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Outline of the talk 
• Introduction 

– Some commonly-used Benefit-risk (BR) measures 

• Data Format: Benefit-Risk Categories      
– Hydromorphone clinical trial data  

• BR measures based on Global benefit-risk scores 

• Bayesian approach based on multinomial-Dirichlet conjugate prior 

      - Sequential updating 

       - Power Prior 

       - LPML model selection 

•  Bayesian approach based on Dirichlet process 

• Conclusion 
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INTRODUCTION 

• The benefit-risk assessment is the basis of regulatory 
decisions in the pre-market and post-market review 
processes.  

 

• The evaluation of benefit and risk faces several challenges. 
- Benefit and risk are usually not measured on the same scales; 

- Patients withdrawal are not rare and usually due to many reasons; 

- Benefit and risk are not independent; 

- The benefit/risk trade-off may change over the course of a clinical    

   trial. 
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COMMONLY USED BR MEASURES 

• Benefit-risk ratio  

• Time without symptoms of disease and toxic effects 
(TWiST)  

• Ratio of number needed to treat for benefits 
(NNT(B)) to number needed to treat for risks 
(NNT(R)) 

• Multiple criteria decision analysis (MCDA) 

• Integrated benefit-risk measure (MDIC) 

• Global benefit-risk scores -- Chuang-Stein et al. 
(1991) 
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DATA FORMAT: BR CATEGORIES 

• Chuang-Stein et al. (1991): the outcomes of a clinical trial 
can be classified into five mutually exclusive categories.  

 

    Table: Outcomes of a clinical trial with binary response data.  

 
Benefit No benefit 

No adverse event Category 1 Category 3 

Adverse event Category 2 Category 4 

Withdrawal Category 5 
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SUBJECT-LEVEL OUTCOMES OF 
HYDROMORPHONE TRIAL DATA 

• 2 arms (treatment and control), 5 categories 

 

• 134 individuals at 8 visits on each arm 
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EXAMPLE 1: HYDROMORPHONE DATA* 

*Data was provided by Jonathan Norton. 
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SUBJECT-LEVEL RESPONSE ON 
TREATMENT ARM 

Subject Visit 

1 2 3 4 5 6 7 8 

1 1 1 1 1 1 1 1 1 

2 1 1 1 1 1 2 5 5 

… … 

134 4 5 5 5 5 5 5 5 
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AGGREGATED DATA BY VISITS ON 
TREATMENT ARM 

Category Visit 

1 2 3 4 5 6 7 8 

1 82 65 58 50 48 43 43 44 

2 15 12 10 11 15 15 8 7 

3 25 30 23 20 20 15 15 17 

4 12 5 3 4 2 4 3 3 

5 0 22 39 49 49 57 65 63 
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CHUANG-STEIN ET AL. (1991): GLOBAL BR 
SCORES 
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 BR MEASURES 

• BR measures based on the global scores proposed by 
Chuang-Stein et al. (1991) 

 

 

 

 

 

 
 

 

 

• BR measures based on the global scores are for each arm 
(treatment and comparator) separately. 
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BAYESIAN APPROACH: USE OF 
DIRICHLET DISTRIBUTION AS A 
CONJUGATE PRIOR 
• Dirichlet distribution is used as the conjugate prior for 

multinomial distribution, and the posterior distribution of 
the five-category random variable is derived at each visit 
using sequentially updated posterior as a prior.  
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SEQUENTIAL UPDATING 
• Sequential updating of the posteriors are given by: 
 

• The posterior mean (i.e., Bayes estimate) and 95% credible 
interval for each of the four measures are obtained using a 
Markov chain Monte Carlo (MCMC) technique. 
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DECISION RULES 

 For a BR measure, 

 If the credible interval include the value zero, 
the benefit does not outweigh the risk;  

 If the lower bound of the credible interval is 
greater than zero, the benefit outweighs the 
risk; 

 If the upper bound of the credible interval is 
less than zero, the risk outweighs the benefit. 
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USE OF POWER PRIOR 
• Power prior (Ibrahim and Chen, 2000) is used through the 

likelihood function to discount the information from 
previous visits, and the posterior distribution  of the five-
category random variable is obtained using the Dirichlet 
prior for p and a Beta (1, 1) as a power prior for     . 
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MODEL FIT 

• The model fit of the two models (with and without power 
prior) is assessed through the conditional predictive 
ordinate (CPO) and the logarithm of the pseudo-marginal 
likelihood (LPML). The larger the value of LPML, the better 
fit the model is. Here, n(i) is the data with ni removed. 
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BACK TO OUR EXAMPLE 1: HYDROMORPHONE 
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AGGREGATED BR MEASURES 

• Posterior means and posterior 95% credible intervals for BR-
L, log(BR-R) and log(BR-CR) averaged over all subjects. 
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Red triangles indicates posterior means, black and green bars are 
credible intervals from treatment and control arms respectively. 
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TESTING EQUALITY OF BENEFIT-RISK 
MEASUREMENTS BETWEEN TREATMENT 
AND CONTROL ARMS  

There is significant evidence of increasing benefit-risk 
measurements on the treatment arm than the control arm. 
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PERSONALIZED BR ASSESSMENT: 
MOTIVATION  

• Zhao et al. (2014) method 

-    Works on the aggregated level 

-    Ignore the subject-level response differences 

-    Assume subjects are exchangeable at each visit 

• The proposed model: 

- Incorporates subject-level effects 

- Uses Dirichlet process model to accommodate the 
similarity of subject responses 

- Provides subject-specific response probabilities and 

      benefit-risk analysis 
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PERSONALIZED BR BAYESIAN MODEL 

• A generalized linear model (McCullagh and Nelder, 1989) 
is used to define the log-odds for all categories with 
respect to the reference (the first category). 

• Define the log-odds of the i-th subject’s response falling 
into category j (yik = j) with respect to category 1, at visit k 
as  

kij

ik

ik
ijk

y

jy
 






)1Pr(

)Pr(
log

βi =(βi2, , … , βiJ ): subject-level category effects (i = 1, . . . ,N)  
γk (k = 1, . . . , K): random longitudinal visit effects 
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WHY USE DIRICHLET PROCESS?  

• The proposed model considers subject-level 
differences 

• There also exists similarity among the subject 
responses (clusters for subjects) 

-  Within cluster, subject-level effects are same 

-  Across clusters, subject-level effects are distinct 

• Mixture density for subject-level differences 

-  Unknown number of Clusters 
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PRIOR SPECIFICATION 
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DP CLUSTERS: CHINESE RESTAURANT PROCESS 
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CLUSTERED SUBJECT-LEVEL EFFECTS 
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PERSONALIZED BENEFIT-RISK MEASURES 
Posterior profiles of three benefit-risk measures for subject, i 
= 76 from treatment arm. Vertical bars indicate 95% credible 
intervals of measurements, red triangles are corresponding 
posterior means.  
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EXAMPLE 2: OPHTHALMIC DEVICE 

• Benefit is measured by improvement in uncorrected 
(without glasses or contact lenses) near or intermediate 
visual acuity (UCNVA). 

 

• Risk is measured by uncorrected distance visual acuity 
(UCDVA), since subjects may be giving up distance vision 
for some gain in near or intermediate vision.  

 

• The data on the joint evaluation of benefit and risk , 
(UCNVA, UCDVA), of the device is given on the next slide 
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EXAMPLE 2: OPHTHALMIC DEVICE 
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EXAMPLE 2: DATA FROM OPHTHALMIC  
STUDY:  HYPOTHETICAL 

• Two-arm study, 242 patients were randomly assigned to treatment 
and control arms. Patients were followed up for seven visits, and their 
outcomes were assigned to one of the four benefit-risk categories.  
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BENEFIT-RISK (BR) MEASURES  

• Interested in three BR measures: 
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POPULATION-LEVEL BR ASSESSMENT 

Posterior 95% CIs of BR-L, BR-R1, and BR-R2 at visits k = 1, . 
. . , 7 for treatment arm (black) and control arm (green) 
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PERSONALIZED BENEFIT-RISK ASSESSMENT 

Posterior 95% CIs of BR-L, BR-R1, and BR-R2 at visits k = 1, . 
. . , 7 for one single subject i = 66, from the treatment arm 
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CONCLUSION 
• Quantitative measures of benefit and risk are important 

aspect in the drug and device evaluation process 

• The Bayesian method is a natural method for longitudinal 
data by sequentially updating the prior; Power prior can 
be used to discount information from previous visits. 

• Use of Dirichlet process for modeling subject-level 
longitudinal BR categorical data seems to be a reasonable 
approach 

• Model selection approaches can be incorporated to 
compare model fits 

• More quantitative work on BR assessment is warranted 
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THANK YOU! 


