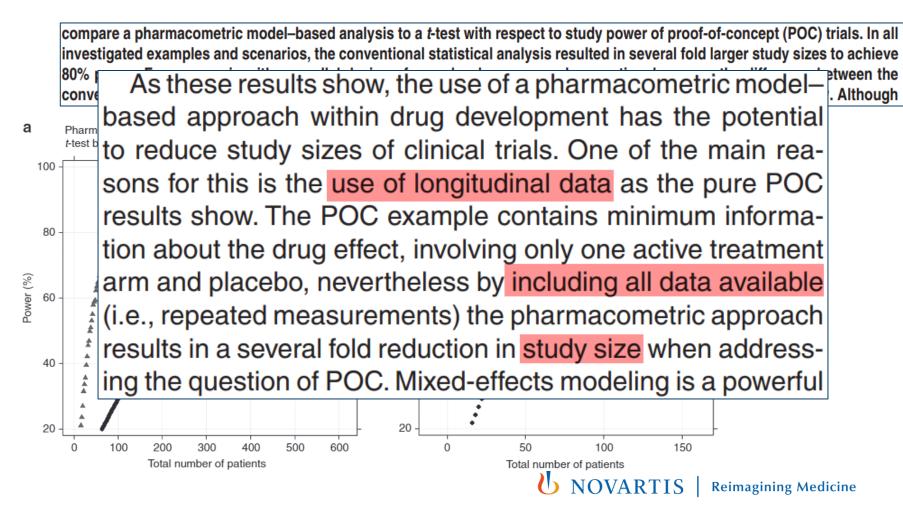


When is a longitudinal test better than a cross-sectional one?

UNOVARTIS | Reimagining Medicine

Björn Bornkamp, joint work with Ines Paule PSI webinar November 18, 2019

YYXYYXYYYY





Our aim today

- Investigate which factors determine potential gains in efficiency with a longitudinal approach (vs cross-sectional) for signal detection/testing
- Approach
 - Scope of a two-arm PoC trial (treatment effect detection)
 - Use simple statistical method of using longitudinal measurements for testing
 - Allows for analytical approximations and fast exploration of factors
 - Assessment on theoretical and real case examples

Agenda

- Statistical methodology
- Case examples
- Exploring factors
- Comparison to parametric mixed effect model
- Conclusions

Agenda

- Statistical methodology
- Case examples
- Exploring factors
- Comparison to parametric mixed effect model
- Conclusions

Statistical Model

Data

 Y_{ijt} : i = 0,1 (control vs treatment); $j = 1, ..., n_i$ (patient); t = 1, ..., T(visit) **Distributional assumption (per patient)**

$$(Y_{ij1}, \dots, Y_{ijT}) \sim MVN(\mu_i, \Sigma_i)$$

Notation

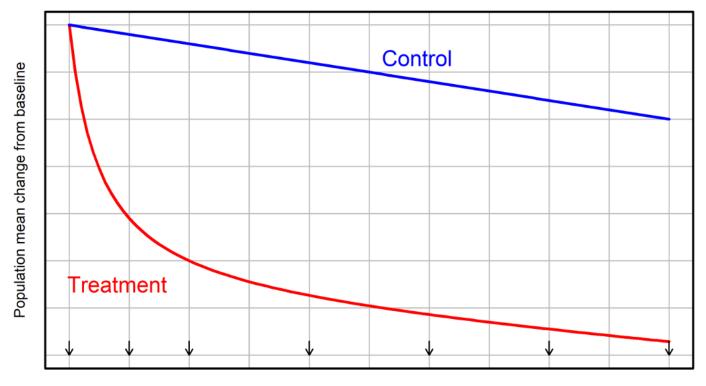
 μ_i - population mean vector per treatment group

 Σ_i - Covariance matrix for treatment i (individual random effects and residual error)

Note:

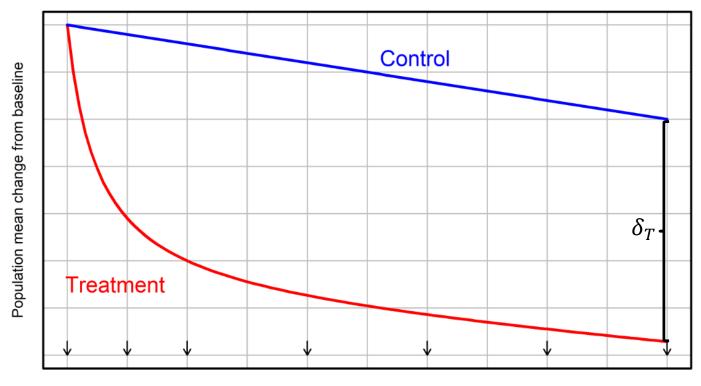
Standard "MMRM" model (can also include covariates)

Average control & treatment response



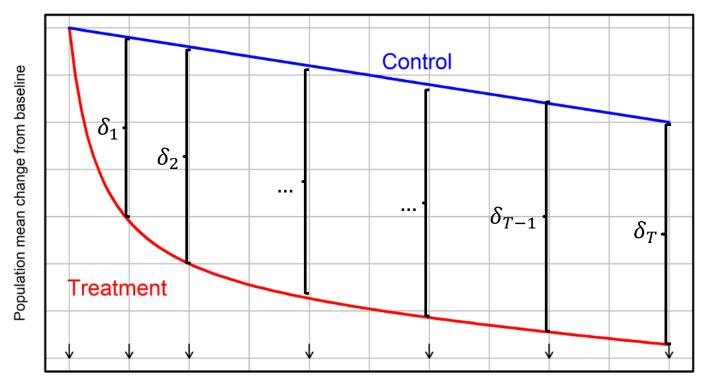
UNOVARTIS | Reimagining Medicine

Instead of testing only at time T...



UNOVARTIS | Reimagining Medicine

...use weighted average of time-points



Time

Test statistic (weighted treatment differences over time)

$$Z = \frac{w'\widehat{\delta}}{\sqrt{w'\left(\frac{\widehat{\Sigma}_1}{n_1} + \frac{\widehat{\Sigma}_0}{n_0}\right)w}}$$

Notation

 $\overline{Y_{i,t}}$ - mean per time-point and study arm

 $\hat{\delta}_t = \overline{Y_{1,t}} - \overline{Y_{0,t}}$ treatment effect over time, $\hat{\delta} = (\hat{\delta}_1, ..., \hat{\delta}_T)'$

w : weight vector for time-points.

Notes: Z is asymptotically normally distributed

- w = (0, 0, ..., 0, 1)' corresponds to cross-sectional test at the last time-point
- Scaling of w is irrelevant (scalars cancel out in Z)

Optimal weights

- Frison & Pocock (1997) showed how to determine optimal weights
- Assume we know $\delta, \Sigma_1, \Sigma_0$. Non-centrality parameter of Z is $\frac{w'\delta}{\sqrt{w'(\frac{\Sigma_1}{n_1}+\frac{\Sigma_0}{n_0})w}}$
- Optimal weights (maximizing the non-centrality parameter) are proportional to $w_{opt} \propto \delta' S^{-1}$ where $S = \frac{\Sigma_1}{n_1} + \frac{\Sigma_0}{n_0}$
- Weights might get negative (hard to interpret).
 - We will use constrained numerical optimization subject to $w_i \ge 0 \forall i$ & normalize weights to sum to 1 (just for convenience)

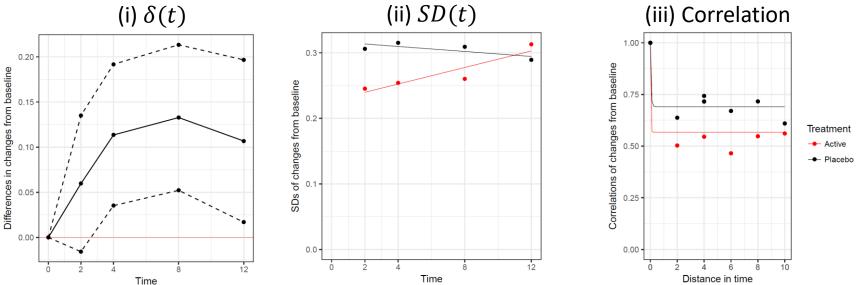
Factors influencing optimal weights: $\delta(t)$, SD(t), correlation over time

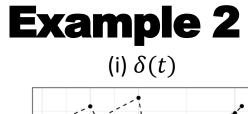
- Optimal weights will depend on
 - (1) $\delta(t)$ (treatment effect over time),
 - (2) standard deviation of Y_{ijt} over time (SD(t)) and
 - (3) within patient correlation over time (\rightarrow (2) and (3) determine *S*)
- In practice δ and S not known
 - Could use a set of candidates and corresponding optimal weight vectors
 → Like MCP-Mod
- We propose here to simply use maximum test over

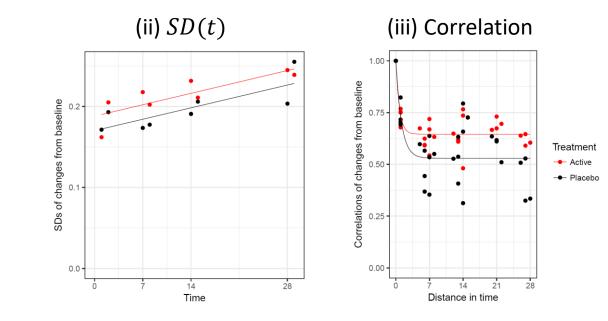
$$w_1 = (0, 0, ..., 0, 1)', w_2 = (0, 0, ..., 0, 1/2, 1/2)', ..., w_T = (1/T, ..., 1/T)'$$

Agenda

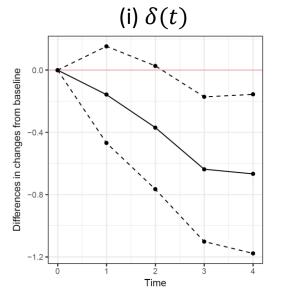
- Statistical methodology
- Case examples
- Exploring factors
- Comparison to parametric mixed effect model
- Conclusions

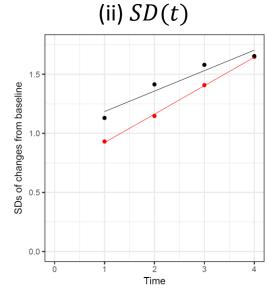


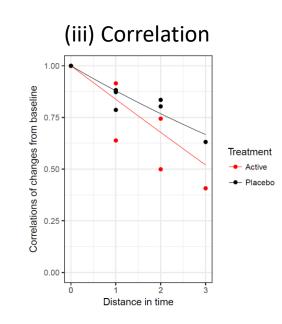


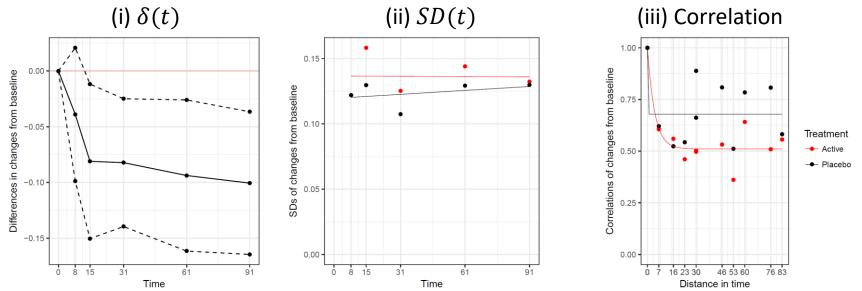


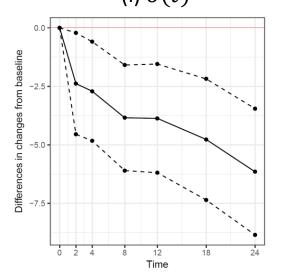
Time

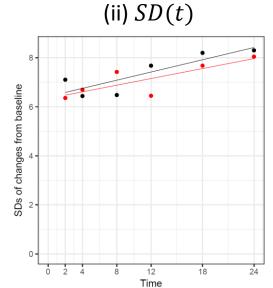


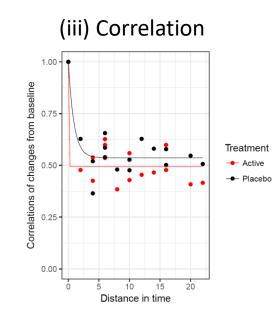


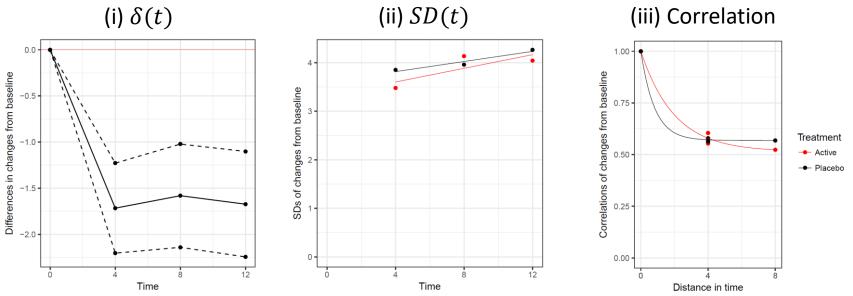












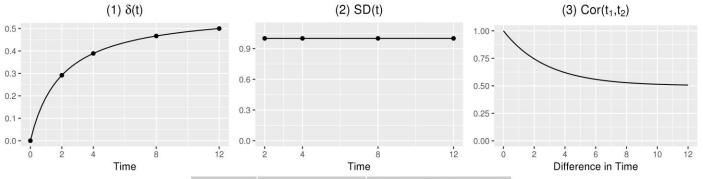
Agenda

- Statistical methodology
- Case examples
- Exploring factors
- Comparison to parametric mixed effect model
- Conclusions

Systematic exploration of factors: Defining scenarios

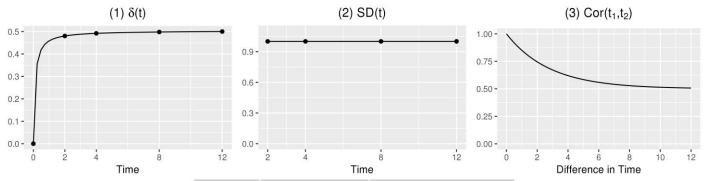
- For scenarios: parametric specification of $\delta(t)$, SD(t) and correlation
 - Emax model for $\delta(t)$
 - Linear function for SD(t), parametric form for correlation
 - Assume same covariance function for both arms (details in slide notes)
- Analysis model: Multivariate normal (MMRM) model & Z test described earlier
 - Time & treatment categorical variables (with interaction)
 - Analytical formulas available for sample size
- We compare sample size needed for a test
 - 5% one-sided type 1 error, 90% power

Rather typical scenario (base case)



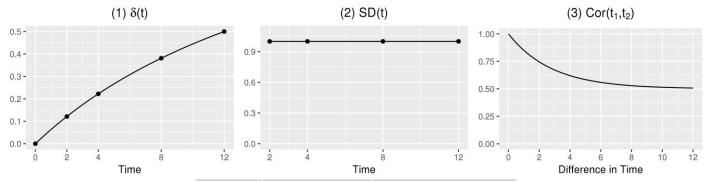
Test	Weights	(Samp. Size Long.)/ (Samp. Size Cross-Sect.)	
last 2 visits	0.00,0.00,0.50,0.50	0.87	0.87 means longitudinal needs 13%
last 3 visits	0.00,0.33,0.33,0.33	0.89	less patients than cross-sectional for
all visits	0.25,0.25,0.25,0.25	1.03	the same power
max T		0.90	
optimal w	0.00,0.14,0.34,0.52	0.85	

$\delta(t)$: Early onset \rightarrow More benefit for longitudinal



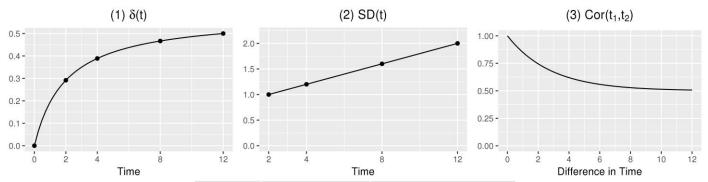
Test	Weights	(Samp. Size Long.)/ (Samp. Size Cross-Sect.)
last 2 visits	0.00,0.00,0.50,0.50	0.81
last 3 visits	0.00,0.33,0.33,0.33	0.74
all visits	0.25,0.25,0.25,0.25	0.72
max T		0.77
optimal w	0.22,0.20,0.25,0.33	0.71

$\delta(t)$: Late onset → Less benefit for longitudinal



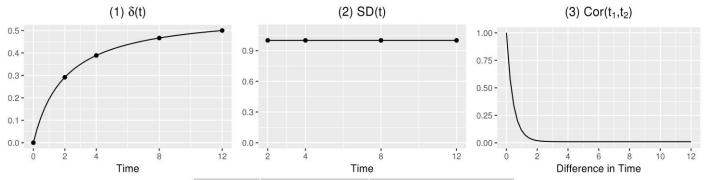
Test	Weights	(Samp. Size Long.)/ (Samp. Size Cross-Sect.)
last 2 visits	0.00,0.00,0.50,0.50	1.04
last 3 visits	0.00,0.33,0.33,0.33	1.34
all visits	0.25,0.25,0.25,0.25	1.86
max T		1.07
optimal w	0.00,0.00,0.21,0.79	0.97

SD(t): Increasing with time \rightarrow Higher gains (than with constant SD). Beneficial to give more weight to earlier points



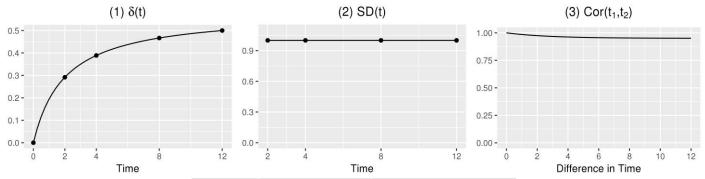
Test	Weights	(Samp. Size Long.)/ (Samp. Size Cross-Sect.)
last 2 visits	0.00,0.00,0.50,0.50	0.70
last 3 visits	0.00,0.33,0.33,0.33	0.57
all visits	0.25,0.25,0.25,0.25	0.54
max T		0.61
optimal w	0.24,0.46,0.22,0.08	0.51

$\begin{array}{l} \text{Cor}(t_1,t_2) \text{: Low within patient correlation} \\ \textbf{ > Better for longitudinal} \end{array}$



Test	Weights	(Samp. Size Long.)/ (Samp. Size Cross-Sect.)
last 2 visits	0.00,0.00,0.50,0.50	0.54
last 3 visits	0.00,0.33,0.33,0.33	0.42
all visits	0.25,0.25,0.25,0.25	0.38
max T		0.42
optimal w	0.17,0.23,0.29,0.31	0.37

Cor(t_1, t_2): High within-patient correlation \rightarrow Less benefit for longitudinal



Test	Weights	(Samp. Size Long.)/ (Samp. Size Cross-Sect.)
last 2 visits	0.00,0.00,0.50,0.50	1.05
last 3 visits	0.00,0.33,0.33,0.33	1.19
all visits	0.25,0.25,0.25,0.25	1.43
max T		1.05
optimal w	-0.00,0.00,0.00,1.00	1.00

- If onset of treatment effect early
 → Benefit of longitudinal approach expected to be larger
- If the standard deviation increases over time

 → Longitudinal approach expected to be more beneficial (than with a timeconstant SD)
 - \rightarrow More benefit with more weight on earlier time-points
- If within-patient correlation is high (i.e. within-patient variance is low)
 → less benefit from a longitudinal approach

Sample size savings for longitudinal across six case examples

- Ratio of sample sizes compared to cross-sectional analysis
 - Assuming observed $\delta(t)$, SD(t) and correlations are "true"

Approach	Mean (Min, Max)
Optimal Test	0.68 (0.29, 0.99)
Maximum Test	0.83 (0.59,1.03)

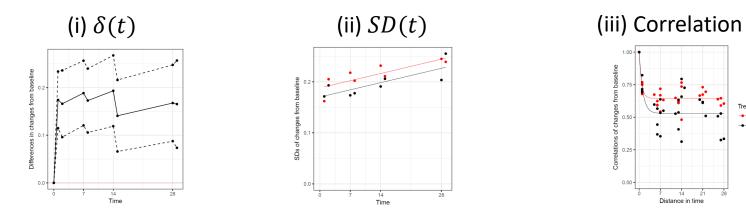
Agenda

- Statistical methodology
- Case examples
- Exploring factors
- Comparison to parametric mixed effect model
- Conclusions

Comparison to parametric mixed effect model

- For two of examples presented
 - Fit adequate parametric mixed effect model to data, using parametric model over time (details in appendix)
 - Simulate new trials (same design) from fitted mixed effect model
 - Compare
 - 1) Test based on treatment effect parameter in mixed effect model
 - 2) Cross-sectional analysis on last time-point
 - 3) max T test based on different weighted averages $w_1 = (0, 0, ..., 0, 1)', w_2 = (0, 0, ..., 1/2, 1/2)', ..., w_T = (1/T, ..., 1/T)'$
 - 4) Test based on optimal weights (optimized on true scenario)

Comparison example 1



Approach	Power
Parametric mixed model	84.9
Cross-sectional test	58.0
Maximum Test	70.2
Optimal Test	73.3

 Parametric time mixed effect model improves over "MMRM"
 → Fewer parameters

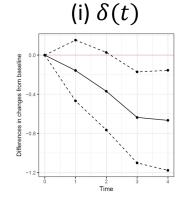
Treatment

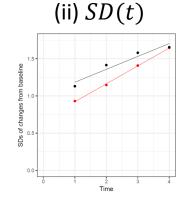
- Active

--- Placebo

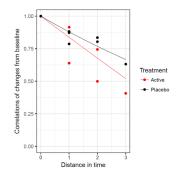
 Longitudinal models both improve over cross-sectional

Comparison example 2





(iii) Correlation



Approach

Power

Parametric mixed model	90.1
Cross-sectional test	88.8
Maximum Test	87.5
Optimal Test	89.2

 No big differences across methods, primarily due to linearity of treatment effect over time and high within-patient correlation

Agenda

- Statistical methodology
- Case examples
- Exploring factors
- Comparison to parametric mixed effect model
- Conclusions

Conclusions

- Including longitudinal measurements can bring substantial gains in specific situations
- The most gain from the longitudinal approach is expected for situations with:
 - early onset of treatment effect,
 - SD increasing over time,
 - most variability is within-patient (= low within-patient correlation).
- The presented simple "time-point-weighting" approach provides benefits almost "for free": no additional implementation effort, can use standard analyses (MMRM), only need to specify the contrasts of interest over time
- Parametric mixed-effects model-based approach (including covariate effects, using more pharmacological prior knowledge, etc) can potentially bring even higher gains
- Limitation of this work: focused only on the treatment effect detection. In practice, understanding the time-course is equally of interest

Acknowledgements

Oliver Sander, Ekkehard Glimm, Mick Looby

References

- Buatois, S. (2018). A pharmacometric extension of MCP-Mod in dose-finding studies, Presentation at PAGE meeting 2018 <u>https://www.page-meeting.org/default.asp?abstract=8753</u>
- Frison, L. J., & Pocock, S. J. (1997). Linearly divergent treatment effects in clinical trials with repeated measures: efficient analysis using summary statistics. *Statistics in Medicine*, *16*(24), 2855-2872.
- Karlsson, K. E., Vong, C., Bergstrand, M., Jonsson, E. N., & Karlsson, M. O. (2013). Comparisons of analysis methods for proof-of-concept trials. *CPT: pharmacometrics & systems pharmacology*, 2(1), 1-8.

XXXXXXXXXX TTTTTTT YXXYXXXXX YYYYYYYYY XXXXXXXXXXX YYXYXXYYY **XXXXXXXXXX YXXYXXXXX** YYXYYXYYY YXXYXXXXX \mathbf{Y} **XXXXXXXXXX** YYXYXXYYY **YXXYXXXXX** YYYYYYYY YXXYXXXYX YYYYYYYYY LYYLYYLYY YYYYYYYYY **XXXXXXXXXX** YYJYYJYYY JYYJYYJYJY YYJYYJYYY **YXXYXXXXX TTTTTTTT YXXYXXXXX** YYXYXXYYY LYYLYYLYLY YYYYYYYYY LYYLYYLYL YYXYYXYYY **YXXYXXXXX** \mathbf{X} **XXXXXXXXXX** \mathbf{x} XXXXXXXXXXX YYYYYYYYY **XXXXXXXXXX** YYYXYYXYY

Thank you

Appendix

Mixed effect model used in example 1

$$y_i = \alpha + \alpha_k + (\delta + \delta_k) I_{t_i > 0 \& trt_i > 0} + \epsilon_i$$

- $\epsilon_i \sim N(0, \sigma^2)$ iid
- $\alpha_k, \delta_k \sim MVN(0, \Omega)$ patient specific correlated random effects

Mixed effect model used in example 2

$$y_i = \alpha + \alpha_k + (\beta + \beta_k + \delta * trt_i)t_i + \epsilon_i$$

- $\epsilon_i \sim N(0, \sigma^2)$ iid
- $\alpha_k, \beta_k \sim MVN(0, \Omega)$ patient specific correlated random effects

