
Longitudinal modelling: Time to take the next step?
Tobias Mielke

Decision-making using longitudinal modelling presence of 
model uncertainty
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Objective

„Making the best possible decision at the earliest time-point in the
most efficient manner“

Increasing efficiency in drug development:

– Adaptive study designs, Biomarker, Portfolio optimization

What else to increase efficiency?

- Ensure that the collected data is actually utilized (e.g. longitudinal)

- Ensure that we leverage internal/external knowledge in our designs (e.g. MBMA, 
(Bayesian) modelling)

Implications:

 Do the right decision with higher certainty: Better informed decisions

 Do the same decision earlier: Quicker transition to next phase
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Leveraging Longitudinal Data

Longitudinal data are routinely collected in our experiments
• e.g. body weight, viral load, blood pressure, heart rate, tumor growth, …

Often, primary analyses focus on AUC analyses, cross-sectional endpoint analyses or 
changes from baseline. Good practice to reflect on:

• The question of interest:
• What is the study objective? Any difference between groups or specific difference?
• What is the pattern of change? Is the pattern different over treatment groups?

 Earlier onset iso size of effect as differentiator?
• Possible suboptimal use of information:

• Do we use all measurements? Which assessments provide valuable information?
• Do we use optimal analysis techniques? Dichotomization = loss of information!
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What is longitudinal modelling?

Variety of methods combining multiple assessments into the analysis via model

E.g. looking at binary endpoints:
• Direct modelling of transition probabilities: 

• What is probability that non-responder at week 12 becomes responder at week 24?

• Fitting generalized linear (mixed) models
• Are dependencies appropriately taken into account? 

• Modelling as time-to-event variable if only one “0”-> “1” transition possible
• Timing of event to provide additional information

• Modelling of an underlying continuous model, driving “response”
• Fit continuous endpoint and estimate response probabilities from continuous model => more info

Here focus on: Continuous endpoint and mixed effects models.
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Why (longitudinal) modelling…

Fitting linear model through 2 points:
• No benefit on these points
• … but for points in between: yes
Fitting linear model through 3 points:
• Also CI on boundaries shrinks
… but best is to use all visits

Visits used 
in analysis Efficiency Required 

size
Equivalent 

size

2 100% 50 50

3 89.75% 45 55

4 73.57% 37 68

7 55.08% 27 90Too nice to be true…
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… and what to consider: Correlation of observations

• Observations from one experimental 
unit (e.g. patient) are correlated

• Benefit depends on correlation within 
subject: 

• High correlation => less learnings

Visits used 
in analysis Efficiency Required 

size
Equivalent 

size

2 100% 50 50

3 96.37% 48 52

4 92.45% 46 54

7 88.48% 44 56… 6 patients can make 1 month

7 measurements on one subject ≠ 7 subjects with one measurement
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… and what else to consider: Uncertainty on the model

Problems with wrong shape:
• Biased estimator
• False coverage probability
 Misleading results

Does this mean: Don’t use modelling?
• No. 
• Be cautious and aware of uncertainty.
• Include uncertainty in design 

evaluation.

Model-based CI doesn’t include observed mean => “Too bad to be correct?”
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The question of interest: What is the objective?

Apply statistical methodology to support efficient decision making

What is the considered rule for decision making?

Situation 1
Is there any difference 
between control and test 
at any time?

𝐻𝐻0: ∩𝑖𝑖=1𝑇𝑇 𝜇𝜇𝑖𝑖1 ≤ 𝜇𝜇𝑖𝑖0 at 𝛼𝛼0

Situation 2
Do we reach a targeted 
effect size

Situation 3
What is the conditional or 
predictive power?

Probability of 
study/program success 

given data <x?



• Summarize multiple assessments into one

• Optimal weighting of assessments:

𝑃𝑃𝛿𝛿
𝑐𝑐𝑇𝑇 �𝑌𝑌1−�𝑌𝑌0

2𝑐𝑐𝑇𝑇Σ𝑐𝑐
> 𝑧𝑧1−𝛼𝛼 = 1 −Φ 𝑧𝑧1−𝛼𝛼 −

𝑐𝑐𝑇𝑇𝛿𝛿

2𝑐𝑐𝑇𝑇Σ𝑐𝑐

Benefit: Higher power as compared to standard cross-sectional

• Does not severely depend on distribution of data

Limitation: No insight on size of effect.

Situation 1: Test for any difference => Look at Björn’s part

Is there any difference between control and test at any time?
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 Is the effect worth continued investment?
– “Stop” if Δ significantly below some target effect 

at some 𝛼𝛼𝑇𝑇𝑇𝑇

 Was a minimum relevant effect observed?
– „Go“ if Δ above max. non-acceptable effect at 

some level 𝛼𝛼𝑀𝑀𝑀𝑀𝑀𝑀

Situation 2: Test for relevant difference 𝚫𝚫 = 𝝁𝝁𝑻𝑻𝟏𝟏 − 𝝁𝝁𝑻𝑻𝟎𝟎

Dual “Go – No go” approach (Lalonde 2007)
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Properties/Problems:

1. Model-based approach: info is drawn from model  Error-control not guaranteed

2. Non-model based approach: significant amount of data not utilized

3. Definition of Δ: Parameter in a longitudinal model or difference at certain time?

Lalonde et al., Clinical Pharmacology & Therapeutics, (2007) 82:21-23
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Situation 3: Conditional Power

Final analysis:

Test 𝐻𝐻0: 𝜇𝜇𝑇𝑇1 ≤ 𝜇𝜇𝑇𝑇0 at level α=5% (two-sided), using standard methods

Interim analysis: What is the probability of a positive study at final analysis?

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑃𝑃𝛿𝛿,𝜎𝜎 𝑤𝑤1𝑧𝑧1 + 𝑤𝑤2𝑍𝑍2 + 𝑤𝑤3𝑍𝑍3 > 𝑧𝑧1−𝛼𝛼 𝑍𝑍1,𝑍𝑍2∗

𝑍𝑍2: Some data available at interim analysis: We can predict how they develop

𝑧𝑧1: Completers at interim analysis: We know their data

𝑍𝑍3: No data available at interim analysis: We can estimate their effect

𝛿𝛿,𝜎𝜎: Assumption on effects: Estimated from all data using parametric model

Van Lancker et al. Statistics in Medicine (2019), 38:28 5361-5375
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Situations 2 & 3: How does it work?

1. Assume a parametric model, e.g. (N)LME:
𝑌𝑌𝑖𝑖𝑖𝑖 = 𝜂𝜂 𝛽𝛽𝑖𝑖 , 𝑡𝑡𝑗𝑗 , 𝑡𝑡𝑡𝑡𝑡𝑡 + 𝜖𝜖𝑖𝑖𝑖𝑖 ,𝛽𝛽𝑖𝑖~𝑁𝑁 𝛽𝛽,𝐷𝐷 , 𝜖𝜖𝑖𝑖𝑖𝑖~𝑁𝑁 0,𝜎𝜎2 , 𝑖𝑖 = 1, … ,𝑁𝑁, 𝑗𝑗 = 1, … ,𝑚𝑚

– Linear / non-linear?

– Interpretation? 1 + 𝑡𝑡𝑡𝑡𝑡𝑡 × 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 vs. 1 + 𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑡𝑡𝑡𝑡𝑡𝑡 × 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ?

2. Given data, fit model:
– Estimates for: 𝛽𝛽,𝐷𝐷,𝜎𝜎2,𝛽𝛽𝑖𝑖 together with measures of uncertainty (FIM)

3. Calculate decision metrics of interest:
– Model based confidence interval (simple, using estimates of 𝛽𝛽,𝐷𝐷,𝜎𝜎2)

– Conditional power (a bit trickier, using estimates of 𝛽𝛽,𝐷𝐷,𝜎𝜎2,𝛽𝛽𝑖𝑖 and actual data)
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Impact of model uncertainty: Impacts of wrong model

Test for any difference: No loss of validity

 Loss in power: Likely still better than cross-sectional approach

Test for relevant difference: Loss of validity
 Biased estimator results in wrong coverage probability
 Short confidence intervals are possible, suggesting wrong stop/go 

decisions

Conditional power: Potentially misleading results
 Biased estimator and model lead to biased estimates of conditional 

power
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Some strategies for mitigating model uncertainty

1. Use flexible model
– MMRM: While validity not harmed, no gain in efficiency

2. Fit several models to the data and pick the best*
– Not best model in terms of “maximum effect”: Standard multiplicity problem
– Best model in terms of best fit: Underestimation of variability => false coverage 

probability

3. Fit several models to the data and conduct model averaging*:
– Similar to “2”, but characteristics potentially better

4. Use of longitudinal modelling as back-up only
Given all these complexities: What is the opportunity space? 
What is the potential benefit?

Buatois et al. AAPS Journal 2018, 20:56
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Example: Phase 3 study designs in IPF

Based on publication:
“Efficacy & Safety of Nintedanib in Idiopathic Pulmonary Fibrosis”*

Primary endpoint:
 Annual rate of decline in FVC (measured in milliliters per year)
 Assessments at weeks: 0, 2, 4, 6, 12, 24, 36, 52 and 56

Secondary endpoint: Absolute change from baseline at week 52

Analysis: RCR model with random intercept and slopes

Sample size: 90% power to detect…
 between group difference of 100ml in annual rate of decline
 … assuming standard deviation of 300ml on change from baseline
 … and 3:2 randomization

Richeldi et al., NEJM 2014, 370:2071-2082
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Example: Phase 3 study designs in IPF

“Efficacy & Safety of Nintedanib in Idiopathic Pulmonary Fibrosis”*

Sample size planned looking only at change from baseline week 52

… no need to make assumptions on within-subject correlation

… more assessments: information will increase => conservative sample size

What we’ll look at instead:

1. What would be the power using all assessments?

… and what is the impact of variance composition on operating characteristics?

2. How would deviations from assumed linear model impact power?

… and how would model selection/averaging compare

Richeldi et al., NEJM 2014, 370:2071-2082
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Example: Phase 3 study designs in IPF

What would be the power using all assessments? (0, 2, 4, 6, 12, 24, 36, 52)

Looking at standard LME:

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛽𝛽𝑖𝑖𝑖 + 𝛽𝛽𝑖𝑖𝑖 + 𝑡𝑡𝑡𝑡𝑡𝑡 × 𝛽𝛽𝑖𝑖𝑖 𝑡𝑡𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖 with 𝛽𝛽𝑖𝑖~𝑁𝑁 𝛽𝛽,𝐷𝐷 and 𝜖𝜖𝑖𝑖~𝑁𝑁(0, Σ)

Assumption on change from baseline: 𝑐𝑐𝑇𝑇𝑌𝑌𝑖𝑖~𝑁𝑁 𝜇𝜇,𝜎𝜎𝐶𝐶𝐶𝐶𝐶𝐶2 (𝑐𝑐 = −1,0, … , 0,1 𝑇𝑇)

 Assuming no intra-subject correlation: Σ = 𝜎𝜎𝜖𝜖2𝐼𝐼𝑚𝑚
 Assuming no random treatment effects (𝑉𝑉𝑉𝑉𝑉𝑉 𝛽𝛽𝑖𝑖𝑖 = 0)

 … resulting assumption on variability: 𝜎𝜎𝜖𝜖2 = (𝜎𝜎𝐶𝐶𝐶𝐶𝐶𝐶2 − 𝑡𝑡𝑚𝑚2 𝑉𝑉𝑉𝑉𝑉𝑉 𝛽𝛽𝑖𝑖𝑖 )/2

Richeldi et al., NEJM 2014, 370:2071-2082

Given Unknown



18

Example: Phase 3 study designs in IPF

 What would be the power using all assessments?

Black: Change from baseline 
Green: Large intercept variability 
Blue: No intercept variability
Red: Something in between

Result: potentially overly conservative study design
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Example: Phase 3 study designs in IPF

2. How would deviations from assumed linear model impact power?
What is the annual rate of decline?

 Linear progression: simple

 Non-linear progression: depends 
on study duration

Looking at landmark (e.g. estimate on 
wk52 change from baseline informed 
from longitudinal model) may resolve 
this problem:

𝐇𝐇𝟎𝟎: 𝚫𝚫 = 𝝁𝝁52𝟏𝟏 − 𝝁𝝁𝟓𝟓𝟓𝟓
𝟎𝟎 ≤ 𝟎𝟎

… but will be different endpoint.
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Example: Phase 3 study designs in IPF

2. How would deviations from assumed linear model impact power?

Simulated & fitted scenarios:

Note: linear models were fitted (but non-linear in time)!
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Example: Phase 3 study designs in IPF

2. How would deviations from assumed linear model impact power?

Coverage probabilities of 95%-confidence interval:

 Selection (1/2): Simulated shape available / not available for selection
 Model averaging: performs like model selection as difference in profiles detected
 Model selection can mitigate some concerns, but not all (need adequate model)

Fitted shape
Linear Emax Exponential Sigmoidal Beta model Selection (1) Selection (2)

Simulated 
shape

Linear 95,10% 83,13% 88,57% 91,77% 79,70% 95,10% 91,77%
Emax 78,03% 94,47% 45,30% 76,10% 58,93% 94,47% 76,10%
Exponential 88,03% 48,23% 95,13% 59,33% 41,97% 95,13% 88,03%
Sigmoidal 94,10% 90,80% 73,47% 94,67% 92,17% 94,67% 92,17%
Beta model 92,40% 93,20% 70,63% 93,60% 94,87% 94,87% 93,60%
Emax (2) 94,00% 94,47% 53,97% 92,00% 78,30% 93,23% 93,23%
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Example: Phase 3 study designs in IPF

2. How would deviations from assumed linear model impact power?

Type 1 error:

Type-1 error less of an issue here:
 Model selection not conducted to establish some effect, but to get best fit.
 Within each analysis model, the type-1 error is controlled

Fitted shape
Linear Emax Exponential Sigmoidal Beta model Selection (1) Selection (2)

Simulated 
shape

Linear 2,40% 2,60% 2,70% 2,60% 2,60% 2,40% 2,60%
Emax 2,40% 2,30% 1,10% 2,30% 2,60% 2,30% 2,30%
Exponential 2,20% 2,50% 2,00% 2,60% 3,20% 2,00% 2,20%
Sigmoidal 2,70% 2,70% 3,20% 2,60% 2,90% 2,60% 2,90%
Beta model 2,40% 2,00% 1,80% 2,50% 2,50% 2,50% 2,50%
Emax (2) 2,20% 2,30% 2,70% 2,00% 1,80% 2,50% 2,50%
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Example: Phase 3 study designs in IPF

2. How would deviations from assumed linear model impact power?

Power (assuming effect of 100):

Power affected by model:
 Wrong model selected for fitting => impact on power
 True EMax but different model fitted => effect underestimated => lower power

Fitted shape
Linear Emax Exponential Sigmoidal Beta model Selection (1) Selection (2)

Simulated 
shape

Linear 96,10% 91,70% 89,50% 95,90% 95,80% 96,10% 95,90%
Emax 83,60% 96,90% 41,60% 87,70% 86,30% 96,90% 87,70%
Exponential 94,60% 88,60% 96,80% 94,80% 94,00% 96,80% 94,60%
Sigmoidal 96,60% 91,70% 80,30% 96,80% 96,70% 96,80% 96,70%
Beta model 96,70% 90,20% 71,30% 97,30% 97,30% 97,30% 97,30%
Emax (2) 97,70% 98,90% 82,60% 98,10% 97,80% 98,30% 98,30%
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Summary

Longitudinal modelling:
 … may add substantial efficiency, allowing earlier decision making
 … but requires more specifications/assumptions in design stage (e.g. variability)

Wrong model may lead to incorrect conclusions:
 … but approaches like model averaging may yield robust and efficient results
 … worthwhile at least for internal decision making 

And a last thought:
 Do we really need the right model?
 Estimator from wrong model may still be informative due to numerics:

– E.g. estimator of effect at final visit vs. maximum information from final visit in linear model

Summary: Uncertainty on the model ≠ don’t try to utilize modelling
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