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Figure 1. Diagram of model building algenthm from Yolume 5 NONMEM manuals. Reproduced with
permissicn from loom PLC. In the criginal description of the algorithm, statistical features (variance terms)
were added after the sbructure was final for practical reasons.



Local search:
“step-wise” regression

e Base (covariate free) model
— Keep known physiology in mind
— Compare compartment structures

e Residual error structure to minimize systematic errors
* Inter-individual variability where identifiable

— Lag-time or mixture models if relevant

* Final model
— Baseline structure
— Single covariate forward addition
— Single covariate backward elimination



Local search:
“step-wise” regression

e Base (covariate free) model
— Keep known physiology in mind
— Compare compartment structures

e Residual error structure to minimize systematic errors

* Inter-individual variability where identifiable \

— Lag-time or mixture models if relevant
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— Single covariate forward addition (
— Single covariate backward elimination

) e

— Baseline structure




Genetic Algorithms
e What are they?

— A means of evaluating factors in a model where
more than one factor can be changed at a single
step.

— Partially automated to allow a more “complete”
evaluation of the full grid search space for a
particular candidate model.



Genetic Algorithms

e Approach:

— Replicate “survival of the fittest”

— Evolutionary process is imposed on the selection and
“survival” of the “best” model descriptions

— Calculate an indicator of how “healthy” a particular
individual model in the population is

— Utilized in multiple fields e.g. placing cell phone towers,
predicting stock performance etc.



Genetic Algorithms

“good” characteristics become more likely
Efficient at finding “good” regions of solution space
Slow to converge local “best”

Adaptations
— Elitism
e Retain best candidate to next generation
— Local search hybrid
e Compare candidate with each model differing by 1 bit
* Every 5 generations



Genetic Algorithms

Implementation in the context of population PK modeling (Bies
and Sale 2006, JPP August, Sherer Sale and Bies 2012 JPP)

Potential models are reduced to a bit-string (base-2 number
assembly) that reflects the model “genetic” code

Each model feature is coded as a base 2 number

— If there are 2 options the values are 0 or 1 [(0) (1)], if more
than two options then one has multiple bits eg. [(0 0), (0 1), (1
0), (1 1)]

Features are strung together to produce aforementioned bit
string

Model can be reproduced based on the bit string that results



Global optimization:
genetic algorithm

* Single-objective
— Default composite fitness measure (initial implementation)
e -2 x log-likelihood

e Penalty per model variable (10 points)

e Penalties for failure to converge (400), covariance (400), and
correlation (300)



Model Selection

Compartment structure
1 compartment
1 compartment w/ lag
2 compartments
2 compartments w/ lag

Residual error
Additive
Proportional
Combined

IV on CL
No relationship
Additive
Proportional
Exponential

Weight on CL
No relationship
Additive
Proportional
Exponential
Power-law

Weight on V
No relationship
Additive
Proportional
Exponential
Power-law

. 2

NONMEM

t

e Model evaluation criteria
— -2 x log-likelihood

— Number of parameters

— Diagnostic plots




Basic genetic algorithm

Candidate models (N = 300 — 500)

Candidate 1.

Compartment structure Residual error
1 compartment Additive
1 compartment lag Proportional
2 compartments Combined
2 compartments lag

Candidate 2.

Compartment structure Residual error
1 compartment Additive
1 compartment lag Proportional
2 compartments Combined

2 compartments lag

Candidate 3.

Compartment structure Residual error
1 compartment Additive
1 compartment lag Proportional
2 compartments Combined

2 compartments lag




Basic genetic algorithm

Candidate models (N = 300 — 500)

Candidate 1. Fitness = 1,000

Compartment structure
1 compartment
1 compartment lag
2 compartments
2 compartments lag

Residual error
Additive
Proportional
Combined

Candidate 2. Fitness =1,200

Compartment structure
1 compartment
1 compartment lag
2 compartments
2 compartments lag

Residual error
Additive
Proportional
Combined

Candidate 3. Fitness =1,050

Compartment structure
1 compartment
1 compartment lag
2 compartments
2 compartments lag

Residual error
Additive
Proportional
Combined

Evaluate fithess
using NONMEM



Basic genetic algorithm

Candidate models (N = 300 — 500)

Candidate 1. Fitness =1,000

Compartment structure
1 compartment
1 compartment lag
2 compartments
2 compartments lag

Residual error
Additive
Proportional
Combined

Candidate 2. Fitness =1,200

Evaluate fithess

Compartment structure
1 compartment
1 compartment lag
2 compartments
2 compartments lag

Residual error
Additive
Proportional
Combined

using NONMEM

Candidate 3. Fitness =1,050

Compartment structure
1 compartment
1 compartment lag
2 compartments
2 compartments lag

Residual error
Additive
Proportional
Combined

10

01

Binary representation of model decisions



Basic genetic algorithm

Candidate 1. Fitness =1,000

Compartment structure Residual error
1 compartment Additive

1 compartment lag Proportional - °
2 compartments Combined Re p ro d u Ct I O n :

2 compartments lag

01 10 Randomly select two
models from the
candidate pool based

Candidate 3. Fitness = 1,050

on nhormalized fitness

Compartment structure Residual error
1 compartment Additive -
1 compartment lag Proportional
2 compartments Combined
2 compartments lag

10 01



Basic genetic algorithm

Candidate 1. Fitness = 1,000

Compartment structure Residual error
1 compartment Additive
1 compartment lag Proportional

2 compartments Combined C ro S S Ove r :

2 compartments lag

01 Al 0 Randomly select a model
location

Candidate 3. Fitness = 1,050

v
Compartment structure Residual error
1 compartment Additive
1 compartment lag Proportional
2 compartments Combined
2 compartments lag

10 01



Basic genetic algorithm

New candidate 1

Compartment structure
1 compartment
1 compartment lag
2 compartments
2 compartments lag

Residual error Crossover:

Additive
Proportional

Randomly select a model
10 01 1 location

Residual error

Additive

New candidate 2 Swap model information
Compartment structure Combined
1 [ ] [ ] [ ]
o g with probability P
2 compartments
2 compartments lag

crossover

10 10



Basic genetic algorithm

New candidate 1

Compartment structure Residual error
1 compartment Additive
1 compartment lag Proportional

2 compartments Combined IVI u ta t i O n :

2 compartments lag

10 00 Randomly select a model
location

New candidate 2

Compartment structure Residual error

Change model information
1222E2:t22:tlag ProL;()I\r/;onaI Wlth proba billty P

2 compartments Combined
2 compartments lag

mutation

10 10



Basic genetic algorithm

New candidate models

New candidate 1.

Compartment structure Residual error
1 compartment Additive
1 compartment lag Proportional
2 compartments Combined

2 compartments lag

New candidate 2.

Compartment structure Residual error
1 compartment Additive
1 compartment lag Proportional
2 compartments Combined

2 compartments lag

Repeat reproduction,
crossover, and mutation
operations until a new
candidate pool is created

Repeat process for desired
number of 30-50
generations



~ A @
o o q(\" e \g@ &
2 & ~ £ O o o
'S [$) o' O &% © X &
@ s o L. o oL@ ]
S FTEFESTFE S
§F s F s 5o
f & WG F I ££
F & & & & o s & F$
o o Ao A A A A ow & &
o G G [ & [l P
& @ @ T @ (] T & @
X & S E&EF F FL LS
L L L & L L LN
S & S FE S FE LS
§F ' S FESIEL
¢ ¢ ¢ T & & Ol
| I |
Genome e A ook me o Ao R A —-'L-—,
fora | | I | | || I | i |
model 0,1,0,1,1.,0,0,0,1.1.0.,1,0.0.1,0..

Select feature

Gene 1, # of compartments, code is 0,1;

Options for number of compartment:

(0,0)=1 compartment, first order absorption
(0,1,)=1 compartment, first order absorption, lag
(1,0)= 2 compartment, first order absorption
(1,1,)=2 compartment first order absorption, lag

Insert code for selected feature into model template

$PROB GA MODEL
$SUBS ADVAN3 TRANSA

Compile and run resulting model

Adapted from
Br J Clin Pharmacol 2013 Jun 17 Epub ahead of print

Figure 3. Coding of model features and translation into 2 medel. If only two cptions are examined for a

feature {e.q., the effect of Gender on Clearance) only 1 bit will be needed for that gene. If more than twao

opbons are examined (e.g., 4 for the basic structure, number of compartments) more than 1 bit s reguired

for that gene. The final genome for each model Is constructed by concatenating all the genes together into
a bit string.



Covariate Search Comparison

e Evaluation of performance of multiple methods
— True model simulated with relatively dense sampling

— Exponential relationship with BMI and CrCL on
clearance

— Exponential relationship BSA and Sex on volume

— Compared:
e Stepwise Covariate Modeling
e LASSO (least absolute shrinkage and selection operator)
e Single Objective Hybrid Genetic Algorithm



Covariate Search Comparison

Tuble ¥ True and spuricas covariale relationships ddentified in the simalsied data by the sulomaied stepwise covanate modeling, Lesso, and
SOMGA approackes and the models £ characieristics

Method “True™ covaniates Spumious covariabes Objective
Clearanpe Vodume of distribation Clearance Yolame Fonesrin il
af distribugion
(rigical model BMIL, CROCL B5A, Sex &lo].2

Stepwine coveniste modeling (SCM):
g value far inclusioo,
p value for elimination

.05, 0L05 BML CROL Sex WT HT, CV1 BOES.9

.05, Ll BML CROL Sex HT, CVY1 el 1

.10, ol BML CROL Sex HT, CV1 Gl |

Lesso madel ML CROL B254. 2
Single-ohjective, hybmid genetic algaritbm

3.84 paint penzlly per parameier BMIL CROL Sex B5A HT, CV1 ¥

I{} point penalty per parameler EMILL CROL Rex HT BORT.Q

BMY body mess index, 854 body surface area, CRCL crestimine clezrance, OV unrelaled covarizte 1, 8T Reight, WT weight

Sherer et al 2012, JPKPD



Single-objective, hybrid genetic
algorithm (SOHGA)
VS.
step-wise approach

 Pharmacokinetic data for Risperidone

ldentical model options / decisions

e Compare information criteria of final models

Compare model structures



Oral 490 1,236




~ Risperidone Oral 490 1,236

ADVAN2, TRANS2 FO 9
ADVAN4, TRANS4
(with 1, 2, or 3 clearance

subpopulations)




Oral 490 1,236

ADVAN2, TRANS2

ADVAN4, TRANS4

(with 1, 2, or 3 clearance
subpopulations)

Final step-wise model Best Final step-wise Best SOHGA
SOHGA model candidate
candidate
Required fixing K, early  Successful Successful (60) Successful
in model building (1.17x106%)

process




Oral 490 1,236

ADVAN2, TRANS2

ADVAN4, TRANS4

(with 1, 2, or 3 clearance
subpopulations)

Final step-wise model Best Final step-wise Best SOHGA
SOHGA model candidate
candidate
Required fixing K, early  Successful Successful (60) Successful
in model building (1.17x106%)

process

AIC =5,131.1 AIC = 4,853.0 -278.1




Model structure: SOHGA vs. step-wise

Risperidone, oral 1 with 3 component mixture on CL 2 with 2 component mixture on CL

e Extra degree of freedom

— Fix k, based on literature due to instability
e Risperidone (AAIC=-278.1)

— 1 covariate in final stepwise model
— 5 covariates in best SOHGA candidate



Example Model Search Space

An example:

e Structure: 1, 2 compartment distribution model

e Covariates: Weight on CL, V | AgeonCL, V | Sexon CL, V
e Linear: TVpgram = THETA, + ((Cov; — Cov) x THET Ag)

e Exponential: TVpgrqm = THET A, * e(Covi—COV)*THETAB

e Statistical: Additive, Proportional, Combined




Example Model Search Space

e Total number of models:
o 2*3*3%3*3%2%2*3 = 1944 possible combinations
| L Additive vs Proportional vs Combined Error Models
Sex on V (None, Additive Shift)
Sex on CL (None, Additive Shift)

Age on V (None, Linear, Exponential)

Age on CL (None, Linear, Exponential)

Weight on V (None, Linear, Exponential)

Weight on CL (None, Linear, Exponential)

1 vs 2 compartment




Example Model Search Space

e Total number of models:
o Q¥3%*3*3%3%2%*2*3 = 1944 possible combinations

Weight on Weighton AgeonCL AgeonV SexonCL SexonV Error Model

CL \'
1 1 None None None None None None Additive
2 1 Linear None None None None None Additive
3 1 Exponential | None None None None None Additive
4 1 None Linear None None None None Additive
5 1 None Exponential | None None None None Additive
1944 2 Exponential | Exponential [ Exponential | Exponential [ Additive Additive Combined




Outline of GA

Run candidate Stop after

Randomly select convergence criteria

initial population of models by calling
n models NONMEM met

Determine the
Crossover : “fitness” of the
g model




Initial Population

* n models, or “individuals”, are randomly
selected from the pool of all combinations

* Models are run simultaneously

R P e el
CL

Linear None Linear Exponential None Exponential - Additive
225 1 Linear Exponential Exponential Linear None None Proportional
343 1 Exponential None None Linear None Linear Proportional
800 2 None Linear Exponential None Exponential None Combined
1284 2 Exponential Exponential Linear Exponential None None Additive
1491 2 Exponential None None Linear None Linear Additive




Fitness

* How to determine how “fit” a model is?

Run candidate

é models by calling

NONMEM

Determine the
“fitness” of the
model




Fitness

* How to determine how “fit” a model is?
* NONMEM objective function?

Run candidate
models by calling é

NONMEM

Determine the

“fitness” of the
model




Fitness

* How to determine how “fit” a model is?
e NONMEM objective function?

e Objective function + Penalty terms

Run candidate
maodels by calling —

NONMEM

Determine the
“fitness” of the
model

Fitness = —2LL + 2 * Npg, + 20 * Penalt)’Converge + 10 * Penaltycopar

\ )
!

AIC




Selection

e Tournament style selection

e Ranked selection method

* |deal when fitness values are close
in magnitude

for each model i
choose a random opponent model j (excluding
)
the more fit model wins the tournament
winner proceeds to the cross-over pool

_ —
Determine the
et models
-—

Initial Population Crossover Pool
Model | Fitness mm
83 100
225 102 |
343 98
800 94
1284 103
1491 109




Selection

e Tournament style selection

e Ranked selection method

* |deal when fitness values are close
in magnitude

for each model i
choose a random opponent model j (excluding
i)
the more fit model wins the tournament
winner proceeds to the cross-over pool

—_ ——
VAR
Determine the
R Girodsa
-—

Initial Population Crossover Pool
Model | Fitness mm
83 100 800 94
225 102
343 98
800 94 |
1284 103
1491 109




Selection

* Tournament style selection

e Ranked selection method

* |deal when fitness values are close
in magnitude

for each model i
choose a random opponent model j (excluding
i)
the more fit model wins the tournament
winner proceeds to the cross-over pool

—_— g
Determine t_he
Gl s
-—
Initial Population Crossover Pool
83 100 800 94
225 102 225 102
343 98
800 94
1284 103 ‘
1491 109




Selection

—_— g
e Tournament style selection / \
e Ranked selection method i
* |deal when fitness values are close . —
in magnitude
Initial Population Crossover Pool

choose a random opponent model j (excluding

for each model i mm mm
83 100 800 94

) the more fit model wins the tournament 225 102 225 102
winner proceeds to the cross-over pool 343 98 343 98
800 94 800 94
1284 103
1491 109 ‘



Selection

e Tournament style selection

e Ranked selection method

* |deal when fitness values are close
in magnitude

for each model i
choose a random opponent model j (excluding
1)
the more fit model wins the tournament
winner proceeds to the cross-over pool

—_— g
Determine t_he
G e
—
Initial Population Crossover Pool
83 100 | 800 94
225 102 225 102
343 98 343 98
800 94 800 94
1284 103 83 100

1491 109




Selection

—_— _
e Tournament style selection / \
* Ranked selection method Detamine e
* Ideal when fitness values are close — -

in magnitude

Initial Population Crossover Pool

for each model i mm mm
83 100 800 94

choose a random opponent model j (excluding

) the more fit model wins the tournament 225 102 225 102
winner proceeds to the cross-over pool 343 98 ‘ 343 98
800 94 800 94

1284 103 83 100
1491 109 343 98



Crossover

 Mimics biological reproduction

e Combines elements of well performing - .
models to produce potentially more fit —— / — \
models

Determine the

* Two-point crossover ot




Crossover

Parent Chromosomes

Mode Fitnes N, Weighton Weighton AgeonCL AgeonV SexonCL SexonV Error Model

I s T CL \'
Linear Exponentia Exponentia Combined
I I
343 98 Al Exponentia None None Linear None Linear Proportional
I
Progeny

Mode Fitnes N, Weighton Weighton AgeonCL AgeonV SexonCL SexonV Error Model
I s T CL \"

None None Linear Combined

Exponentia
I

Exponentia
I

Exponentia
I

Proportional




Mutation

for each model i —_ —_
for each gene j __ ) : ) :
mutate gene (T/F) with probability 0.05 / \
if (mutate gene =T)
newPhenotypelndex = sample integer from 1 to length of phenotypes Determine the
phenotype = phenotypes[newPhenotypelndex] e
gene[j] = phenotype -—
Mutate: F F F F T F F
Weighton Weighton AgeonCL AgeonV SexonCL SexonV Error Model
CL \'}
None None None Linear Ad\iatrinee None Combined




Outline of GA

Randomly select Run candidat'e
initial population of models by calling
n models NONMEM

Determine the Determine the
next generation “fitness” of the
of models model

Stop after
convergence
criteria met




Software

3
- ~ &2 PsN

> NONMEM 7.4

shell()

XNEOSE

Development of
user interface




'[é University at Buffalo
The State University of New York

Development of NONMEM Workbench

to Implement Genetic Algorithm
o=

@M B Current Directony: test

Cantral Stream Preview Data
;1. Based on:
. 2. Description: 1 CMT, INF, Prop RUY, no covariates ETA | EPS | Structure Custom
FPROBLEM 1
$INPUT C 1D AMT RATE DUR TIME DY MDY EVID WT Pia SEX Token Group Token Set Token
FDATA examplel_g CSY IGNORE=C e IFTHETA 1))
FSUBROUTINES ADWANS PhdAonCL Lingar (-50,.001 500, WWTonCL
SERMonCL Mone
SMODEL Power
COMPICEMTRALT DEFDOSE DEFOBS)
v ez
P D
DUMMY = ETA(1) renew
TYCL=THETA{) {WTonCL} {PWAonCL} {SEXMonCL} {IvonCL} |
CL=TvWCL
TVW=THETA(Z) (WTonv) {PMAcny} {SExMany) {IVonv) Select Covariate
WETVY
K10 = CcLv T -
S1=Y
LI=buR Select Covariate relationships
FERROR Mone  Linear = Power | Exponential | Proportional
IFRED = F
IRES = DW.IPRED . . .
W = SORTIPRED™2 * SIGMA(T 1) + SIGMARZ.2)) Center Covariate (Median) . Required {Token Group} in
IWRES = IRES/W FPK
Add Selected Token Sets
Y= ERED + EREDEPS() + E25) FTHETA

SESTIMATION METHOD=1 INTERACTION PRINT=5 MAR=3339 MSFO=1 MSF NOABORT

FTHETA
nn3);cL




Case Study: Tumor Progression Modeling

e Unperturbed tumor growth trajectories of
22 LNCAP xenograft tumors were selected 60001
as test dataset

Tumor Volume
=
=
[
=

]
[en]
=
o

40 50 80 100
Time (Days)



Case Study: Tumor Progression Modeling

e e e P I
GA app with the combinations listed to Model - ——

. Exponential _ 42x3=48
the right: a ~hxV
3 =
Power d—V=ROXV?' 3 4 3 4°%x3 =192
dt
Logistic av e 3 4 3 43%x3=192
= =N XV x(1 Tmu)
Gompertz av TUMpqy 3 4 3 $%x3=192
E—kuxv’xlog( v )
Simeoni ﬂ _ Ag XV 4 4 3 4*% 3 =768
=1
L (i—ix L
il W_ M xVXZXN 34 3. #x3=1%
dt ~ (A +2xA)xV)
Sum: 1584

* The four IIV structures are: none, additive, proportional, and exponential.

[1] Koch G1, Walz A, Lahu G, Schropp J. Modeling of tumor growth and anticancer effects of ** The three RUV structures are additive proportional and additive plUS
combination therapy. J Pharmacokinet Pharmacodyn. 2009 Apr;36(2):179-97. . ! !
proportional.



Case Study: Tumor Progression Modeling

Based on the available Computation power Mean and Minimum Fitness Values versus Generation
3100
(40 available cores), run 38 models e
— Inima
simultaneously. 3000 4

It took on average 4 minutes to run a
generation. 2900 1

The algorithm found the best model by the
15th generation

Fitness

2800

To confirm model convergence, the system
was allowed to continue for a total of 30
generations. 2600 -

250 out of 1584 unique models were run by . . . . .
. 5 10 15 20 25 30
the 30th generatlon. Generation

2700




Case Study: Tumor Progression Modeling

* The Koch growth model performed best for the
xenograft tumor dataset. 1750

* Fitness value of 2572 7/
2725

0o

» The model with the best fithess had the following

IIV characteristics: 2100 v

* An exponential IV model on AO 28T

* An exponential IV model on A1 2650 -

Fitness Function

@ eHed D)

* An exponential IV model on baseline. —

e The residual error model selected was additive

plus proportional. 2600 1 (@)

» Standard step-wise approach conducted by 25751 %
blinded colleague resulted in fithess value of Koch  Simeoni  Power  Gompertz Logistic Exponetial

. . Model Tvpe
2748 (Simeoni structure) Top five fitness values for the six commonly

used growth model categories




Model Selection Results

The Koch growth model performed best for the test dataset. The model with the best
fitness had the following IV characteristics: a exponential IV model on AO; exponential
[IV model on A1; and exponential IIV model on baseline;. The residual error model

selected was additive plus proportional.

2750 g
@ O
2725 -
2700 -
c v
h=]
£ 2675 4
3
P §
w
§ 2650
g 0]
2625 - O
2600{ )
25754 H
.I. T T T T T
Koch Simeoni Power Gompertz Logistic ~ Exponetial

Model Type

The plot of the top five fitness function for
the six commonly used growth model
categories (Koch, Simeoni, power,
Gompertz, Logistic, and exponential).

Observations

6000 —

5000

___________

4000 -

8
£

8
8

1000

T T T T
40 60 80 100
Time

The VPC plot for the Koch model with the best fithess
value of 2572. The red dashed lines are the predicted
5t and 95™ percentiles.



Model Selection Results

The best fitness function of the GA selected model is 2572 for the Koch model, while the typical
approach to model building conducted by a “blinded” colleague resulted in a fitness of 2748 for a

Simeoni model. In addition, the best Simeoni model found by GA gets a fitness function of 2602.

Dependent variable

_EE_,__'__.__;_!_I_I_J—:—:,::

Independent variable

The VPC plot for the Koch model with the best fithess The VPC plot for the manual picked Simeoni model
value of 2572. The red dashed lines are the predicted with the fitness value of 2748. The blue solid lines are
5t and 95™ percentiles. the predicted 5" and 95% percentiles.



Limitations of SOHGA

Only post-hoc visual predictive checks
Single-objective

— Ad hoc (user defined) weighting scheme
e i.e., 10 points / parameter is x> = 0.0016

Equally valid yet very different candidate
models are possible

Does not consider feasibility

e Could modify weighting scheme



Conclusions

 The genetic algorithm identified a mixed effect model for
risperidone PK and tumor trajectories that had substantially
better OFV (and converted fithess) compared with the standard
model search strategy.

« The current app can improve the accuracy and efficiency of
model development. An automated solution for population
PK/PD modeling will allow modelers to focus on hypothesis
generation and model evaluation rather than text processing
and model execution.
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B Current Directory: test Initiate Genetic Algarithm S4E

Control Stream Preview Data

1. Based on: -

. 2. Description: 1 CMT, INF, Prop RUY, no covariates ETA | EPS [ Structure | Custom

SPROBLEM 1

HINPUT C ID AMT RATE DUR TIME DY MDY EVID WT PMA SEXM Token Group Token Set Token

FOATA examplel_g CEW IGNORE=C = (T3 THETA(1 1)

FSUBROUTINES ADWANS PhddonicL Linear (-50,.001 500, WTonCL
SEXMonCL Mone

FMODEL Power

COMP{CENTRALT DEFDOSE DEFOBS)

PK
DUMMY = ETA(1)
TVCL=THETA() (WTanCLl {PMAonCL} {SEXManCLY {lIvanCLy
CL=TvCL
TWWETHETA(Z) Tony} {PMAony} (SExMonv} {IIvany)
V=TV
Ki = CLAY W -
s1=v
D1=DUR

Select Covariate

Select Covariate relationships

ﬁEEES%F Mone  Linear ~ Power  Exponential | Proportional

IRES = DWIPRED . .
W = SORTIPRED™2 * SIGMA{1 1] + SIGMA[Z 2)) Center Covariate (Mediar) (I

MWYRES = IRESAW FPK
Add Selected Token Sets
FTHETA,

Required {Token Group}in:

¥ = |PRED + IPRED*EPS(1) + EPS(2)

FESTIMATION METHOD=1 INTERACTION PRINT=5 MAX=9993 MZFO=1.M3F NOABORT

$THETA
{00.3 ;6L




Observations / Predictions
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Case Study: Tumor Progression Modeling
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NONMEM Workbench

Built in helpers for testing
common model features
e Covariate effects

* None, Linear, Power, Exponential,
Proportional

e Interindividual Variability
* None, Normal, Log-normal

Covariate m EPS Structure Custom

Token Set
Logarithmic

None

Token Group Token

| WTonCL
SEXMonCL
PMAoNCL

IIVonCL

(0.01)

WTonV
SEXMonV
PMAonV v

Select IV relationships

None Normal Logarithmic Normal (Proportional)

Add Selected Token Sets




NONMEM Workbench

Built in helpers for testing
common model features

Covariate ETA E Structure Custom

Token Group Token Set Token
i i oo B
[
Cova rl ate effe Cts IVonCL Additive+Proportional (0.01); Additive
. . WTonV Proportional
* None, Linear, Power, Exponential, | sexuonv
Proportional Ao '
e Interindividual Variability =3 |
Delete
* None, Norma I, Log-nOI’m al Select Residual Error Models

Additive Proportional Additive+Proportional

e Residual Error
* Additive, Proportional, Combined

Add Selected Token Sets




NONMEM Workbench

Built in helpers for testing common
model features

e Covariate effects

* None, Linear, Power, Exponential,
Proportional
e Interindividual Variability
* None, Normal, Log-normal

e Residual Error
e Additive, Proportional, Combined

e Structure
* Number of distribution compartments
e +/- lagtime
e +/-saturable clearance

Covariate

Token Group

NCMT

WTonCL

SEXMonCL

PMAonCL

1IVonCL

WTonV

SEXMonY ¥

Select Structural Component

Additional Compartments

|-

Add Selecied Token Sets

Token Set Token
COMPCENTRAL?) [B
None TvQ12 = THETA([1])

Q12=TvQ12
TVWV12=THETA([2])
V12=TVWV12
=Q12/
Preview Delete iGN
K21=Q12/\V12 i
Michaelis-Menten
K12
|
K21




NONMEM Workbench

Built in helpers for testing common model features

e Covariate effects

* None, Linear, Power, Exponential, Proportional

Interindividual Variability
¢ None, Normal, Log-normal

e Residual Error
e Additive, Proportional, Combined

e Structure
e Number of distribution compartments
* +/- lagtime
e +/-saturable clearance

* Initial Estimates
e Specify a range of initial estimates

e Custom token sets

Covariate

Token Group

Token 1

Add Token Set

Token Set Token
Token Group Name
Custom
Token Set Name
Custom1
Token 2
Add Token Save




Post-processing

* View final parameter estimates and precision Plots  Parametes
° |ntegrated With Xpose Covariate Model PsN
* Automatically generate diagnostics plots i
* Individual plots cL o3 709
v 3.85 5.61
* DV VS PRED THETA3 0.06 18.37
* DV vsIPRED THETA 136 69
THETAS -2.65 19.55
e RESvs T”V]E, DV THETA6 008 9.45
* Run PsN modules  woway
* VPC
e Log-likelihood profiling Estimate  RSE (%)

Prop 0.19 21.57




Post-Processing

* Linear regression between:
e Covariates and post-hoc parameters

e Covariates and random effects (ETAs)

Plots Parameters
. . .
0.40 1 r 040 4 ° o Covariate Model PsN
g 0.35 - 035 -
£ 1apd 8 R Model Estimate  Pval.x
g0 @ 030
o o
O© 02549 3 025 Linear WTonCL 0.051 0.0014
020 4
0204 Exp  WTonCL 0.188  0.00107
0.15 H 015
0 = 0 Power  WTonCL 0.353 0.00118
o o . . Linear PMAonCL 0.013 0.00338
. s Exp PMAonCL 0.046  0.00203
2 4 g 4 ° Power PMAonCL 158  0.00178
23 2 3 Linear  WTonV 0668  0.00821
2+ 24 o
Exp WTonV 0.258 0.00665
14 14
3‘0 3'5 4:] Power WTonV 0.501 0.00433
wT PMA Linear PMAonV 0.12 0.099
Exp PMAoNV 0.055 0.0388
Power PMAonV 1.903 0.0315
Linear WTonETA1 0 MNaN
Linear PMAORETA1 0 NaN
Linear WTonETA2 0.188 0.00107
Linear PMAoONRETAZ2 0.046 0.00203



Software Application

Free and open source

Cross platform
Extendable
Features:

Implements robust search for globally optimal model
solution

Organizes and displays models in tabular interface,
allowing user to sort, filter, edit, create, and delete
models seamlessly

Displays run results, parameter estimates, and precision
Integrated with Xpose and PsN

Linear regression models between covariates and post-
hocs




Multi-objective optimization

Single objective GA — composite function.

Arbitrary (how much is each component of a model worth in terms
of a penalty on fitness)

Decisionmakers

— preferred not to be presented with a single “best” option

— wanted subjective elements captured

NSGA-II (non-dominated sorted genetic algorithm)

— Possible dimensions
 Number of parameters
e -2 Log Likelihood
e NPDE P-value
e “Quality” score
o AIC

— Uses elitism, diversity and mutation operators

— Sorts on “non-dominated” solutions
e Solutions that are at least as good as all others but better in one dimension



Multi-objective optimization

 Optimize over many criteria

90%

Comfort

10k 250k

Cost



P

MOGA Options

5. Options | = 25—
Basic T Uszer R Code ]
Objectives Random seed
* There are fewer
[ OBJ
" Use Clock
W UseAlC
" User Defined 1 °
[~ Mumber of parameters O pt I O n S
W LUse NPDE )
v Use Condition Mumber ° °
- since penalties
[v DownHill g3 Generations
| Convergence
[v Include ga for non diagonal OMEGA
v "Quality” [v Covariance

o do not need to

[v MakexPoze Plots

Mumber of Bins |15 [~ Default : -
Cross over/genome 07 v Default b e S e C I fl e d
[~ WPC plat zemilag °

|

rutation rate 0.m [v Default [ Keep ¥pose Data Files
Population size 300 [~ Default
Eeneration limit 110 [~ Default
Lower limit for non-crash IW [ Default
Minimization timout [minutes) lsui [~ Default
U pdate time lirnit [minutes] I‘I'ji [~ Default
Covariance time [minutes) lEDi [~ Default




Multi-objective genetic algorithm

* Frontin -2xLL vs. # parameters space

Risperidone, Front 1 by generation
35 -
a
20 | - 2 compartments
[ |
o. @ Generation 1
w» 25 - ] .
S g B Generation 5
@ ola-oo‘ * [ Generation 15
€ 20 - an . .
3 = e .3 .‘i 1 compartment ® Generation 16
S 15 N
2 == =
E o .
= 10 - ] * . 0
[ ] [
]
> Best step-wise solution
0 OBJ =5,103.1 (14 parameters)
4500 5000 5500 6000 6500
-2LL




Multi-objective genetic algorithm

 Front in -2xLL vs. # parameters space

Risperidone, Front 1 by generation
35 -
[ ]
20 | - 2 compartments

(|

o. 4 Generation 1
v 25 - ° .
S : B Generation 5
@ 0'3'“‘ * [ ] Generation 15
€ 20 - an . .
3 =.%‘,‘ .: 2‘. 1 compartment ® Generation 16
> 15 - ' ce'®
3] [ | | on
: = B .
= 10 - - M LR

. ] [ ]
c | Best SOHGA solution ‘
OBJ = 4,815.2 (16 parameters)
0 T T T 1
4500 5000 5500 6000 6500
-2LL




Ziprasidone MOGA

Objective Function Value

Evolution of OFV vs. # Params Pareto front

4790
4780 + GEN 10 |
Il GEN 20
4770 i GEN 30 —
¢ *
4760 L > GEN 40 |
. t.GEN 50
Stepwise
4750 g
S0HGA H *
4740 B ry
| A +
* ] *
4730
R XMy
X
4720 T T T |
0 5 10 15 20

Number of model parameters




Ziprasidone MOGA

Mumber of Parameters 5 6 7 8 9 10 11 12 13 14 15 16 17
Objective Function a4770.3 4746.7 4742.2 4739.1 47369 47347 47334 47318 4727 47276 4728.8 47255 4726.1
stepwise - 4751.2
SOHGA - 4746.7

I - CL X X X X X X X X X X X X X
-V x X Ed X X X X X X X X X
IV - Ka X X X
ADDITIVE

PROPORTIOMAL X x X Ed X X X X X X X X X
COMBINED

CL- Al X X X X X X X
CL-DI Ed X X X X X X X X X
CL-Cl X X X X X X X X X X
CL- AGE X X X X X K
CL-WT X X X X X X X X
CL-5M2 X X X X X X X
CL-Cl X X X
CL-SEX X X

CL- Al X

V- WT X

W - SEX X X



Perphenazine MOGA

Objective Function Value

Evolution of OFV vs. # Params Pareto front

S58O
570 # Generation #10
< B Generation #20
[ ]
560 y A Generation #30
» - = Generation #40
A
550 4+ Generation #50
» ® Generation #60
A8 gy
540
Stepwise a a H +
530 A
SOHGA © % ! A
¥ =<
[ ]
520 . | | |
0 5 10 15 20

Number of model parameters




Perphenazine MOGA

Mumber of Parameters 6 7 8 9 10 11 12 13 14 15

Objective Function S64.6 5354.4 3456 539.6 536.3 333.7 529.0 526.3 525.7 522.3
stepwise - 540.7 SOHGA - 531.9

I - CL X X X X X X X x X X

-

IV - Ka

ADDITIVE

PROPORTIOMNAL x X X X X X X X X X

COMEBINED

SMEK - CL X X X X X X X X X

ClG-CL X X X X X X X X X

RACE-CL X X X X

FLUX - CL X X X X X

SEX-CL

PARX - CL X X * X X

WGET - CL X X

SME -V X X X X X X X X

AGE- VW X X X X

FLUX -\

ClIG-V X X X X

RACE-V * X X X

SEX -V



Citalopram (IV) MOGA

Objective Function Value

Evolution of OFV vs. # Params Pareto front

6400
. ¢ GEN 10
6200 | —
W GEN 20
[ |
hd GEN 30
6000 —
i
> GEN 40
5800 [ GEN 50 —
‘Xmpm ¢
o
5600 Stepwise
Kowe
5400 *up -
& L 5! i X K+vHB K
SOHGA
5200 I T T T T |
0 5 10 15 20 25 30

Number of model parameters




Citalopram (IV) MOGA

Mumber of Parameters 10 11 12 13 14 15 16 17 138 19 20 21 22 23 24 25 26
Objective Function 53739.6 3745.7 5463.8 5409.7 5380.4 53745 3353.1 5330.6 53339.7 5329.9 5323.5 5318 5314.5 5343.5 5314.1 5303.3 5308.9
stepwise - 5695.5 SOHGA - 5335.6

I - CL x

I -v1 X X X X x X X X X X X X X X X
I -0Q X X x x X X x X X x x X X x x X X
I -v2 X X x x X X x X X x x X X x x X X
COVARIANCE X X X x X X X X X X X X X X
ADDITIVE

PROPORTIOMNAL X X X X X X X X X X X X X X X X X
COMBINED

CL- BMI X X X X X X X X X X X X X
CL-WT X x X X X X x x X X
CL- SEX X X X X
CL- FAT X X X X X X X
CL- AGE X x

V1-BMI X X X X X X X X X X
WV1-5EX x X X x x X x X X
V1-WT X X X X
V1-FAT X
Q- 5Ex X X X x X x x X X
Q-WT X x x X X
Q- FAT X X X X
Q- AGE x X

Q- FFM X X X
V2-FFM X X X X X X X X X X X X X X X X

W2 - 5EX x X x x X X x x X X
V2-WT X X X X X X X
V2-FAT X X
V2-AGE x X x X

V2 -BMI X X X X



The Control Stream Template

e Resembles NONMEM control stream

e With additional {placeholder} text strings
e Termed token groups

$PK
TVCL = THETA(1) {WTonCL}
CL = TVCL * EXP(ETA(1))

STHETA
(0,10); CL
{WTonCL}




The Control Stream Template

SPK
TVCL = THETA(1) {WTonCL}
CL = TVCL * EXP(ETA(1))

STHETA
(0,10);CL
{WTonCL}

Placeholders are replaced with text strings
to produce syntactically correct control

streams

Token Group Token Set

WTonCL

WTonCL

Linear

Tokens

+THETA(n)*WT
(0.001); WTonCL

Exponential *exp(THETA(n)*WT)

(0.001); WTonCL



Summary

 Implemented genetic algorithm method to more
completely search the model space

e Single-objective, hybrid genetic algorithm
— Arbitrary fitness function
— Post-hoc assessment of predictive performance

 Multi-objective views additional dimensions

— Generate non-dominated pareto front to evaluate
trade-offs across models for given characteristics
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