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The Talks

» Michael Heathman: Integration of Pharmacometrics
and Statistics to Support Study Design Optimization

- Neal Thomas: Meta-Data and Software for Bayesian
Emax Dose Response Models

» Chyi-Hung Hsu: Adaptive Borrowing of Adult Data for
Pediatric Trials

- John Gibbs: Trial Simulations to Support Proof of
Concept Study Design: Application to Immunology



Some General Questions Considered

- How incorporate prior information?

- How much does incorporating prior information help?
« How much to borrow?

- How determine degree of borrowing?

» Does it matter which method we use to borrow info?

* |s there software we can use”?



What Do We Want from Studies?

» Evidence one trt is superior to the other?
» Estimation with precision?

 Decision rule regarding hypothesis®?
» “Yes” reject? “No” do not reject?

» Decision rule regarding next step?
» Continue to next phase of study?

» Approve the treatment for indication?



Sheiner: Two Major Learn-Confirm
Cycles in Clinical Drug Development
» st cycle: Clin Pharmacol Ther 61:275-91, 1997

» Phase 1: Learn what dose is tolerated
» Phase 2: Confirm dose has promise of efficacy
- Make decision based on this learn-confirm cycle
» 2nd cycle:
» Phase 2B: Learn how to use the drug in patients

» Phase 3: Confirm in large representative pt pop’n that
therapy achieves acceptable benefit:risk ratio

- |f acceptable, approval is granted



Sheiner (cont’d)

» Learning & confirming are distinct

» Different goals, designs, methods of analysis
- Analysis choice: Hypothesis testing or estimation?
- Learning involves estimation

» “The [B]ayesian view is well suited to this task
because it provides a theoretical basis for
learning from experience; that is, for updating

prior beliefs in the light of new evidence.”
Clin Pharmacol Ther 61:275-91, 1997

- Confirming involves hypothesis testing



Decision Theory & Clinical Trials

- Why decision theory?
» Clinical trials: Purpose is to lead to decisions
- What dose(s) to use?
- How best to apply the therapy?
- What is the next step for evaluating therapy?
- Should patients receive this therapy from now on?
- Which patients receive the most benefit?

Why not make decisions explicit and coherent?

» Put results in context via formal decision analysis



Decision Theory & Clinical Trials

» Clinical trial design involves decisions, too

» Sample size

» PK and/or PD sampling times

» Duration of follow-up

» Stopping rules

» Whether to run the study in the 1st place

Why not make these decisions explicit and coherent?



SUNDAY REVIEW  €he New ork Times

How to Make a Big Decision

Have no fear. An emerging science can now help you choose.

By Steven Johnson
Mr. Johnson writes about science and the history of innovation.

Sept. 1, 2018

» “Value model”
» Weight each “value” (utility for each outcome)
» Develop scenarios (simulate the trial)

» “Multiply each grade by the weight of each value and
add up the numbers for each scenario. The scenario
with the highest score wins.”



Bayesian Optimal Design

- “Bayes” action maximizes expected utility
» Expectation to account for sources of uncertainty
- Uncertainty in parameters p(6)
- Variation in data resulting from action p,(y | 0)

fY f@ y)pa(y | 0)p(0)dody

- Choose: a* = argmaxf(a)
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Application

» Cancer & Leukemia Group B wanted to study Taxol
» Large population of women
» 3-hour infusion
» Many participating hospitals
» Outpatient
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FProblem

» Cannot carry out extensive sampling
» Large study
» Many institutions

* Devise limited-sampling scheme
» Optimal sampling times

Stroud JR, Muller P, Rosner GL. Optimal sampling times in population
pharmacokinetic studies. Applied Statistics. 2001;50(3):345-59.
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Objective: Maximize Precision
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Optimal Sampling Times for AUC
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Dose Optimization
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Asymmetric Loss Function

- Want AUC in “optimal” range

* Loss function

LOSS

300
AUC

“(auc, AUCy)  if auc < AUy,
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Optimal Dose w.r.t. Posterior

LOSS
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Can Incorporate Frequentist Criteria in
Utility Function

- Bayesian design optimizes expected utility

» Utility function can include different considerations
- Sample size or cost
- Precision
- Number of patients who benefit
- Prediction of future study outcomes

» E.g., Anscombe (’63), Berry & Ho ('88), Lewis & Berry
('94), Carlin, Kadane, & Gelfand (°98), Stallard, Thall,
& Whitehead ('99), Lewis, Lipsky, & Berry (’07),
Trippa, Rosner, & Muller ('12), Ventz & Trippa ('15)
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Platform or Master Protocols

Rossell, MUller, Rosner (2007) Biostatistics
Ding, Rosner, MUller (2008) Biometrics

- At any one time, multiple phase |l studies

Time Treatments Ay, data yy;, decisions dy;,a; n,
CICICICICHNR
decisions dy dy2 dy3 di4 dys
Y
stop :
a; = 0 a; = 1
new
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Utility Function

- Utility at decision-time ¢ (for current trt)

(—c,xn,xt if stop & discard

Phase 3 sample size & cost
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Stopping Boundaries Oota ~ Beta(20,80)
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Opportunities

- Work with colleagues in other fields

ASAN, Statistics and Pharmacometrics (1 S O p’)

AMERICAN STATISTICAL ASSOCIATION ’~,.
Promoting the Practice and Profession of Statistics* | nte reSt G ro u p SXP N“T'DNAL 900“’

NARMACOMETRIC®




Conclusions

» Drug development involves learning & confirming

- Bayesian inference has place in drug development
» Bayesian paradigm corresponds to learning
» Easier to combine or incorporate external information
- External information feeds priors
» Interest in complex designs & decision making

- Outcome adaptive randomization
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Conclusions (cont’d)

« Studies need to meet needs of multiple stakeholders
» Clinical research involves decisions
» Incorporate statistical decision theory in design
- Utility function can include many considerations
» Predicted success of future study
» Precision of estimation
» Cost of study

» Cost to patients
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Thank you to our speakers
and
Thank you!



