--|
| \$23,909 | Yes     | 1        | 0                     |  |
| \$49,354 | No      | 0        | 1                     |  |
| \$50,404 | No      | 0        | 1                     |  |
| \$27,690 | No      | 1        | 0                     |  |
| \$11,179 | Yes     | 0        | 0                     |  |
|          |         |          |                       |  |
| \$18,475 | Yes     | 1        | 1                     |  |

## What is Target Shuffling?

- 1. Randomly shuffle the values of the target variable, while leaving the input variable values in the same location. This removes any possible relationship between the target variables and the inputs.
- 2. Repeat the model building process (preferably in an automated way) to identify any possible relationships between the input variables and the newly shuffled target variable.



## Target Shuffling

| Income   | Student     | Default? | <b>Y</b> <sub>1</sub> |  |  |  |
|----------|-------------|----------|-----------------------|--|--|--|
| \$23,909 | Yes         | 1        | 0                     |  |  |  |
| \$49,354 | No          | 0        | 1                     |  |  |  |
| \$50,404 | No          | 0        | 1                     |  |  |  |
| \$27,690 | No          | 1        | 0                     |  |  |  |
| \$11,179 | Yes         | 0        | 0                     |  |  |  |
|          |             |          |                       |  |  |  |
| \$18,475 | Yes         | 1        | 1                     |  |  |  |
|          |             |          |                       |  |  |  |
| В        | Build Model |          |                       |  |  |  |

## What is Target Shuffling?

- 1. Randomly shuffle the values of the target variable, while leaving the input variable values in the same location. This removes any possible relationship between the target variables and the inputs.
- 2. Repeat the model building process (preferably in an automated way) to identify any possible relationships between the input variables and the newly shuffled target variable.
- 3. Save the "best" model's measure of validity RMSE, MAPE, AIC, etc.



## Target Shuffling

| Income      | Student | Default? | <b>Y</b> <sub>1</sub> |          |              |
|-------------|---------|----------|-----------------------|----------|--------------|
| \$23,909    | Yes     | 1        | 0                     |          |              |
| \$49,354    | No      | 0        | 1                     |          |              |
| \$50,404    | No      | 0        | 1                     |          |              |
| \$27,690    | No      | 1        | 0                     |          |              |
| \$11,179    | Yes     | 0        | 0                     |          |              |
|             |         |          |                       |          |              |
| \$18,475    | Yes     | 1        | 1                     |          |              |
|             |         |          |                       | > Record | Model Metric |
| Build Model |         |          |                       |          |              |

## What is Target Shuffling?

- 1. Randomly shuffle the values of the target variable, while leaving the input variable values in the same location. This removes any possible relationship between the target variables and the inputs.
- 2. Repeat the model building process (preferably in an automated way) to identify any possible relationships between the input variables and the newly shuffled target variable.
- 3. Save the "best" model's measure of validity RMSE, MAPE, AIC, etc.
- 4. Repeat the process thousands of times.



### Target Shuffling

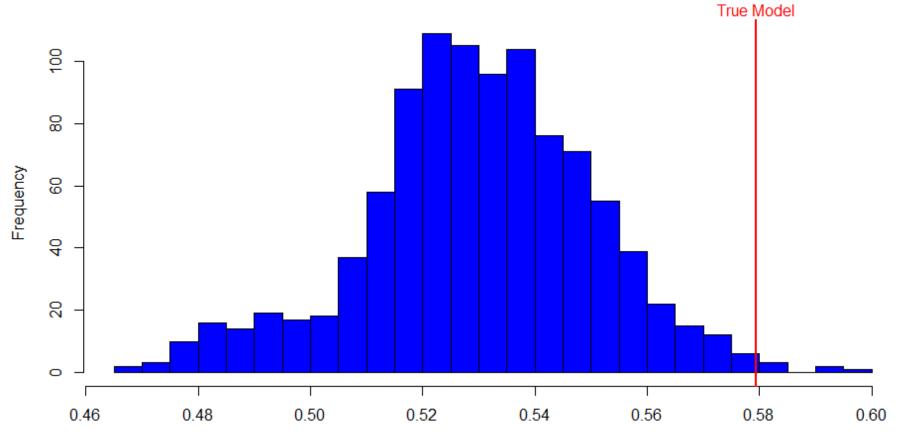
| Income   | Student | Default? | <i>Y</i> <sub>1</sub> | <b>Y</b> <sub>2</sub> |  |
|----------|---------|----------|-----------------------|-----------------------|--|
| \$23,909 | Yes     | 1        | 0                     | 1                     |  |
| \$49,354 | No      | 0        | 1                     | 1                     |  |
| \$50,404 | No      | 0        | 1                     | 1                     |  |
| \$27,690 | No      | 1        | 0                     | 0                     |  |
| \$11,179 | Yes     | 0        | 0                     | 0                     |  |
|          |         |          |                       |                       |  |
| \$18,475 | Yes     | 1        | 1                     | 0                     |  |



## Target Shuffling

| Income   | Student | Default? | <i>Y</i> <sub>1</sub> | <i>Y</i> <sub>2</sub> |  |
|----------|---------|----------|-----------------------|-----------------------|--|
| \$23,909 | Yes     | 1        | 0                     | 1                     |  |
| \$49,354 | No      | 0        | 1                     | 1                     |  |
| \$50,404 | No      | 0        | 1                     | 1                     |  |
| \$27,690 | No      | 1        | 0                     | 0                     |  |
| \$11,179 | Yes     | 0        | 0                     | 0                     |  |
|          |         |          |                       |                       |  |
| \$18,475 | Yes     | 1        | 1                     | 0                     |  |

## What is Target Shuffling?


- 1. Randomly shuffle the values of the target variable, while leaving the input variable values in the same location. This removes any possible relationship between the target variables and the inputs.
- 2. Repeat the model building process (preferably in an automated way) to identify any possible relationships between the input variables and the newly shuffled target variable.
- 3. Save the "best" model's measure of validity RMSE, MAPE, AIC, etc.
- 4. Repeat the process thousands of times.

5. Look at the distribution of the collection of validity measures from each iteration.



#### How Rare is Rare?

Distribution of AUC Values



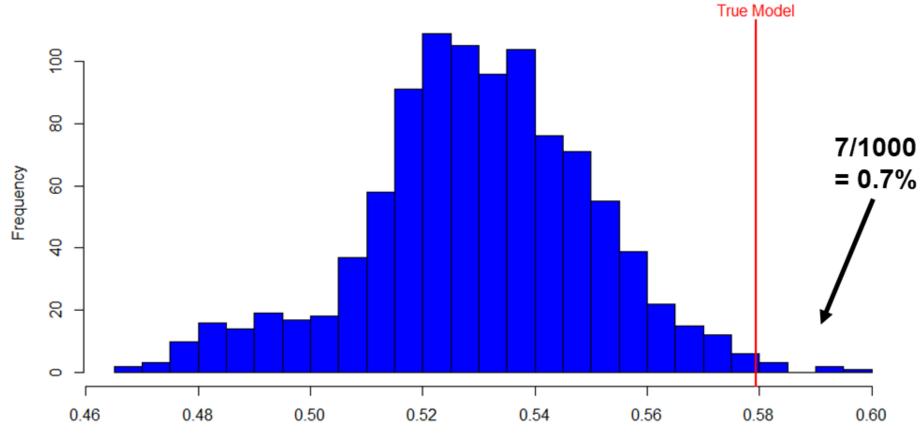
Area Under the Curve

## What is Target Shuffling?

- 1. Randomly shuffle the values of the target variable, while leaving the input variable values in the same location. This removes any possible relationship between the target variables and the inputs.
- 2. Repeat the model building process (preferably in an automated way) to identify any possible relationships between the input variables and the newly shuffled target variable.
- 3. Save the "best" model's measure of validity RMSE, MAPE, AIC, etc.
- 4. Repeat the process thousands of times.

- 5. Look at the distribution of the collection of validity measures from each iteration.
- 6. Evaluate where your original model's validity measure falls on this distribution of validity measures.




## Placebo Effect

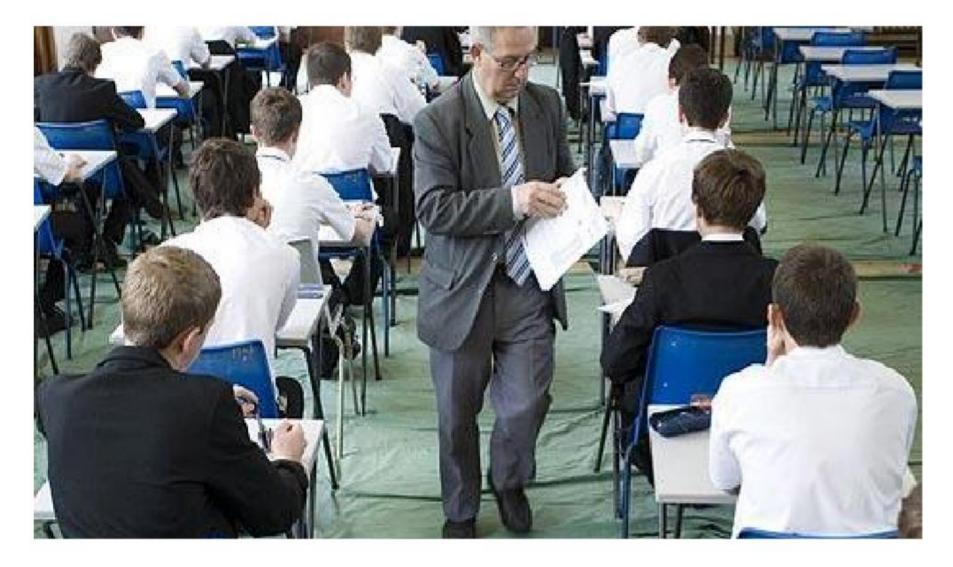
- This should remove the pattern from the data, but some pattern may exist due to randomness.
- Look at distribution of all measurements of model success and find your value from the true model!
- What is probability your model would have occurred due to randomness?

# 

#### How Rare is Rare?

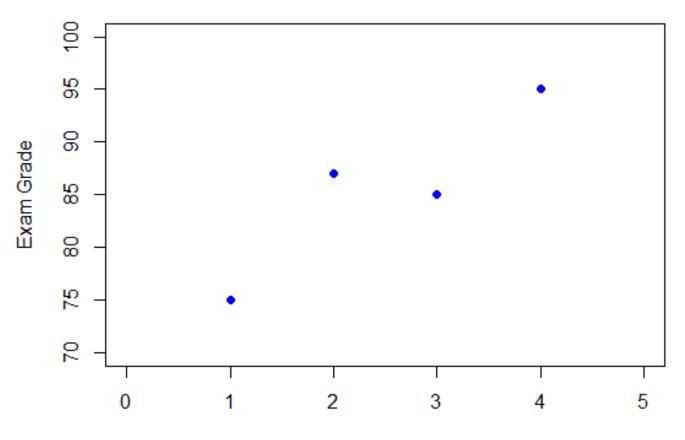
Distribution of AUC Values




Area Under the Curve



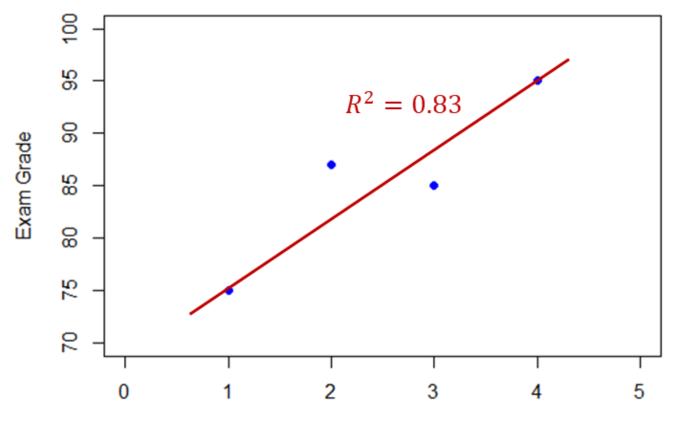
#### TARGET SHUFFLING FURTHER EXAMPLES




#### Student Grade Analogy



#### **Student Grade Analogy**


Hours vs. Grades - Actual



Hours Studied

#### **Student Grade Analogy**

Hours vs. Grades - Actual



Hours Studied



#### Permutations?

- How many different ways can four students get the grades 75, 85, 87, and 95?
- 24 possible ways this happens!



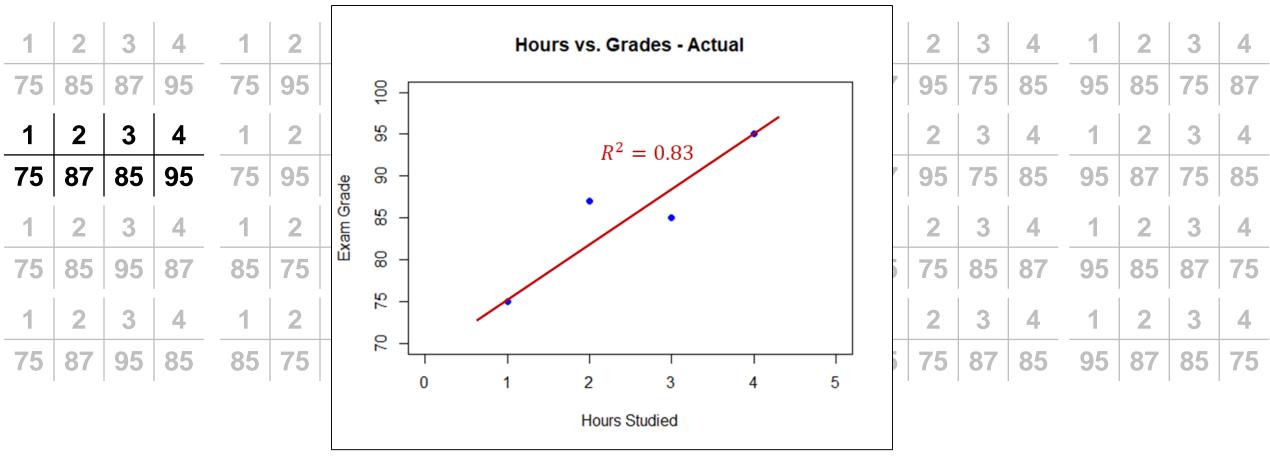
• How many different ways can four students get the grades 75, 85, 87, and 95?

| 1  | 2  | 3  | 4  | 1  | 2  | 3  | 4  | 1  | 2  | 3  | 4  | 1  | 2  | 3  | 4  | 1  | 2  | 3  | 4  | 1  | 2  | 3  | 4  |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 75 | 85 | 87 | 95 | 75 | 95 | 85 | 87 | 85 | 87 | 75 | 95 | 87 | 75 | 85 | 95 | 87 | 95 | 75 | 85 | 95 | 85 | 75 | 87 |
| 1  | 2  | 3  | 4  | 1  | 2  | 3  | 4  | 1  | 2  | 3  | 4  | 1  | 2  | 3  | 4  | 1  | 2  | 3  | 4  | 1  | 2  | 3  | 4  |
| 75 | 87 | 85 | 95 | 75 | 95 | 87 | 85 | 85 | 87 | 95 | 75 | 87 | 75 | 95 | 85 | 87 | 95 | 75 | 85 | 95 | 87 | 75 | 85 |
| 1  | 2  | 3  | 4  | 1  | 2  | 3  | 4  | 1  | 2  | 3  | 4  | 1  | 2  | 3  | 4  | 1  | 2  | 3  | 4  | 1  | 2  | 3  | 4  |
| 75 | 85 | 95 | 87 | 85 | 75 | 87 | 95 | 85 | 95 | 75 | 87 | 87 | 85 | 75 | 95 | 95 | 75 | 85 | 87 | 95 | 85 | 87 | 75 |
| 1  | 2  | 3  | 4  | 1  | 2  | 3  | 4  | 1  | 2  | 3  | 4  | 1  | 2  | 3  | 4  | 1  | 2  | 3  | 4  | 1  | 2  | 3  | 4  |
| 75 | 87 | 95 | 85 | 85 | 75 | 95 | 87 | 85 | 95 | 87 | 75 | 87 | 85 | 95 | 75 | 95 | 75 | 87 | 85 | 95 | 87 | 85 | 75 |



- How many different ways can four students get the grades 75, 85, 87, and 95?
- 24 possible ways this happens!
- There are 3 possible combinations that produce a regression with an  $R^2$  that is greater than or equal to our actual data.




• How many different ways can four students get the grades 75, 85, 87, and 95?

| 1  | 2  | 3  | 4  | 1  | 2  | 3  | 4  | 1  | 2  | 3  | 4  | 1  | 2  | 3  | 4  | 1  | 2  | 3  | 4  | 1  | 2  | 3  | 4  |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 75 | 85 | 87 | 95 | 75 | 95 | 85 | 87 | 85 | 87 | 75 | 95 | 87 | 75 | 85 | 95 | 87 | 95 | 75 | 85 | 95 | 85 | 75 | 87 |
| 1  | 2  | 3  | 4  | 1  | 2  | 3  | 4  | 1  | 2  | 3  | 4  | 1  | 2  | 3  | 4  | 1  | 2  | 3  | 4  | 1  | 2  | 3  | 4  |
| 75 | 87 | 85 | 95 | 75 | 95 | 87 | 85 | 85 | 87 | 95 | 75 | 87 | 75 | 95 | 85 | 87 | 95 | 75 | 85 | 95 | 87 | 75 | 85 |
| 1  | 2  | 3  | 4  | 1  | 2  | 3  | 4  | 1  | 2  | 3  | 4  | 1  | 2  | 3  | 4  | 1  | 2  | 3  | 4  | 1  | 2  | 3  | 4  |
| 75 | 85 | 95 | 87 | 85 | 75 | 87 | 95 | 85 | 95 | 75 | 87 | 87 | 85 | 75 | 95 | 95 | 75 | 85 | 87 | 95 | 85 | 87 | 75 |
| 1  | 2  | 3  | 4  | 1  | 2  | 3  | 4  | 1  | 2  | 3  | 4  | 1  | 2  | 3  | 4  | 1  | 2  | 3  | 4  | 1  | 2  | 3  | 4  |
| 75 | 87 | 95 | 85 | 85 | 75 | 95 | 87 | 85 | 95 | 87 | 75 | 87 | 85 | 95 | 75 | 95 | 75 | 87 | 85 | 95 | 87 | 85 | 75 |

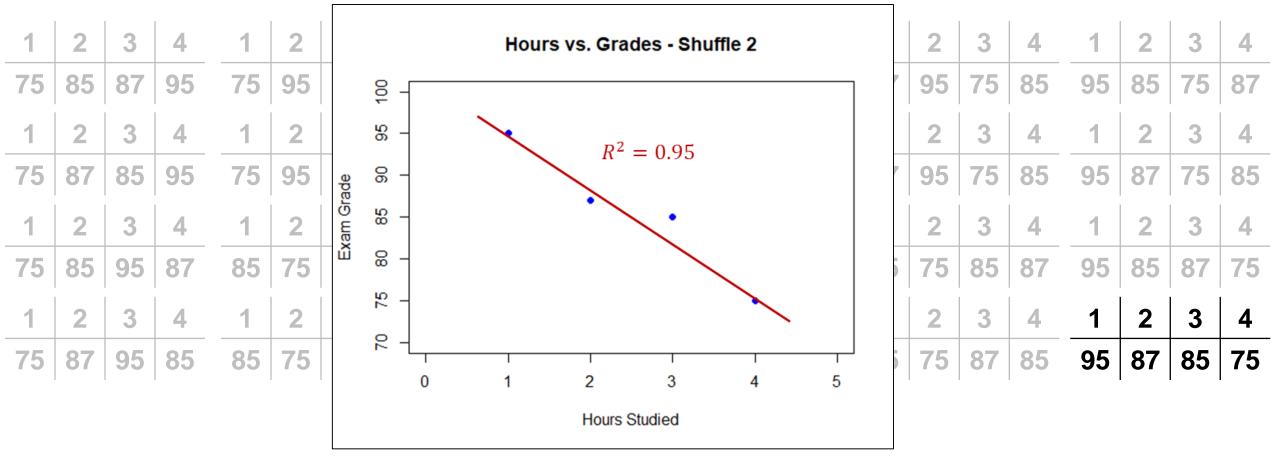


40

• How many different ways can four students get the grades 75, 85, 87, and 95?






• How many different ways can four students get the grades 75, 85, 87, and 95?





42

• How many different ways can four students get the grades 75, 85, 87, and 95?





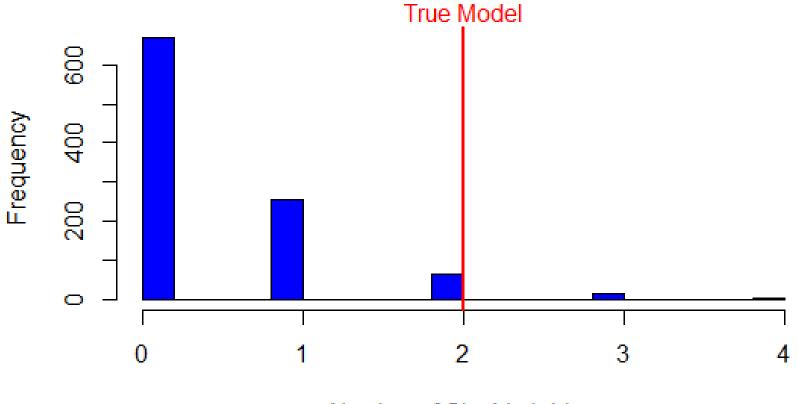
### Fake Data Example

- Randomly generated 8 variables that follow a Normal distribution with mean of 0 and standard deviation of 8.
- Defined relationship with target variable:

$$y = 5 + 2x_2 - 3x_8 + \varepsilon$$

• Performed target shuffle on the model.




#### Target Shuffle with 1000 Simulations

| Variable | Times Appeared<br>Significant (p < 0.05)<br>in a Model |
|----------|--------------------------------------------------------|
| X1       | 55                                                     |
| X2       | 62                                                     |
| Х3       | 47                                                     |
| X4       | 56                                                     |
| X5       | 50                                                     |
| X6       | 57                                                     |
| Х7       | 58                                                     |
| X8       | 40                                                     |



### Target Shuffle with 1000 Simulations

#### **Count of Significant Variables Per Model**



Number of Sig. Variables



# CONCLUSION



### Summary

- Validating models is not only important but expected.
- To accurately explain how your model performs in deployment, validation is needed.
- Target shuffling
  - What is the probability you got the model that you did?
  - Essentially, building placebo models to compare against.



## **THANK YOU!**

#### **Dr. Aric LaBarr**

www.ariclabarr.com