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« Numerous statistical methods for estimating
dose response
— MCP-MOD, NDLM, Bayesian model averaging
— Derived to be optimal under some conditions




e What are the relevant conditions?

— Meta-analysis of 225 compounds supports the Emax
model from clinical pharmacology

« Bayesian model-based dose response

— Empirically-based prior distribution combining dose
response meta-data and compound-specific information

— Brief example illustrating software to implement this
approach and the potential for large improvements
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The Emax model in pharmacology




\Dose Response Model: Emax

Emax * Do:;e7L

ED50" + Dose’
« EO=response under placebo treatment

« Emax = maximum difference with PBO
« ED50 = dose producing half the maximum response
« The power parameter determines the steepness of the curve

Response = EQ +




Meta-analyses of dose response




o Approximately 225 compounds
— Pfizer compounds 1998-2017
— FDA approved compounds 2009-2017

— Includes small molecule and biologics. Excludes
oncology and vaccines

o Study criteria (315 studies)

— Phase 2 studies. Phase 3 studies included if they had = 2
doses and the Phase 2 endpoint was collected




e Data types
— 63% were continuous endpoints
— 37% were binary endpoints

e Dosing

— Dosing summarized by total daily dosing in the meta-
analyses (a few adjustments required)
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Detecting Model Deviations

(Goodness of fit)




« How much power do we have to detect clinically
Important deviations from the model?

— Several approaches to assess model
adequacy have been explored

— The most concerning deviation is a loss of
efficacy at the higher doses
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 How much power do we have to detect non-
monotone deviations from the model?

— The proportion of compounds with clinically
Important (non-monotone) deviations from the
model is roughly (1/100,1/10)

— Two likely non-monotone dose response
curves identified.
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Quantitative Trends in the model

parameters




» Diffuse, but proper prior distributions were specified for the
Ey, Eq and residual standard deviation

 The Hill parameters, 4 and the, ED<, , have hierarchical
distributions

 An Emax model on the logit scale was used for binary data,
and then back-transformed
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 The ED5O0 requires special consideration
— An initial prediction (explicit or implicit) of the ED _, Is required when
designing the first dose finding study. Denote itby P,

— When it is not recorded, the mid-point between the lowest two non-PBO
doses in the first Phase 2 is a reasonable approximation

— Modelling is performed on the log(ED50/P50)
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Easy-to-remember summaries for the ED/Ps, and A

e Summaries

— The ED, has high probability (approx 90%) to be in
(P,/10, 10P,)

— The A has high probability (approx 90%) to be in (1/2,
2)
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Applying the Results of the Meta-

analyses




—e response study

 POC study is on-going. Results from the POC study
will be available at the time of final planning

* Preliminary planning assumes the POC study is
successful
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-n (R package clinDR)

eOmu<-glogis(0.2)
eOsd<-2

emaxmu<-qlogis(0.6)-qlogis(0.2)
emaxsd<-2

pP50<-20

prior<-prior.control(epmu=e0Omu,epsd=e0sd,emaxmu=emaxmul,
emaxsd=emaxsd, p50=p50, edDF =5, binary=TRUE)

Initial proposed design:
doselev<-c(0,10,25,50)
n<-c(150,150,150,150)
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e0<- qlogis(0.3)
emax<-qlogis(0.60)-glogis(0.3)
ed50<-35

lambda<-1
pop<-c(log(ed50),lambda,emax,e0)
proplev<-plogis(emaxfun(doselev,pop))

gen<-FixedMean(n,doselev,proplev,binary=TRUE,parm=pop)

Execute Simulation

D1 <- emaxsimB(nsim=5000, gen, prior, seed=12357,binary=TRUE)
plot(D1[5000])

summary(D1)
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Coverage probabilities for nominal 0.95 intervals [Dose-PBO]:.
Bayesian Dose response modeling posterior intervals:

10 25 50
0.982 0.970 0.957

Square Root Mean Squared Error [Dose-PBQO]:

Bayesian dose response modeling (est=posterior mean) :
10 25 50

0.030 0.038 0.051

RMSE Pairwise comparisons: 0.054  Too large to be useful
Efficiency. 1.12-3.24

Key comparison of two highest doses

RMSE=0.021 Precise enough to be useful
Efficiency: 7.53
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Concluding Remarks

e Consistent with expectations from clinical
pharmacology, our meta-data demonstrate a
dose—-response relationship that is well
described by the Emax function for a high
percentage of compounds

* For design and analysis we propose to use a
Bayesian Emax model

— Graphical and quantitative assessments of goodness of fit
are always performed

— Exceptions only for compelling reasons, for example when
there are toxicities/toleration issues combined with a non-
specific endpoint (e.g. global assessment of change)
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Supplementary slides
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e WhenA =1, ED90 =
9*ED50

« When A =0.5, ED90
= 81*ED50

« when A =5.0, ED90 =
1.5*ED50
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