Determining the Nesting Structure for Hierarchical Models Fitted to Education Data

Ulrike Genschel, Jillian Downey and Mark Kaiser

Iowa State University

August 3, 2016
Data Applications: Education Data

Significant effort on development of different modes of instruction

- examples include
 - Flipped classrooms
 - Team based learning
 - Randomization based introductory statistics

- Implementation can be costly (time or monetarily)

- Need to evaluate effectiveness
Challenges with Educational Data

Limitations of traditional group comparison methodology:

- Hard to randomize students to treatment
 - confounding variables likely introduce hidden bias
- Experimental units versus observational units
- Uncontrollable factors recognized as potentially introducing variation/structure
 - school characteristics (type, size, location)
 - instructor characteristics (experience)
 - classroom characteristics (semester, time of day)
- **Inferential scope is restrictive!**
Hierarchical Models

Alternative Methodologies

- Random Effects Models
 - requires reasonable sample size
 - requires balanced data

- Hierarchical models account for nesting structures
 - requires identification of nesting structure
Description of Data

- Two factors: instructor and semester
 - assume multiple semesters and multiple instructors
 - one class per semester and instructor combination

- response of interest Y_{ijkl}
 - teaching approach i, $i = 1, 2$
 - in semester j, $j = 1, \ldots, J_i$
 - with instructor k, $k = 1, \ldots, K_{ij}$
 - student l, $l = 1, 2, \ldots, L_{ijk}$
Question of Interest:

What is the most appropriate nesting structure?

- Model 1: instructors nested within semester
- Model 2: semesters nested within instructor
Model Formulations:

Model 1: Instructors nested within semester

\[
Y_{ijkl} | \theta_{ijk} \sim \mathcal{N}(\theta_{ijk}, \delta^2),
\]

\[
\theta_{ijk} | \mu_{ij} \sim \mathcal{N}(\mu_{ij}, \tau^2),
\]

\[
\mu_{ij} | \lambda_i \sim \mathcal{N}(\lambda_i, \psi^2).
\]

Model 2: semesters nested within instructor

\[
Y_{ijkl} | \theta_{ijk} \sim \mathcal{N}(\theta_{ijk}, \delta^2),
\]

\[
\theta_{ijk} | \alpha_{ik} \sim \mathcal{N}(\alpha_{ik}, \epsilon^2),
\]

\[
\alpha_{ik} | \lambda_i \sim \mathcal{N}(\lambda_i, \sigma^2).
\]
Determining the Appropriate Nesting Structure

Covariance Structure Comparison

Model 1: Instructors nested within semester

- $\text{Var}(Y_{ijkl}) = \psi^2 + \tau^2 + \delta^2$
- $\text{Cov}(Y_{ijkl}, Y_{ijkl'}) = \psi^2 + \tau^2$ for $l \neq l'$ (same class)
- $\text{Cov}(Y_{ijkl}, Y_{ijk'lj}) = \psi^2$ for $k \neq k'$ (same semester, different instructors)
- $\text{Cov}(Y_{ijkl}, Y_{ij'kl}) = 0$ for $j \neq j'$ (same instructor, different semesters)

Model 2: Semesters nested within instructor

- $\text{Var}(Y_{ijkl}) = \sigma^2 + \epsilon^2 + \delta^2$
- $\text{Cov}(Y_{ijkl}, Y_{ijkl'}) = \sigma^2 + \epsilon^2$ for $l \neq l'$ (same class)
- $\text{Cov}(Y_{ijkl}, Y_{ijk'l}) = 0$ for $k \neq k'$ (same semester, different instructors)
- $\text{Cov}(Y_{ijkl}, Y_{ij'kl}) = \sigma^2$ for $j \neq j'$ (same instructor, different semesters)
Covariance Matrices - Students within Class

Model 1: Instructors nested within semester

\[
A = \begin{bmatrix}
\psi^2 + \tau^2 + \delta^2 & \psi^2 + \tau^2 & \ldots & \psi^2 + \tau^2 \\
\psi^2 + \tau^2 & \psi^2 + \tau^2 + \delta^2 & \ldots & \psi^2 + \tau^2 \\
\vdots & \vdots & \ddots & \vdots \\
\psi^2 + \tau^2 & \psi^2 + \tau^2 & \ldots & \psi^2 + \tau^2 + \delta^2
\end{bmatrix}
\]

Model 2: Semesters nested within instructor

\[
B = \begin{bmatrix}
\sigma^2 + \epsilon^2 + \delta^2 & \sigma^2 + \epsilon^2 & \ldots & \sigma^2 + \epsilon^2 \\
\sigma^2 + \epsilon^2 & \sigma^2 + \epsilon^2 + \delta^2 & \ldots & \sigma^2 + \epsilon^2 \\
\vdots & \vdots & \ddots & \vdots \\
\sigma^2 + \epsilon^2 & \sigma^2 + \epsilon^2 & \ldots & \sigma^2 + \epsilon^2 + \delta^2
\end{bmatrix}
\]
Full Covariance Matrix - Model 1 (Instructors nested within semester)

For illustration, assume \(J_i = 3 \) (semesters) and \(K_{ij} = 2 \) (instructor)

\[
\begin{bmatrix}
A & \psi^{21} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\psi^{21} & A & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & A & \psi^{21} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \psi^{21} & A & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & A & \psi^{21} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \psi^{21} & A & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & A & \psi^{21} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \psi^{21} & A & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & A & \psi^{21} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \psi^{21} & A & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & A & \psi^{21} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & A & \psi^{21} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \psi^{21} & A \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \psi^{21} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & A
\end{bmatrix}
\]
Determining the Appropriate Nesting Structure

Full Covariance Matrix - Model 2 (Semesters nested within instructor)

For illustration, assume $J_i = 3$ (semesters) and $K_{ij} = 2$ (instructors)

$$
\begin{bmatrix}
B & 0 & \sigma^2 1 & 0 & \sigma^2 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & B & 0 & \sigma^2 1 & 0 & \sigma^2 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\sigma^2 1 & 0 & B & 0 & \sigma^2 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \sigma^2 1 & 0 & B & 0 & \sigma^2 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\sigma^2 1 & 0 & \sigma^2 1 & 0 & B & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \sigma^2 1 & 0 & \sigma^2 1 & 0 & B & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & B & 0 & \sigma^2 1 & 0 & \sigma^2 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & B & 0 & \sigma^2 1 & 0 & \sigma^2 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \sigma^2 1 & 0 & B & 0 & \sigma^2 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \sigma^2 1 & 0 & B & 0 & \sigma^2 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \sigma^2 1 & 0 & \sigma^2 1 & 0 & B & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \sigma^2 1 & 0 & \sigma^2 1 & 0 & B & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \sigma^2 1 & 0 & \sigma^2 1 & 0 & B & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \sigma^2 1 & 0 & \sigma^2 1 & 0 & B & 0
\end{bmatrix}
$$
Estimating Elements of Covariance Matrices

- Non-trivial when only have single vector of observations
- Moment based estimates using sample variances of students within different groupings (unbiased)

Notation:
- Let $L(a_1, a_2, a_3)$ be a linear combination of elements $a_1, a_2, \text{ and } a_3$
- $V_C = \text{average variance of class}$
- $V_S = \text{average variance of semester}$
- $V_I = \text{average variance of instructor}$
- $V_A = \text{variance of all observations}$
- $M_1 = \text{mean of all observations in method 1}$
- $M_2 = \text{mean of all observations in method 2}$
Illustration of Variance Groupings - V_S

grouping observations by semester

Method 1

Semester 1
 - Instructor 1
 - Class 1
 - Instructor 2
 - Class 2

Semester 2
 - Instructor 1
 - Class 3
 - Instructor 2
 - Class 4

Semester 3
 - Instructor 1
 - Class 5
 - Instructor 2
 - Class 6
Illustration of Variance Groupings - V_i

grouping observations by instructor
Moment Based Estimates of Variances

Both Models: $\hat{\delta}^2 = L(V_C)$

Model 1: $\hat{\tau}^2 = L(\hat{\delta}^2, V_S)$

Model 2: $\hat{\epsilon}^2 = L(\hat{\delta}^2, V_I)$

Model 1: $\hat{\psi}^2 = L(\hat{\delta}^2, \hat{\tau}^2, M_1, M_2, V_A)$

Model 2: $\hat{\sigma}^2 = L(\hat{\delta}^2, \hat{\epsilon}^2, M_1, M_2, V_A)$

V_C – average variance within class

V_S – average variance of semester

V_I – average variance of instructors

V_A – average variance among all obs

M_1, M_2 – mean of all obs of method 1/2, respectively.

Estimating technique allows for negative variance estimates

- Hypothesized that negative variance estimates more common under incorrect model
Analysis of Moment Based Variance Estimators

Procedure:

1. Simulate data from Model 1 (instructors nested within semesters)

2. Calculate $\hat{\delta}^2$, $\hat{\tau}^2$, $\hat{\epsilon}^2$, $\hat{\psi}^2$, and $\hat{\sigma}^2$

3. Repeat above steps 5,000 times

4. Calculate the proportion of times each moment based estimator was less than 0
Varying Sample Size and Variance Magnitudes in Simulated Data

Simulated data from 8 different situations

- **Sample Sizes used:**
 1. 3 Semesters, 3 Instructors - 18 total classes
 2. 3 Semesters, 10 Instructors - 60 total classes
 3. 10 Semesters, 3 Instructors - 60 total classes
 4. 10 Semesters, 10 Instructors - 200 total classes

- **Variance magnitudes used:**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Small Difference in Magnitudes</th>
<th>Large Difference in Magnitudes</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ^2</td>
<td>$12^2 = 144$</td>
<td>$16^2 = 256$</td>
</tr>
<tr>
<td>τ^2</td>
<td>$10^2 = 100$</td>
<td>$7^2 = 49$</td>
</tr>
<tr>
<td>ψ^2</td>
<td>$9^2 = 81$</td>
<td>$4^2 = 16$</td>
</tr>
</tbody>
</table>
Results - Small Difference in Variance Magnitudes

<table>
<thead>
<tr>
<th></th>
<th>Both Models</th>
<th>Model 1 (Correct)</th>
<th>Model 2 (Incorrect)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>δ^2</td>
<td>τ^2 ψ^2</td>
<td>ϵ^2 σ^2</td>
</tr>
<tr>
<td>3 Sem, 3 Ins</td>
<td>0</td>
<td>0 0.1758</td>
<td>0 0.8558</td>
</tr>
<tr>
<td>3 Sem, 10 Ins</td>
<td>0</td>
<td>0 0.0332</td>
<td>0 0.9074</td>
</tr>
<tr>
<td>10 Sem, 3 Ins</td>
<td>0</td>
<td>0 0.0058</td>
<td>0 0.9188</td>
</tr>
<tr>
<td>10 Sem, 10 Ins</td>
<td>0</td>
<td>0 0</td>
<td>0 0.9682</td>
</tr>
</tbody>
</table>

Table: Proportion of times (out of 5,000) each variance component was estimated to be less than zero.
Results - Large Difference in Variance Magnitudes

<table>
<thead>
<tr>
<th>Sample</th>
<th>Both Models</th>
<th>Model 1 (Correct)</th>
<th>Model 2 (Incorrect)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>δ^2</td>
<td>τ^2</td>
<td>ψ^2</td>
</tr>
<tr>
<td>3 Sem, 3 Ins</td>
<td>0</td>
<td>0.0004</td>
<td>0.3764</td>
</tr>
<tr>
<td>3 Sem, 10 Ins</td>
<td>0</td>
<td>0</td>
<td>0.1486</td>
</tr>
<tr>
<td>10 Sem, 3 Ins</td>
<td>0</td>
<td>0</td>
<td>0.0960</td>
</tr>
<tr>
<td>10 Sem, 10 Ins</td>
<td>0</td>
<td>0</td>
<td>0.0010</td>
</tr>
</tbody>
</table>

Table: Proportion of times (out of 5,000) each variance component was estimated to be less than zero.
Conclusions

- Negative variance estimates arise under the incorrect model due to incorrect groupings of observations.
- As sample sizes increase, phenomena becomes more pronounced.
- As among student variance at smallest grouping increases, phenomena becomes less pronounced.
- Moving forward we want to explore a statistic based on variance estimates to determine appropriate nesting structure.
Thank You

Questions?