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compare a pharmacometric model-based analysis to a t-test with respect to study power of proof-of-concept (POC) trials. In all
investigated examples and scenarios, the conventional statlstlcal analysis resulted in several fold Iarger sludy sizes to achieve
ptween the

comiAsthese results show, the use of a pharmacometric model—{ yeroun

a

100 +

Power (%)

40 -

" |tion about the drug effect, involving only one active treatment

60

convg

... based approach within drug development has the potential

“*7to reduce study sizes of clinical trials. One of the main rea-
sons for this is the use of longitudinal data as the pure POC

results show. The POC example contains minimum informa-

jarm and placebo, nevertheless byjincluding all data available
§ (i.e., repeated measurements) the pharmacometric approach
{|results in a several fold reduction in study size when address-

t ing the question of POC. Mixed-effects modeling is a powerful

-
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Il. Weak drug effect & N=50
Type | error & Power
Simulation model
Linear Log-linear Emax Sigmoid No-DE

"[‘p_g.{ Type-l error
Power (%) [3.2-7%]

Linear

Log-linear

Emax

_/
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Our aim today

» |nvestigate which factors determine potential gains in efficiency with a
longitudinal approach (vs cross-sectional) for signal detection/testing

= Approach
= Scope of a two-arm PoC trial (treatment effect detection)
= Use simple statistical method of using longitudinal measurements for testing
= Allows for analytical approximations and fast exploration of factors
= Assessment on theoretical and real case examples
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Agenda

= Statistical methodology

= Case examples

» Exploring factors

= Comparison to parametric mixed effect model
= Conclusions
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Agenda

= Statistical methodology

= Case examples

= Exploring factors

= Comparison to parametric mixed effect model
= Conclusions
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Statistical Model

Data
Y;i¢:1 = 0,1 (control vs treatment); j = 1,...,n; (patient); t = 1, ..., T(visit)
Distributional assumption (per patient)
(Yij1, or Yijr) ~ MVN (u;, Z;)
Notation
U; - population mean vector per treatment group

Z; - Covariance matrix for treatment i (individual random effects and residual
error)

Note:
» Standard ,MMRM" model (can also include covariates)

. U NOVARTIS | Reimagining Medicine



Average control & treatment response

Population mean change from baseline

Treatment

\’

\’

\’

Control

’ \’ v Y

Time
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Instead of testing only at time T...

Population mean change from baseline

Treatment

\’

\’

\’

Control

Time
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-=use weighted average of time-points

10

Population mean change from baseline

—

W

\.

61‘
62 )
\ or-1 O
Treatment \
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Time
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Test statistic (weighted treatment
differences over time)

w'é

(Z1, Zo
JW (55).

Y; ; - mean per time-point and study arm

7 =

Notation

5, =Y, — Y, treatment effect over time, 6= (6, , ..., 87)’
w . weight vector for time-points.

Notes: Z is asymptotically normally distributed
= w=(0,0,..,0,1) corresponds to cross-sectional test at the last time-point
= Scaling of w is irrelevant (scalars cancel out in Z)
1 !') NOVARTIS | Reimagining Medicine



Optimal weights

Frison & Pocock (1997) showed how to determine optimal weights

w's
\/w’(i—i+i—g)w
Optimal weights (maximizing the non-centrality parameter) are proportional to

_ %, X
Wope ¢ 8'S™1 where S = n—1+n—°
1 0

Assume we know 6, X, X,. Non-centrality parameter of Z is

Weights might get negative (hard to interpret).

= We will use constrained numerical optimization subject to w; = 0 V i & normalize
weights to sum to 1 (just for convenience)
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Factors influencing optimal weights:
6(t), SD(t), correlation over time

= Optimal weights will depend on

(1) &(t) (treatment effect over time),
(2) standard deviation of Y;;, over time (SD(t)) and

(3) within patient correlation over time (= (2) and (3) determine §)

» |n practice § and S not known

= Could use a set of candidates and corresponding optimal weight vectors
- Like MCP-Mod

= \We propose here to simply use maximum test over
w; =(0,0,..,0,1), w, = (0,0,...,0,1/2,1/2)", ...,wr = (1/T, ...,1/T)’
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Differences in changes from baseline
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Differences in changes from baseline

0.0+
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Differences in changes from baseline
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Differences in changes from baseline
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Systematic exploration of factors:
Defining scenarios

= For scenarios: parametric specification of §(t), SD(t) and correlation
= Emax model for §(t)
= Linear function for SD(t), parametric form for correlation
= Assume same covariance function for both arms (details in slide notes)

= Analysis model: Multivariate normal (MMRM) model & Z test described earlier
= Time & treatment categorical variables (with interaction)
= Analytical formulas available for sample size

= We compare sample size needed for a test
= 5% one-sided type 1 error, 90% power
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Rather typical scenario (base case)

23
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6(t): Early onset
- More benefit for longitudinal
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6(t): Late onset
- Less benefit for longitudinal
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SD(t): Increasing with time
-> Higher gains (than with constant SD). Beneficial to give more
weight to earlier points

26
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Cor(t4,t,): Low within patient correlation
- Better for longitudinal

27
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Cor(t4,t,): High within-patient correlation
- Less benefit for longitudinal

28

0.5~
0.4-
0.3-

0.2+

0.0-

Time
Test

last 2 visits

last 3 visits
all visits
max T

optimal w

(2) SD(t) (3) Cor(ty,tz)
1.00 -
0.75-
0.50~-
0.25-
t 0.00- ! !
é 4 8 7.2 6 é él& E'S E'% 10 12
Time Difference in Time
: (Samp. Size Long.)/
Weight
SAghES (Samp. Size Cross-Sect.)
0.00,0.00,0.50,0.50 1.05
0.00,0.33,0.33,0.33 1.19
0.25,0.25,0.25,0.25 1.43
1.05
-0.00,0.00,0.00,1.00 1.00

U NOVARTIS | Reimagining Medicine



Summary

» |f onset of treatment effect early
—> Benefit of longitudinal approach expected to be larger

» |f the standard deviation increases over time
—> Longitudinal approach expected to be more beneficial (than with a time-
constant SD)

- More benefit with more weight on earlier time-points

= |f within-patient correlation is high (i.e. within-patient variance is low)
—> less benefit from a longitudinal approach
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Sample size savings for longitudinal
across six case examples

» Ratio of sample sizes compared to cross-sectional analysis
= Assuming observed 6(t), SD(t) and correlations are ,true”

Approach Mean (Min, Max)

Optimal Test 0.68 (0.29, 0.99)

Maximum Test 0.83 (0.59,1.03)
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Agenda

= Comparison to parametric mixed effect model
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Comparison to parametric mixed
effect model

» For two of examples presented

= Fit adequate parametric mixed effect model to data, using parametric model over
time (details in appendix)

= Simulate new trials (same design) from fitted mixed effect model

= Compare
1) Test based on treatment effect parameter in mixed effect model
2) Cross-sectional analysis on last time-point
3) max T test based on different weighted averages

w; =(0,0,..,0,1)',w, =(0,0,..,1/2,1/2)", ..., wy = (1/T, ...,1/T)’

4) Test based on optimal weights (optimized on true scenario)
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(i) ()

Comparison example 1

(i) SD(¢)

(iii) Correlation

2 o2 * .' .:///' %
g | €
! T‘:ne :
Approach Power
. . | |
Parametric mixed model 84.9
Cross-sectional test 58.0
| |
Maximum Test 70.2
Optimal Test 73.3

1.00
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.
\_e
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s~ Placebo
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0.25

Parametric time mixed effect
model improves over ,MMRM
- Fewer parameters
Longitudinal models both
improve over cross-sectional
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Comparison example 2

(i)) SD(t)

Differences in changes from baseline
SDs of changes from baseline

0.0

(iii) Correlation

. Treatment
050 . h —e- Active

—e— Placebo

= No big differences across

methods, primarily due to
linearity of treatment effect over

time and high within-patient
correlation

Approach Power
Parametric mixed model  90.1
Cross-sectional test 88.8
Maximum Test 87.5
Optimal Test 89.2

34
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Conclusions

= Including longitudinal measurements can bring substantial gains in specific situations

= The most gain from the longitudinal approach is expected for situations with:
= early onset of treatment effect,
= SD increasing over time,
= most variability is within-patient (= low within-patient correlation).

» The presented simple “time-point-weighting” approach provides benefits almost ,for free®: no
additional implementation effort, can use standard analyses (MMRM), only need to specify
the contrasts of interest over time

» Parametric mixed-effects model-based approach (including covariate effects, using more
pharmacological prior knowledge, etc) can potentially bring even higher gains

= Limitation of this work: focused only on the treatment effect detection. In practice,
understanding the time-course is equally of interest
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Mixed effect model used in example 1

Vi = a+tap+ (0 +0i)l>0&tre>0 T Ei
= ¢; ~N(0,0%) iid
" ai,6,~MVN(0,Q) patient specific correlated random effects
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Mixed effect model used in example 2

Vi = + (045 + (,8 + ﬂk+5 * t?"ti)ti + €;
= ¢; ~N(0,0%) iid
" ai, fr~MVN(0,Q) patient specific correlated random effects
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