Effective Application of Modeling, Simulation and Knowledge Sharing in Drug Development

Discussant: Gary L. Rosner, Sc.D.

Joint Statistical Meetings Denver, Colorado

THE SIDNEY KIMMEL COMPREHENSIVE CANCER CENTER

The Talks

- Michael Heathman: Integration of Pharmacometrics and Statistics to Support Study Design Optimization
- Neal Thomas: Meta-Data and Software for Bayesian Emax Dose Response Models
- Chyi-Hung Hsu: Adaptive Borrowing of Adult Data for Pediatric Trials
- John Gibbs: Trial Simulations to Support Proof of Concept Study Design: Application to Immunology

Some General Questions Considered

- How incorporate prior information?
- How much does incorporating prior information help?
- How much to borrow?
- How determine degree of borrowing?
- Does it matter which method we use to borrow info?
- Is there software we can use?

What Do We Want from Studies?

- Evidence one trt is superior to the other?
 - Estimation with precision?
- Decision rule regarding hypothesis?
 - Yes" reject? "No" do not reject?
- Decision rule regarding next step?
 - Continue to next phase of study?
 - Approve the treatment for indication?

Sheiner: Two Major Learn-Confirm Cycles in Clinical Drug Development

- 1st cycle: *Clin Pharmacol Ther* 61:275-91, 1997
 - Phase 1: Learn what dose is tolerated
 - Phase 2: Confirm dose has promise of efficacy
 - Make decision based on this learn-confirm cycle
- 2nd cycle:
 - Phase 2B: Learn how to use the drug in patients
 - Phase 3: Confirm in large representative pt pop'n that therapy achieves acceptable benefit:risk ratio
 - If acceptable, approval is granted

Sheiner (cont'd)

- Learning & confirming are distinct
 - Different goals, designs, methods of analysis
 - Analysis choice: Hypothesis testing or estimation?
 - Learning involves estimation
 - "The [B]ayesian view is well suited to this task because it provides a theoretical basis for learning from experience; that is, for updating prior beliefs in the light of new evidence." Clin Pharmacol Ther 61:275-91, 1997
 - Confirming involves hypothesis testing

Decision Theory & Clinical Trials

- Why decision theory?
 - Clinical trials: Purpose is to lead to decisions
 - What dose(s) to use?
 - How best to apply the therapy?
 - What is the next step for evaluating therapy?
 - Should patients receive this therapy from now on?
 - Which patients receive the most benefit?

Why not make decisions explicit and coherent?

Put results in context via formal decision analysis

Decision Theory & Clinical Trials

- Clinical trial design involves decisions, too
 - Sample size
 - PK and/or PD sampling times
 - Duration of follow-up
 - Stopping rules
 - Whether to run the study in the 1st place

Why not make these decisions explicit and coherent?

How to Make a Big Decision

Have no fear. An emerging science can now help you choose.

By Steven Johnson

Mr. Johnson writes about science and the history of innovation.

Sept. 1, 2018

- "Value model"
 - Weight each "value" (utility for each outcome)
 - Develop scenarios (simulate the trial)
 - Multiply each grade by the weight of each value and add up the numbers for each scenario. The scenario with the highest score wins."

Bayesian Optimal Design

- "Bayes" action maximizes expected utility
 - Expectation to account for sources of uncertainty
 - Uncertainty in parameters $p(\theta)$
 - Variation in data resulting from action $p_a(y \mid \theta)$

$$\mathcal{U}(a) = \int_{\mathbf{Y}} \int_{\mathbf{\Theta}} u(y) p_a(y \mid \theta) p(\theta) d\theta dy$$

- Choose: $a^* = \arg \max \mathcal{U}(a)$

Application

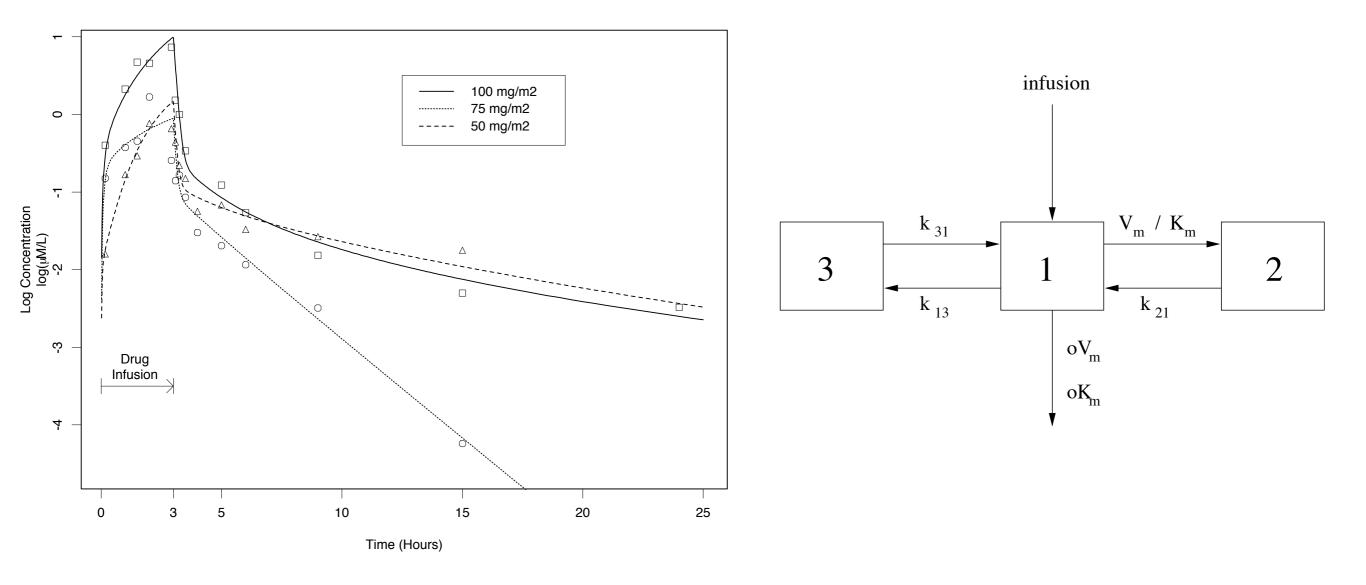
- Cancer & Leukemia Group B wanted to study Taxol
 - Large population of women
 - 3-hour infusion
 - Many participating hospitals
 - Outpatient

Problem

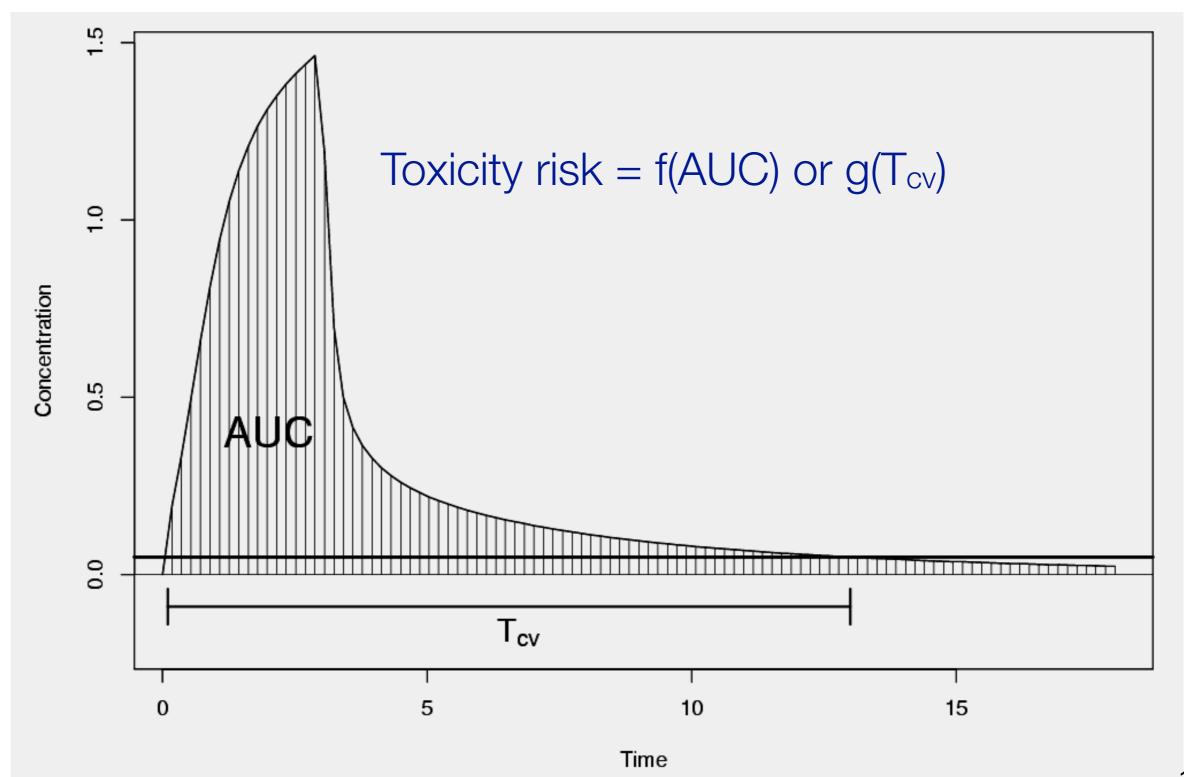
- Cannot carry out extensive sampling
 - Large study
 - Many institutions
- Devise limited-sampling scheme
 - Optimal sampling times

Stroud JR, Müller P, Rosner GL. Optimal sampling times in population pharmacokinetic studies. Applied Statistics. 2001;50(3):345-59.

Paclitaxel PK Sampling Times



Objective: Maximize Precision

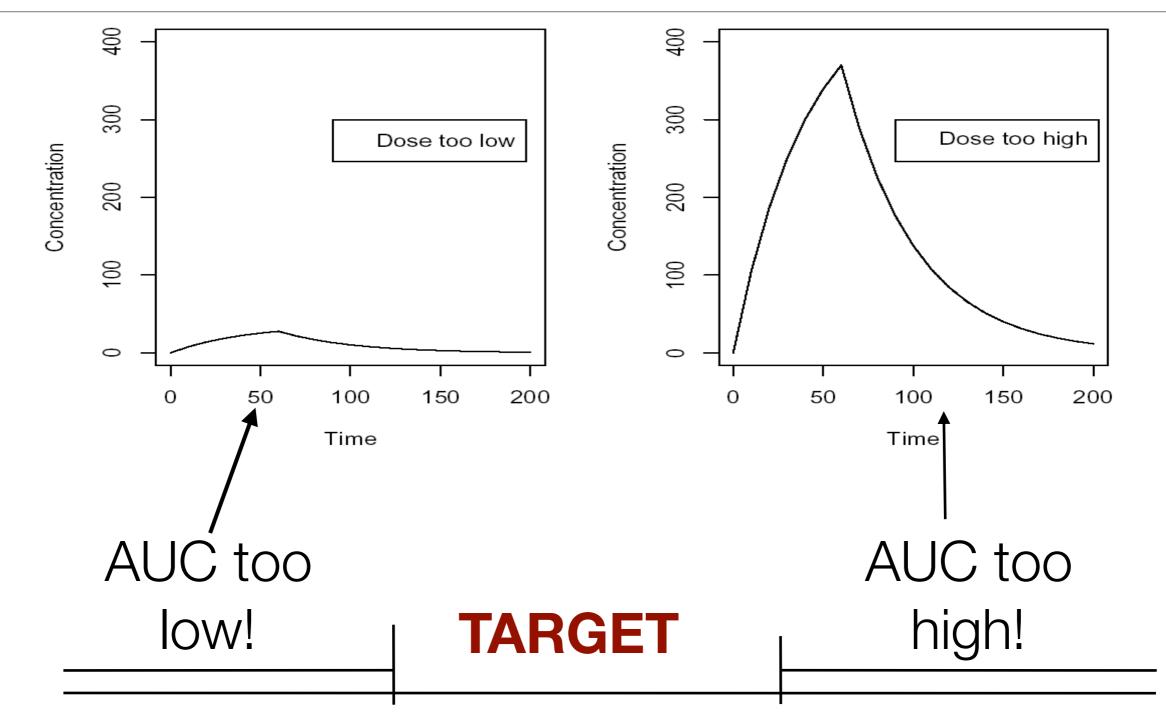


Optimal Sampling Times for AUC u(t, y) =

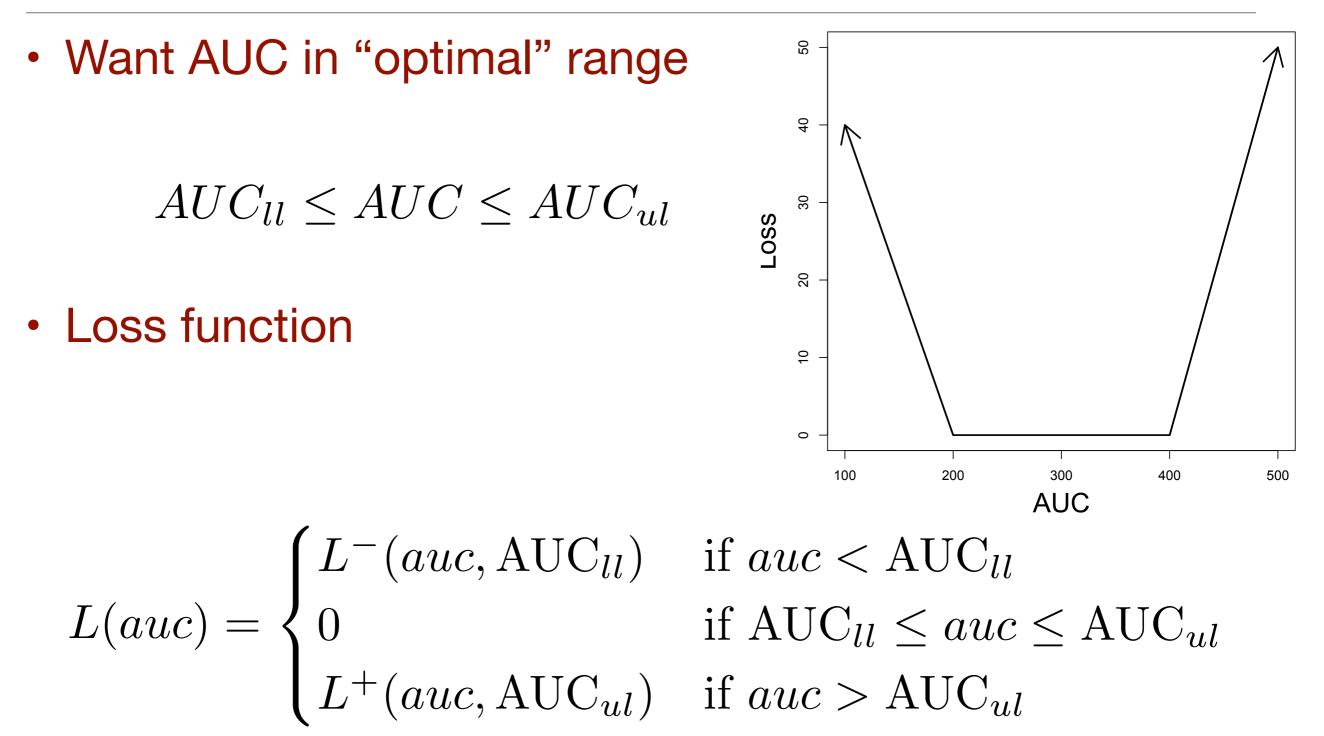
$$\left[\int \left\{\phi(\theta) - E\left[\phi(\theta) \mid y, Y, t\right]\right\}^2 p(\theta \mid y, Y, t) d\theta\right]^{-1} - k \sum_{i=1}^p t_i^2 I_{\{t_i > 8\}}$$

	n=1		n=2	
Cost Coeff				
k	t^*	U^*	t^*	U^*
0.00000	(3)	0.53	(3,25)	0.90
0.00004	(3)	0.53	(3,10)	0.74
0.00008	(3)	0.53	(3,7)	0.70

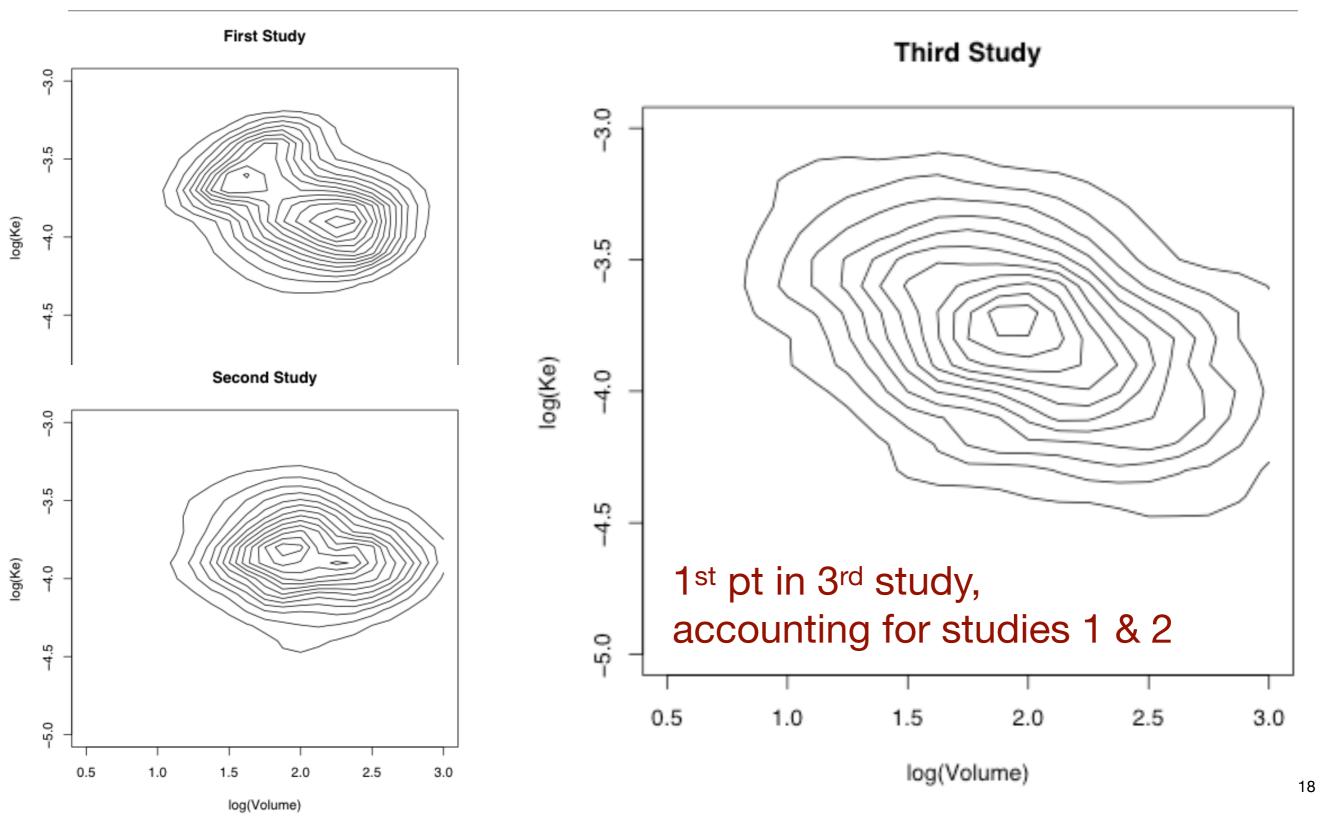
Dose Optimization

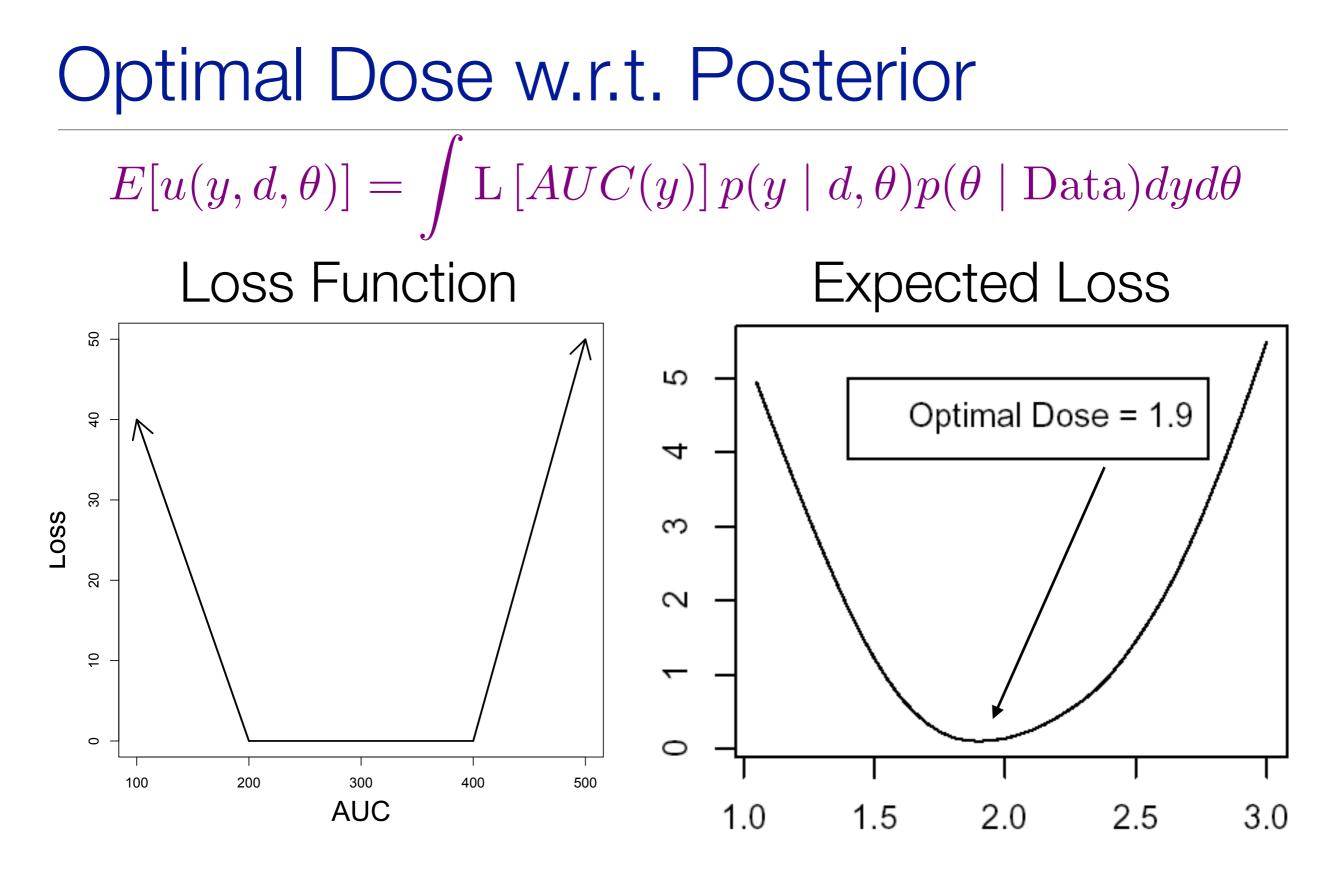


Asymmetric Loss Function



Posterior for Pt's PK Parameters





Dose

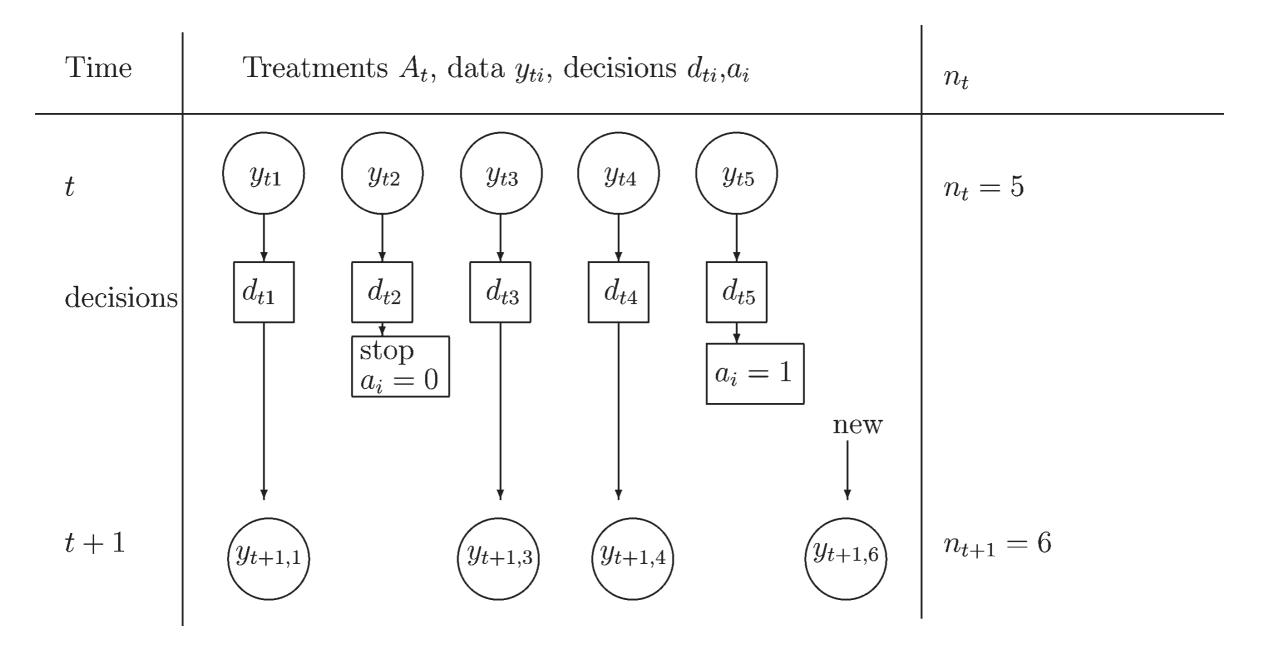
Can Incorporate Frequentist Criteria in Utility Function

- Bayesian design optimizes expected utility
 - Utility function can include different considerations
 - Sample size or cost
 - Precision
 - Number of patients who benefit
 - Prediction of future study outcomes
 - E.g., Anscombe ('63), Berry & Ho ('88), Lewis & Berry ('94), Carlin, Kadane, & Gelfand ('98), Stallard, Thall, & Whitehead ('99), Lewis, Lipsky, & Berry ('07), Trippa, Rosner, & Müller ('12), Ventz & Trippa ('15)

Platform or Master Protocols

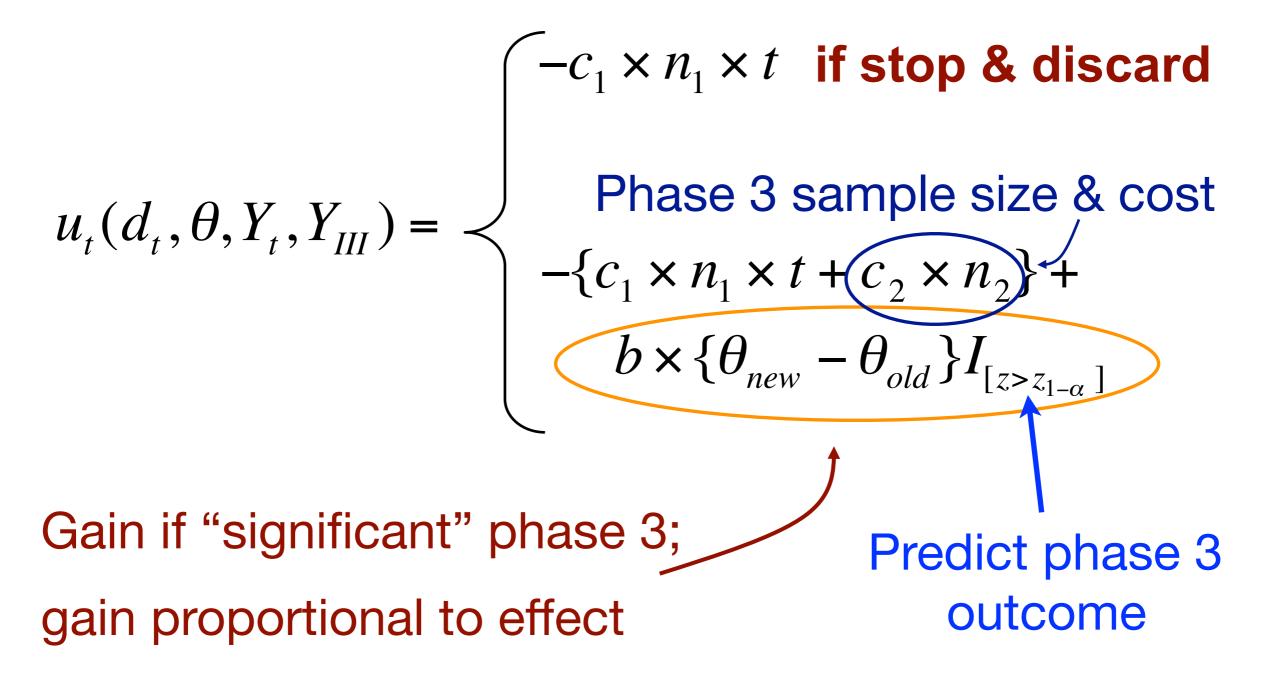
Rossell, Müller, Rosner (2007) *Biostatistics* Ding, Rosner, Müller (2008) *Biometrics*

• At any one time, multiple phase II studies

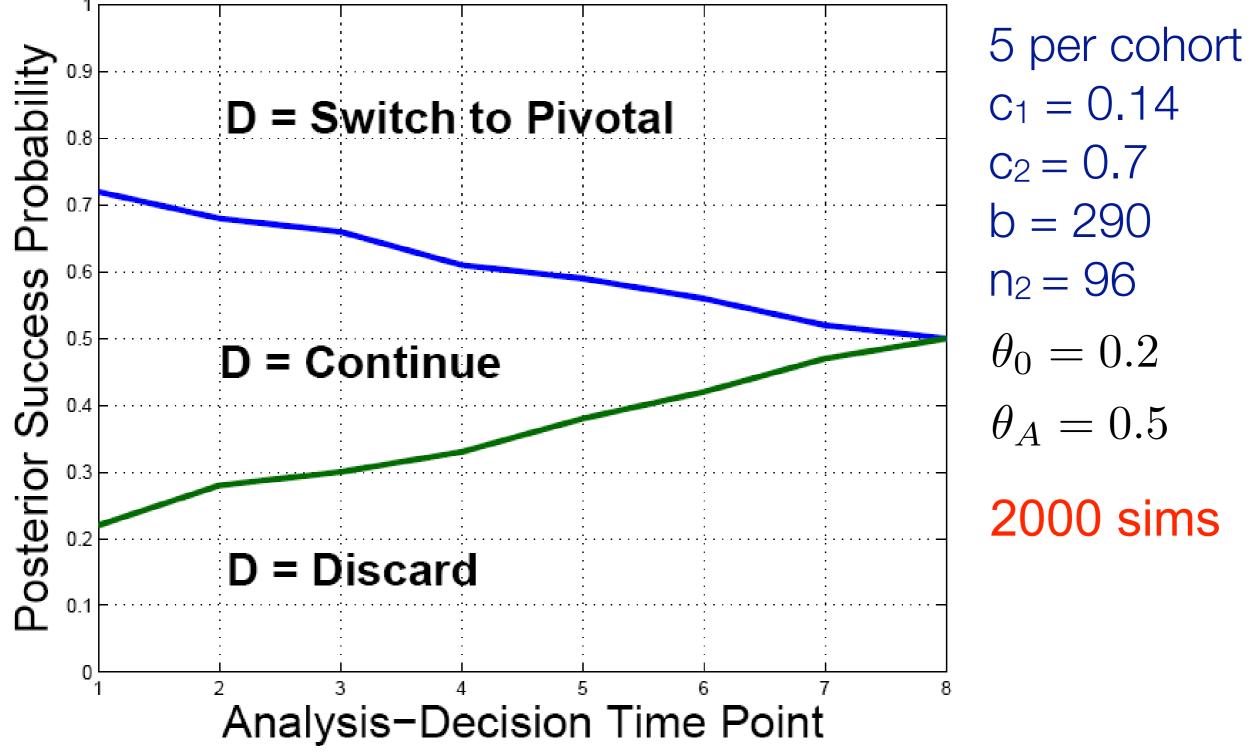


Utility Function

Utility at decision-time t (for current trt)



Stopping Boundaries



Opportunities

Work with colleagues in other fields

Conclusions

- Drug development involves learning & confirming
- Bayesian inference has place in drug development
 - Bayesian paradigm corresponds to learning
 - Easier to combine or incorporate external information
 - External information feeds priors
 - Interest in complex designs & decision making
 - Outcome adaptive randomization

Conclusions (cont'd)

- Studies need to meet needs of multiple stakeholders
- Clinical research involves decisions
 - Incorporate statistical decision theory in design
 - Utility function can include many considerations
 - Predicted success of future study
 - Precision of estimation
 - Cost of study
 - Cost to patients

Thank you to our speakers and Thank you!