

Discussion PSI Webinar, Nov 11, 2019 Longitudinal modelling: Time to take the next step?

Pr France Mentré

Université de Paris, IAME, INSERM, Paris, France

Two talks: common findings

- Using longitudinal measurements increase power of test of treatment effect
 - results obtained through different simulation examples
 - two arms PoC studies with continuous measurement
- Björn Bornkamp (Novartis)
 - MMRM more power than cross-sectional
 - Influence of shape of response, ratio WSV/BSV
 - LMEM more power than MMRM (less parameters)
- Tobias Mielke (J&J)
 - Longitudinal modelling add substantial efficiency
 - Wrong model could lead to incorrect conclusions
 - Model selection: a good approach (BUT no problem in type I error here)
 - Model averaging: good alternative

Comparison of model averaging (MA) and model selection (MS) in dose finding trials analyzed by nonlinear mixed effect models (NLMEM)

Simon Buatois^{1,2,}, Sebastian Ueckert³, Sylvie Retout², Nicolas Frey², France Mentré¹

PAGE 2018

- 1. IAME, UMR 1137, INSERM, University Paris Diderot, Sorbonne Paris Cité, Paris, France
- 2. Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel
- 3. Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden

Citation: CPT Pharmacometrics Syst. Pharmacol. (2017) 6, 418–429; doi:10.1002/psp4.12196 © 2017 ASCPT All rights reserved

WHITE PAPER

Advanced Methods for Dose and Regimen Finding During Drug Development: Summary of the EMA/EFPIA Workshop on Dose Finding (London 4–5 December 2014)

FT Musuamba^{1,2,3*}, E Manolis^{1,4}, N Holford⁵, SYA Cheung⁶, LE Friberg⁷, K Ogungbenro⁸, M Posch⁹, JWT Yates⁶, S Berry¹⁰, N Thomas¹¹, S Corriol-Rohou⁶, B Bornkamp¹², F Bretz^{9,12}, AC Hooker⁷, PH Van der Graaf^{13,14}, JF Standing^{1,15}, J Hay^{1,16}, S Cole^{1,16}, V Gigante^{1,17}, K Karlsson^{1,18}, T Dumortier¹², N Benda^{1,19}, F Serone^{1,17}, S Das⁶, A Brochot²⁰, F Ehmann⁴, R Hemmings¹⁶ and I Skottheim Rusten^{1,21}

23 January 2014 EMA/CHMP/SAWP/757052/2013 Committee for Medicinal Products for Human Use (CHMP)

Qualification Opinion of MCP-Mod as an efficient statistical methodology for model-based design and analysis of Phase II dose finding studies under model uncertainty

MCP-MOD'	PMX			
 Starting from a predefined set of dose- response candidate models: 				
I. MCP-step: Assessment of dose-response signal using contrast test on the best model (MS)	1. Model building using multiple LRT on nonlinear mixed effect models (MS)			
2. MOD-step: Estimate the dose-response curve using either model selection (MS) or model averaging (MA)	2. Estimate the dose-response curve using the selected model			
Advantages vs PMX	Advantages vs MCP-MOD			
Models pre-specified	Longitudinal analysis of the data			
 Takes model uncertainty into account Control the type I error 	6			

Two projects

I. To compare predictive performances of model averaging (MA) and model selection (MS) based on a predefined set of NLMEMs with similar disease progression model and different dose-effect relationships

The AAPS Journal (2018) 20:56 DOI: 10.1208/s12248-018-0205-x

Research Article

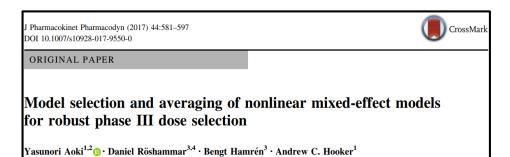
Comparison of Model Averaging and Model Selection in Dose Finding Trials Analyzed by Nonlinear Mixed Effect Models

Simon Buatois,1,2,3,5 Sebastian Ueckert,4 Nicolas Frey,1 Sylvie Retout,1,2 and France Mentré3

Two projects

- I. To compare predictive performances of model averaging (MA) and model selection (MS) based on a predefined set of NLMEMs with similar disease progression model and different dose-effect relationships
- II. To extend MCP-MOD to allow for NLMEM for both MCP and MOD step and to compare MS and MA for the MOD step

Statistics in Medicine


Research Article

Received 30 April 2013, Accepted 1 November 2013 Published online 3 December 2013 in Wiley Online Library

(wileyonlinelibrary.com) DOI: 10.1002/sim.6052

Model-based dose finding under model uncertainty using general parametric models

José Pinheiro,^a Björn Bornkamp,^{b*†} Ekkehard Glimm^b and Frank Bretz^b

MCP-MOD¹

- Starting from a predefined set of dc both worlds? response candidate models:
- 1. MCP-step: Assessment of dose-response signal using contrast test on the best model (MS)

2. **MOD-step:** Estimate the dose-response curve using either model selection (MS) or model averaging (MA)

1. Model building using multiple LRT on nonlinear mixed effect models (MS)

PMX

2. Estimate the dose-response curve using the selected model

Advantages vs MCP-MOD Advantages vs PMX Models pre-specified Longitudinal analysis of the data Takes model uncertainty into account 27 Control the type l error

Best of

MCP-MOD'		cLRT-MOD		
Predefined set	of dose mode	e-response candidate els:		
I. MCP-step: Assessment of dose-response signal using contrast test on the best model (MS)		I. cLRT-step: Assessment of dose- signal using a corrected-Likelihood	•	
curve using eit	ther mod	te the dose-response del selection (MS) or aging (MA)		
[1] Bretz F . <i>et al</i> , Biometrics, 2005		[2] Dette H. et al, Biometrics, 2015	28	

II. Weak drug effect & N=50 Type I error & Power

						Simulation		
						m	odel	
			Linear	Log-linear	Emax	Sigmoid	No-DE	
Test				Type-l error [3.2-7%]				
		Linear	75.8	72.4	79.6	89.4	4.8	
		Log-linear	62.0	83.0	84.8	91.8	4.0	
	LRT	Emax	65.2	81.6	84.4	91.2	5.6	
		Sigmoid	67.8	40.4	47.2	57.2	5.8	
		MS	79.0	86.6	89.6	93.6	7.6	
		cLRT	71.2	81.2	83.8	90.6	5.6	
		МСР	14.2	11.2	12.4	16.4	3.0	

Conclusion of Simon Buatois' work

- This work extends the MCP-MOD methodology to use NLMEM in both MCP and MOD steps
- By deriving the reference distribution of the LRT under the null-hypothesis for all candidate models, the method maintains the nominal type-I error while using the full longitudinal information
 - The work, furthermore, shows how model averaging provides substantially better coverage in the MOD step, and how the ignorance of model uncertainty leads to an under-estimation of the confidence intervals

Buatois S, Ueckert S, Frey N, Retout S, Mentré F. A pharmacometric extension of MCP-MOD in dose finding studies. PAGE 27 (2018), ACOP9 (2018).

Submitted to Statistics in Medicine, Sept 2019

Perspectives on longitudinal modelling in drug development

- What are the next steps before acceptance by regulatory authorities?
 - Other modelling scenario
 - Clear choice of a statistical approach
 - Looking at GOF?
 - Start by specific cases
 - Dose response (extension of MCP-MOD)
 - Bioequivalence (MBBE grants with FDA)
 - Rare diseases
 - Pediatrics
 - 0 •••
 - Role of the SxP ISoP/ASA SIG?

http://community.amstat.org/sxp/home

