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Our aim today

 Investigate which factors determine potential gains in efficiency with a 

longitudinal approach (vs cross-sectional) for signal detection/testing

 Approach

 Scope of a two-arm PoC trial (treatment effect detection)

 Use simple statistical method of using longitudinal measurements for testing

 Allows for analytical approximations and fast exploration of factors

 Assessment on theoretical and real case examples
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Statistical Model

Data

𝑌𝑖𝑗𝑡: 𝑖 = 0,1 (control vs treatment); 𝑗 = 1,… , 𝑛𝑖 patient ; 𝑡 = 1, … , 𝑇(visit)

Distributional assumption (per patient)

(𝑌𝑖𝑗1, … , 𝑌𝑖𝑗𝑇) ~ 𝑀𝑉𝑁(𝜇𝑖 , Σi)

Notation

𝜇𝑖 - population mean vector per treatment group

Σ𝑖 - Covariance matrix for treatment i (individual random effects and residual 
error)

Note:

 Standard „MMRM“ model (can also include covariates)
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Average control & treatment response
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Instead of testing only at time T...

𝛿𝑇
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...use weighted average of time-points

𝛿𝑇
𝛿𝑇−1

𝛿1
𝛿2

…
…



Test statistic (weighted treatment 
differences over time)
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𝑍 =
𝒘′෡𝜹

𝒘′
෢𝚺1
𝑛1

+
෢𝚺0
𝑛0

𝒘

Notation

𝑌𝑖.𝑡 - mean per time-point and study arm

መ𝛿𝑡 = 𝑌1.𝑡 − 𝑌0.𝑡 treatment effect over time, ෡𝜹 = ( መ𝛿1 , ..., መ𝛿𝑇)′

𝒘 : weight vector for time-points. 

Notes: 𝑍 is asymptotically normally distributed

 𝒘 = (0, 0, … , 0, 1)′ corresponds to cross-sectional test at the last time-point

 Scaling of w is irrelevant (scalars cancel out in Z)



Optimal weights

 Frison & Pocock (1997) showed how to determine optimal weights

 Assume we know 𝜹, 𝚺1, 𝚺0. Non-centrality parameter of 𝑍 is 
𝒘′𝜹

𝒘′ 𝚺1
𝑛1

+
𝚺0
𝑛0

𝒘

 Optimal weights (maximizing the non-centrality parameter) are proportional to

𝒘𝑜𝑝𝑡 ∝ 𝜹′𝑺−1 where 𝑺 =
𝚺1

𝑛1
+

𝚺0

𝑛0

 Weights might get negative (hard to interpret). 

 We will use constrained numerical optimization subject to 𝑤𝑖 ≥ 0 ∀ 𝑖 & normalize 

weights to sum to 1 (just for convenience)
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Factors influencing optimal weights:  
𝜹(𝑡), SD(t), correlation over time

 Optimal weights will depend on

(1) 𝜹(𝑡) (treatment effect over time),

(2) standard deviation of 𝑌𝑖𝑗𝑡 over time (SD(t)) and 

(3) within patient correlation over time ( (2) and (3) determine 𝑺)

 In practice 𝜹 and 𝑺 not known

 Could use a set of candidates and corresponding optimal weight vectors 

 Like MCP-Mod

 We propose here to simply use maximum test over

𝒘1 = (0, 0, … , 0, 1)′, 𝒘2 = (0, 0,… , 0,1/2, 1/2)′ , … ,𝒘𝑇 = (1/𝑇, … , 1/𝑇)′
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Example 1
(i) 𝛿(𝑡) (ii) 𝑆𝐷(𝑡) (iii) Correlation
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Example 2
(i) 𝛿(𝑡) (ii) 𝑆𝐷(𝑡) (iii) Correlation
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Example 3
(i) 𝛿(𝑡) (ii) 𝑆𝐷(𝑡) (iii) Correlation
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Example 4
(i) 𝛿(𝑡) (ii) 𝑆𝐷(𝑡) (iii) Correlation
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Example 5
(i) 𝛿(𝑡) (ii) 𝑆𝐷(𝑡) (iii) Correlation
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Example 6
(i) 𝛿(𝑡) (ii) 𝑆𝐷(𝑡) (iii) Correlation



Agenda

 Statistical methodology

 Case examples

 Exploring factors 

 Comparison to parametric mixed effect model

 Conclusions

21



Systematic exploration of factors: 
Defining scenarios

 For scenarios: parametric specification of 𝛿 𝑡 , 𝑆𝐷(𝑡) and correlation 

 Emax model for 𝛿 𝑡

 Linear function for 𝑆𝐷(𝑡), parametric form for correlation

 Assume same covariance function for both arms (details in slide notes)

 Analysis model: Multivariate normal (MMRM) model & Z test described earlier 

 Time & treatment categorical variables (with interaction)

 Analytical formulas available for sample size

 We compare sample size needed for a test 

 5% one-sided type 1 error, 90% power
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Rather typical scenario (base case)
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0.87 means longitudinal needs 13% 

less patients than cross-sectional for 

the same power



𝜹(𝒕): Early onset 
 More benefit for longitudinal
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𝜹(𝒕): Late onset
 Less benefit for longitudinal
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𝑺𝑫(𝒕): Increasing with time
Higher gains (than with constant SD). Beneficial to give more 
weight to earlier points
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𝐂𝐨𝐫 𝐭𝟏, 𝐭𝟐 : Low within patient correlation 
 Better for longitudinal
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𝐂𝐨𝐫 𝐭𝟏, 𝐭𝟐 : High within-patient correlation
 Less benefit for longitudinal
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Summary

 If onset of treatment effect early

 Benefit of longitudinal approach expected to be larger

 If the standard deviation increases over time

 Longitudinal approach expected to be more beneficial (than with a time-

constant SD)

 More benefit with more weight on earlier time-points

 If within-patient correlation is high (i.e. within-patient variance is low)

 less benefit from a longitudinal approach
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Sample size savings for longitudinal 
across six case examples

 Ratio of sample sizes compared to cross-sectional analysis

 Assuming observed 𝛿(𝑡), SD(t) and correlations are „true“
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Approach Mean (Min, Max)

Optimal Test 0.68 (0.29, 0.99)

Maximum Test 0.83 (0.59,1.03)
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Comparison to parametric mixed 
effect model

 For two of examples presented

 Fit adequate parametric mixed effect model to data, using parametric model over 

time (details in appendix)

 Simulate new trials (same design) from fitted mixed effect model 

 Compare

1) Test based on treatment effect parameter in mixed effect model

2) Cross-sectional analysis on last time-point

3) max T test based on different weighted averages

𝒘1 = (0, 0,… , 0, 1)′, 𝒘2 = (0, 0,… , 1/2, 1/2)′ , … ,𝒘𝑇 = (1/𝑇, … , 1/𝑇)′

4) Test based on optimal weights (optimized on true scenario)
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Comparison example 1
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Approach Power

Parametric mixed model 84.9

Cross-sectional test 58.0

Maximum Test 70.2

Optimal Test 73.3

(i) 𝛿(𝑡) (ii) 𝑆𝐷(𝑡) (iii) Correlation

 Parametric time mixed effect 

model improves over „MMRM“ 

 Fewer parameters

 Longitudinal models both 

improve over cross-sectional



Comparison example 2
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Approach Power

Parametric mixed model 90.1

Cross-sectional test 88.8

Maximum Test 87.5

Optimal Test 89.2

(i) 𝛿(𝑡) (ii) 𝑆𝐷(𝑡) (iii) Correlation

 No big differences across 

methods, primarily due to 

linearity of treatment effect over 

time and high within-patient 

correlation
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Conclusions

 Including longitudinal measurements can bring substantial gains in specific situations

 The most gain from the longitudinal approach is expected for situations with:

 early onset of treatment effect,

 SD increasing over time,

 most variability is within-patient (= low within-patient correlation).

 The presented simple “time-point-weighting” approach provides benefits almost „for free“: no 
additional implementation effort, can use standard analyses (MMRM), only need to specify 
the contrasts of interest over time

 Parametric mixed-effects model-based approach (including covariate effects, using more 
pharmacological prior knowledge, etc) can potentially bring even higher gains

 Limitation of this work: focused only on the treatment effect detection. In practice, 
understanding the time-course is equally of interest
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𝑦𝑖 = 𝛼 + 𝛼𝑘 + (𝛿 + 𝛿𝑘)𝐼𝑡𝑖>0 & 𝑡𝑟𝑡𝑖>0
+ 𝜖𝑖

 𝜖𝑖 ∼ 𝑁(0, 𝜎2) iid

 𝛼𝑘 , 𝛿𝑘~𝑀𝑉𝑁(0, Ω) patient specific correlated random effects
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Mixed effect model used in example 1



𝑦𝑖 = 𝛼 + 𝛼𝑘 + (𝛽 + 𝛽𝑘+𝛿 ∗ 𝑡𝑟𝑡𝑖)𝑡𝑖 + 𝜖𝑖

 𝜖𝑖 ∼ 𝑁(0, 𝜎2) iid

 𝛼𝑘 , 𝛽𝑘~𝑀𝑉𝑁(0, Ω) patient specific correlated random effects
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Mixed effect model used in example 2


